红外分光光度法
红外分光光度法-中国药品检验标准操作规范-2010年版

红外分光光度法1 简述化合物受红外辐射照射后,使分子的振动和转动运动由较低能级向较高能级跃迁,从而导致对特定频率红外辐射的选择性吸收,形成特征性很强的红外吸收光谱,红外光谱又称振-转光谱。
红外光谱是鉴别物质和分析物质化学结构的有效手段,已被广泛应用于物质的定性鉴别、物相分析和定量测定,并用于研究分子间和分子内部的相互作用。
习惯上,往往把红外区分为3个区域,即近红外区(12800~4000cm,0.78~2.5μm)。
其中中红外区是药物分析中最常用的区域。
红外吸收与物质浓度的关系在一定范围内服从于朗伯-比尔定律,因而它也是红外分光光度法定量的基础。
红外分光光度计分为色散型和傅里叶变换型两种。
前者主要由光源、单色器(通常为光栅)、样品室、检测器、记录仪、控制和数据处理系统组成。
以光栅为色散元件的红外分光光度计,以波数为线性刻度,以棱镜为色散元件的仪器,以波长为线性刻度。
波数与波长的换算关系如下:波数(cm-1)= 104波长(μm)傅里叶变换型红外光谱仪(简称FT-IR)则由光学台(包括光源、干涉仪、样品室和检测器)、记录装置和处理系统组成,由干涉图变为红外光谱需经快速傅里叶变换。
该型仪器现已成为最常用的仪器。
2 红外分光光度计的检定所用仪器应按现行国家质量与核查技术监督局“色散型红外分光光度计检定规程”、“傅里叶变换红外光谱仪检定规程”和《中国药典》附录规定,并参考仪器说明书,对仪器定期进行校正检定。
2.1 波数准确度2.1.1波数准确度的允差范围傅里叶变换红外光谱仪在3000cm-1附近的波数误差应不大于±5cm-1,在1000cm-1附近的波数误差应不大于±1cm-1。
2.1.2波数准确度检定方法2.1.2.1以聚苯乙烯膜校正按仪器使用说明书要求设置参数,以常用的扫描速度记录厚度为50μm的聚苯乙烯膜红外光谱图。
测量有关谱带的位置,其吸收光谱图应符合《药品红外光谱集》所附聚苯乙烯图谱的要求,并与参考波数(表1)比较,计算波数准确度。
红外分光光度法培训

在透射光谱分析法中,红外光通过样品后,被检测器测量透 射光强度。通过分析透射光强度与波长的关系,可以确定样 品中分子的结构和组成。透射光谱分析法适用于固体、液体 和气体样品的测定。
反射光谱分析法
总结词
反射光谱分析法是通过测量反射光强度来分析物质的方法。
详细描述
在反射光谱分析法中,红外光照射到样品表面后,被反射回来并被检测器测量。 通过分析反射光强度与波长的关系,可以确定样品表面的分子结构和组成。反 射光谱分析法特别适用于固体样品的测定。
表格或图表形式。
实验数据解析
解析一
谱图分析:对测量的红外光谱图进行 分析,识别特征峰对应的官能团或分 子结构。
解析二
定量分析:根据谱图中的特征峰强度, 对样品中目标成分的含量进行定量分 析。
解析三
结构推断:结合已知的红外光谱数据 和理论知识,推断样品中可能存在的 官能团或分子结构。
解析四
误差分析:对测量结果进行误差分析, 评估测量结果的可靠性和准确性。
用于检测环境中的污染物和有 毒物质,评估环境质量和安全。
02 红外分光光度计的组成与 操作
红外分光光度计的组成
01
02
03
04
光源
发射特定波长的红外光,为样 品提供能量。
ቤተ መጻሕፍቲ ባይዱ干涉仪
将光源发出的红外光分成两束 ,分别经过动镜和静镜反射后
再重新组合,形成干涉。
检测器
检测干涉后的红外光强度,并 将其转换为电信号。
