二阶弹簧—阻尼系统,PID控制器设计,参数整定

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

***

二阶弹簧—阻尼系统的PID控制器设计及参数整定

一、PID 控制的应用研究现状综述

PID 控制器(按闭环系统误差的比例、积分和微分进行控制的调节器)自20 世纪30 年代末期出现以来,在工业控制领域得到了很大的发展和广泛的应用。它的结构简单,参数易于调整,

在长期应用中已积累了丰富的经验。特别是在工业过程控制中,

由于被控制对象的精确的数学模型难以建立,系统的参数经常发生变化,运用控制理论分析综合不仅要耗费很大代价,而且难以得到预期的控制效果。在应用计算机实现控制的系统中,PID 很容易通过编制计算机语言实现。由于软件系统的灵活性,PID 算法可以得到修正和完善,从而使数字PID 具有很大的灵活性和适用性。

二、研究原理

比例控制器的传递函数为:G (s) K

P P

G (s) K

PI P 1 1 T s I

积分控制器的传递函数为:

1 1

G (s) K T s

PID P D

T s

I

微分控制器的传递函数为:

三、设计题目

设计控制器并给出每种控制器控制的仿真结果(被控对象为二阶环节,传递函数G S ,参数为M=1 kg, b=2 N.s/m, k=25 N/m, F(S)=1 );系统示意图如图 1 所示。

图1 弹簧-阻尼系统示意图弹簧-阻尼系统的微分方程和传递函数为:M x bx kx F

G( s) X

F

(

(

s)

s) Ms

1 1

2 bs k s2 s

2

25

四、设计要求

通过使用MATLAB 对二阶弹簧——阻尼系统的控制器(分别使用P、PI、PID 控制器)设计及其参数整定,定量

分析比例系数、积分时间与微分时间对系统性能的影响。同

时、掌握MATLAB 语言的基本知识进行控制系统仿真和辅

助设计,学会运用SIMULINK 对系统进行仿真,掌握PID 控制器参数的设计。

(1)控制器为P 控制器时,改变比例带或比例系数大小,分析对系统性能的影响并绘制响应曲线。

(2)控制器为PI 控制器时,改变积分时间常数大小,

分析对系统性能的影响并绘制相应曲线。(当kp=50 时,改变积分时间常数)

(3)设计PID 控制器,选定合适的控制器参数,使阶

跃响应曲线的超调量% 20%,过渡过程时间 2

t s ,并绘制

s

相应曲线。

图2 闭环控制系统结构图

五、设计内容

(1)P控制器:P控制器的传递函数为:G (s) K

P P (分别取比例系

数K等于1、10、30 和50,得图所示)

Scope 输出波形:

Step Response