红外分光光度法的应用领域
无机化学
用于分析无机化合物的组成和 结构,如矿物、陶瓷、玻璃等。
医学
用于检测人体内的生物分子和 药物代谢产物,辅助疾病诊断 和治疗。
红外吸收分光光度法

01 红外吸收分光光度法简介
定义与原理
定义
红外吸收分光光度法是一种基于物质吸收红外辐射的特性进行物质分析的方法。
原理
当特定波长的红外光通过物质时,物质分子会吸收特定波长的光,导致光强减弱。通过测量不同波长 下的光强衰减程度,可以确定物质分子中特定化学键的振动频率,从而推断出物质的成分和含量。
结构推断
结合已知的化学知识和光 谱特征,推断分子的可能 结构。
04 实验误差与质量控制
误差来源
仪器误差
仪器本身的性能差异、老化或维护不 当,可能导致测量结果偏离真实值。
环境因素
实验环境中的温度、湿度、气压等变 化可能影响仪器的性能和测量结果。
操作误差
实验操作过程中,由于人为因素导致 的误差,如样品处理不当、仪器参数 设置错误等。
数据处理
对实验数据进行处理和分析, 绘制红外光谱图。
实验注意事项
样品纯度
确保待测样品的纯度,以避免杂质干扰实验 结果。
光路清洁
定期清洁光路系统,确保实验过程中无灰尘 和杂散光干扰。
温度控制
保持实验室内温度的恒定,以减小温度变化 对实验结果的影响。
数据处理严谨
对实验数据进行严谨的数据处理和分析,确 保结果的准确性和可靠性。
样品不均匀
样品本身的不均匀性可能导致测量结 果的不准确。
质量控制方法
校准
环境控制
定期对仪器进行校准,确保仪器性能稳定 ,测量结果准确。
保持实验室内恒定的温度、湿度和气压, 以减少环境因素对测量结果的影响。
操作规范
样品处理
制定详细的操作规程,规范实验操作过程 ,减少人为误差。
红外分光光度法

31
红外活性振动: 偶极矩发生变化的振动
产生红外吸收 红外非活性振动:偶极矩不发生变化的振动 不产生红外吸收
N2、O2、Cl2、H2 没有红外活性 。
+
-
CO2
+ -
qr q 0 0 0
qr>0 0
32
2.吸收峰峰数
苯的振动自由度=3*12-6=30,但实际观 察到的红外吸收峰数目并不等于分子振动 自由度即基本振动数,其主要原因是:
19
分子总自由度等于该分子中各原子在空间 坐标的总和。在空间确定一原子的位置需三个 坐标(x.y.z),故一原子有三个自由度.含N个 原子的分子总自由度为3N, 而分子作为一个整 体,其运动状态可分为平动、转动,、振动三类. 分子总自由度应该等于平动、转动和振动自由 度的总和,即: f总=f振+f平+f转=3N f振=3N -f平-f转 振动自由度 基本振动数目 基频峰峰数
1
分子振动
E1 υ 32 v υ2 1 v
v υ 10
3 2 1 0 43 32 21 10
4 3 2 1
J J J
43 32 21 10 43 32 21 10
E0
分子振动吸收光谱
J
分子转动吸收光谱
2
红外光谱通常是指中红外吸收光谱, 由振 动能级跃迁产生,同时伴随转动能级的变化。 二、红外吸收光谱的表示方法
图6-1 聚苯乙烯薄膜的红外光栅光谱(T-σ曲线)
3
10 4 1 (cm ) ( m)
4
三、IR与UV的区别 IR 起源 分子振动能级伴随 转动能级跃迁 适用 所有有机化合物 UV 分子外层价电子能级 跃迁 具n-π*、π-π*跃迁 有机化合物 特征性光谱复杂,特征性强 光谱简单、特征性不强 用途 鉴定化合物类别 定量 鉴定官能团 推测有机化合物共轭骨架 推测结构
红外分光光度法

二、核磁共振基本原理
自旋量子数I≠0旳原子核具有自旋现象,称自旋核。
氢原子核旳自旋量子数I=1/2,可看成电荷均匀分布旳球体, 绕自旋轴转动时,产生磁场,类似一种小磁铁。
当氢原子核置于外加磁场B0中时,相对于外加磁场,可有 (2I+1)种取向。氢核I=1/2,故有两种取向(两个能级):
(1)与外磁场平行,能量稍低,磁量子数m=+1/2
1385cm1和
1375cm1双峰
s C
(CH3
不等强度裂分为
)3
1395cm1和
1365cm1双峰
3. C-C骨架振动
CC 1250 ~ 1140cm(1 弱 中)
(二)烯烃 1.C-H振动
CH 3100 ~ 3000cm(1 弱 中强) CH 1010 ~ 650cm(1 强)
CCH (顺式) ~ 960cm(1 中 强)
实际上氢核周围有运动旳电子,在外磁场作用下,运动旳电 子产生相对于外磁场方向旳感应磁场,起到屏蔽作用,使氢核
实际受外磁场作用减小 即:B=(1 )B0
式中:σ为屏蔽常数,σ越大,屏蔽效应越大。
所以,共振条件修正为: =[ B0 / 2 ] (1 )
因为屏蔽作用旳存在,氢核产生共振需更大旳外磁场强度, 来抵消屏蔽影响
C
(芳环)
C
~
1600
,~
1580,~ 1500
和
~
1450cm(1 四峰)
Hale Waihona Puke 、醇、酚、醚(一)醇、酚1.O-H伸缩振动: OH 3650 ~ 3200cm(1 强) O(H 游离)3650 ~ 3600cm(1 较强 变,锐峰) O(H 缔合)3500 ~ 3200cm(1 强 中强,宽、钝峰)
仪器分析红外分光光度法

红外分光光度法的优势与局限性
优势
红外光谱具有高灵敏度、高分辨率和 无损检测等优点,能够提供丰富的化 学结构信息,有助于快速准确地鉴定 和鉴别物质。
局限性
对于一些低浓度的物质,可能需要较 高的检测限;另外,对于一些复杂的 样品或未知物,解析红外光谱可能会 比较困难,需要结合其他分析方法进 行综合判断。
01
采用棱镜作为分束器,能够提供高分辨率和高精度的光谱数据,
但体积较大。
傅里叶变换型红外分光光度计
02
采用干涉仪作为分束器,能够快速扫描并获得连续光谱数据,
具有高灵敏度和高分辨率,体积较小。
光栅型红外分光光度计
03
采用光栅作为分束器,能够提供高精度的光谱数据,但扫描速
度较慢。
04
实验操作流程与注意事项
红外分光光度法的应用领域
有机化合物分析
生物样品分析
红外光谱能够提供有机化合物的官能 团、化学键和分子结构等信息,广泛 应用于有机化合物的定性和定量分析。
在生物领域,红外光谱可以用于研究 生物大分子的结构和功能,如蛋白质、 核酸等。
无机物分析
对于一些无机物,如矿物、金属氧化 物等,红外光谱也可以提供有关其结 构和组成的信息。
数据处理与分析
05 对记录的数据进行处理和分析
,计算样品的浓度、含量等参 数。
结果报告
06 整理实验数据,撰写实验报告
,将结果报告给相关人员。
实验注意事项
样品纯度
仪器保养
操作规范
确保待测样品的纯度, 以减小误差。
定期对仪器进行保养和 维护,确保其正常运转。
严格遵守操作规程,避 免因操作不当导致实验
仪器分析红外分光光度法
• 红外分光光度法简介 • 仪器分析在红外分光光度法中的作用 • 红外分光光度计的组成与工作原理 • 实验操作流程与注意事项 • 案例分析
红外分光光度法

二、振动形式
2)面外弯曲γ:弯曲振动垂直几个原子构成的平面 A:面外摇摆振动 ω:两个X 原子同时向面下或面上的振动
B:蜷曲振动 τ:一个X原子在面上,一个X原子在面下的振动
二、振动形式
3、变形振动
1)对称的变形振动δs:三个AX键与轴线的夹角同时变大 或缩小。形如花瓣开、闭的振动。
区
波数:13158—4000cm-1
中红外区:2.5—25μm
振动、伴随转动光谱
波数:4000—400cm-1
远红外区:25—1000μm 纯转动光谱
波数:400—10cm-1
二、红外光谱的表示方法
T~λ 曲线 →前密后疏 波长等距
T ~σ 曲线→ 前疏后密 波数等距
“谷”是IR中的吸收峰
三、红外光谱与紫外光谱的区别
定量(准确)
结构研究的主要手段(官能团、化合物类别、 结构研究(推测有机化合物
结构异构、氢键以及某些链状化合物的链长等)共轭骨架)
4—2 IR 基本原理
一、振动-转动光谱 二、振动形式 三、振动自由度 四、红外光谱产生的条件 五、吸收峰强度 六、吸收峰的分类 七、吸收峰的峰位及其影响因素 八、吸收峰峰数的影响因素
二、振动形式
振动频率不仅受化学键性质和原子质量的影响,也受到整个 分子的影响
双原子分子 多原子分子
伸缩振动()
1、伸缩振动 1)对称伸缩振动s 2)反称伸缩振动as
1)面内弯曲振动β
A:剪式振动δ B:面内摇摆ρ
2、弯曲振动
2)面外弯曲γ
A:面外摇摆振动 ω B:蜷曲振动 τ
3)变形振动
A:对称的变形振动δs B:不对称的变形振动δas
第4章 红外分光光度法

第4章 红外分光光度法一、内容提要红外线(infrared ray )是波长为0.76~1000μm 的电磁波。
红外分光光度法(infrared spectrophotometry )是依据物质对红外辐射的特征吸收而建立的一种分析方法,即红外光谱法。
红外分为近、中、远三个区域,通常红外光谱指中红外吸收光谱,由分子中原子的振动能级跃迁和分子的转动能级跃迁所产生的光谱,故为振动-转动光谱,简称振-转光谱。
红外吸收光谱又称红外吸收曲线,多用透光率-波数(T -σ)曲线描述,所谓吸收峰实际上是曲线的“谷”。
一条红外吸收曲线的特征主要由吸收峰的位置(λmax 、σmax )、吸收峰的个数及吸收峰的强度来描述。
分子吸收适当频率的红外辐射(L νh )后,可以由基态跃迁至激发态,其所吸收的光子能量必须等于分子振动能量之差,即ννh E h V V L ∆=∆=,即ννV L ∆= 或σσV L ∆= 是产生红外吸收峰的必要条件之一。
双原子分子只有一类振动形式(mode of vibration )为伸缩振动。
多原子分子有两类振动形式为伸缩振动和弯曲振动。
振动自由度(f )是分子基本振动的数目,非线性分子, 63-=N f ;线性分子,53-=N f 。
在红外光谱中,某一基团或分子的基本振动能吸收红外线而发生能级跃迁,必须满足两个基本条件:(1)振动过程中,△μ≠0;(2)必须服从 νL =ΔV ν,两者缺一不可。
泛频峰使吸收峰数多于基本振动数,简并和红外非活性振动使基频峰数少于基本振动数。
吸收峰的位置或称峰位通常用σmax (或νmax 、λmax )表示,对基频峰而言,σmax =σ,基频峰的峰位即是基团或分子的基本振动频率。
μk σ'=1307(cm -1) 折合相对质量相同时,化学键力常数越大,则基本振动频率越大。
化学键相同时,随着折合相对质量μ'的增大,其吸收频率变低。
吸收峰峰位由化学键两端的原子质量和化学键的键力常数预测,在比较复杂的分子中,由于有诱导效应(induction effection ,I 效应)、共轭效应(conjugation effect ,M 效应)、空间位阻、氢键等因素影响,峰位产生10~100cm -1的位移。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红外光谱法
红外光谱法又称“红外分光光度分析法”。
简称“IR”,分子吸收光谱的一种。
利用物质对红外光区的电磁辐射的选择性吸收来进行结构分析及对各种吸收红外光的化合物的定性和定量分析的一法。
红外光谱法的一般特点
特征性强、测定快速、不破坏试样、试样用量少、操作简便、能分析各种状态的试样、分析灵敏度较低、定量分析误差较大。
红外光谱法的应用
1.定性分析和结构分析
红外光谱具有鲜明的特征性,其谱带的数目、位置、形状和强度都随化合物不同而各不相同。
因此,红外光谱法是定性鉴定和结构分析的有力工具
2.定量分析
红外光谱法对试样的要求
红外光谱的试样可以是液体、固体或气体,一般应要求:
(1)试样应该是单一组份的纯物质,纯度应>98%或符合商业规格才便于与纯物质的标准光谱进行对照。
多组份试样应在测定前尽量预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱相互重叠,难于判断。
(2)试样中不应含有游离水。
水本身有红外吸收,会严重干扰样品谱,而且会侵蚀吸收池的盐窗。
(3)试样的浓度和测试厚度应选择适当,以使光谱图中的大多数
吸收峰的透射比处于10%~80%范围内。
目前主要有两类红外光谱仪:色散型红外光谱仪和傅立叶变换红外光谱仪。
一、色散型红外光谱仪
1 . 光源
红外光谱仪中所用的光源通常是一种惰性固体,同电加热使之发射高强度的连续红外辐射。
常用的是Nernst灯或硅碳棒。
Nernst灯是用氧化锆、氧化钇和氧化钍烧结而成的中空棒和实心棒。
工作温度约为1700℃,在此高温下导电并发射红外线。
但在室温下是非导体,因此,在工作之前要预热。
它的特点是发射强度高,使用寿命长,稳定性较好。
缺点是价格地硅碳棒贵,机械强度差,操
作不如硅碳棒方便。
硅碳棒是由碳化硅烧结而成,工作温度在1200-1500℃。
2 . 吸收池
因玻璃、石英等材料不能透过红外光,红外吸收池要用可透过红外光的NaCl、KBr、CsI、KRS-5(TlI 58%,TlBr42%)等材料制成窗片。
用NaCl、KBr、CsI等材料制成的窗片需注意防潮。
固体试样常与纯KBr混匀压片,然后直接进行测定。
3 . 单色器
单色器由色散元件、准直镜和狭缝构成。
色散元件常用复制的闪耀光栅。
由于闪耀光栅存在次级光谱的干扰,因此,需要将光栅和用来分离次光谱的滤光器或前置棱镜结合起来使用。
4 . 检测器
常用的红外检测器有高真空热电偶、热释电检测器及碲镉汞检测器。
1.高真空热电偶是利用不同导体构成回路时温差电现象,将温差转变为电位差。
2.热释电检测器是利用硫酸三苷肽的单晶片作为检测元件。
5. 记录系统
二、Fou rier变换红外光谱仪(FTIR)
主要部件有:光源、样品池、单色器、检测器、放大记录系统
1.光源——能够发射高强度连续红外辐射的物质,通常采用惰性固体作光源,如(1)能斯特灯—由锆、钇、铈或钍的氧化物。
特点是发射强度大,尤其在高于1000mm的区域稳定性较好,但机械强度较差,价格较贵。
(2)硅碳棒—由碳化硅烧结而成特点:在低波数区发射较强,波数范围宽,400~4000mm;坚固、寿命长,发光面积大
用的较多
2.吸收池
红外吸收池窗口,一般用一些盐类的单晶制作:如KBr或NaCl等(它们极易吸湿,吸湿后会引起吸收池窗口模糊。
要求恒湿环境。
可测定固、液、气态样品。
3.单色器
单色器的作用是把通过样品池和参比池的复合光色散成单色光,再射到检测器上加以检测
光栅——光栅单色器不仅对恒温恒湿要求不高,而且具有线性色散,分辨率高和能量损失小等优点。
棱镜——早期的红外光谱仪使用一些能透过红外光的无机盐如NaCl、KBr等晶体制作棱镜;易吸湿,需恒温、恒湿;近年来已被淘汰。
4.检测器:检测器的作用是将照射在它上面的红外光变成电信号。
红外区光子能量低,不能使用紫外可见吸收光谱仪上的光电管或光电倍增管。
常用的红外检测器有三种:真空热电偶、测辐射热计、热电检测器
5.记录器
由检测器产生的微弱电信号经电子放大器放大后,由记录笔自动记录下来新型的仪器配有微处理机以控制仪器操作、谱图检查等
2.Fourier变换红外光谱仪的特点:
(1)扫描速度极快
Fourier变换仪器是在整扫描时间内同时测定所有频率的信
息,一般只要1s左右即可。
因此,它可用于测定不稳定物质的红外
光谱。
而色散型红外光谱仪,在任何一瞬间只能观测一个很窄的频
率范围,一次完整扫描通常需要8、15、30s等。
(2)具有很高的分辨率
通常Fourier变换红外光谱仪分辨率达0.1~0.005 cm-1,而一
般棱镜型的仪器分辨率在1000 cm-1处有3 cm-1 ,光栅型红外光谱
仪分辨率也只有0.2cm-1 。
(3)灵敏度高
因Fourier变换红外光谱仪不用狭缝和单色器,反射镜面又
大,故能量损失小,到达检测器的能量大,可检测10-8g数量级的样
品。
除此之外,还有光谱范围宽(1000~10 cm-1 );测量精度高,
重复性可达0.1%;杂散光干扰小;样品不受因红外聚焦而产生的热
效应的影响;特别适合于与气相色谱联机或研究化学反应机理等。
红外光谱制样的方法
1 .气体样品
气态样品可在玻璃气槽内进行测定,它的两端粘有红外透光的
NaCl或KBr窗片。
先将气槽抽真空,再将试样注入。
2 . 液体和溶液试样
(1)液体池法
沸点较低,挥发性较大的试样,可注入封闭液体池中,液层厚
度一般为0.01~1mm。
(2)液膜法
沸点较高的试样,直接直接滴在两片盐片之间,形成液膜。
对于一些吸收很强的液体,当用调整厚度的方法仍然得不到
满意的谱图时,可用适当的溶剂配成稀溶液进行测定。
一些固体也可以溶液的形式进行测定。
常用的红外光谱溶剂应在所测光谱区内本身没有强烈的吸收,不侵蚀盐窗,对试样没有强烈的溶剂化效应等。
3 . 固体试样
(1)压片法
将1~2mg试样与200mg纯KBr研细均匀,置于模具中,用
(5~10) 107Pa压力在油压机上压成透明薄片,即可用语测定。
试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。
(2)石蜡糊法
将干燥处理后的试样研细,与液体石蜡或全氟代烃混合,调
成糊状,夹在盐片中测定。
(3)薄膜法
主要用于高分子化合物的测定。
可将它们直接加热熔融制或
压制成膜。
也可将试样溶解在低沸点的易挥发溶剂中,涂在盐片上,待溶剂挥发后成膜测定。
当样品量特别少或样品面积特别小时,采用光束聚光器,并配
有微量液体池、微量固体池和微量气体池,采用全反射系统或用带有卤化碱透镜的反射系统进行测量。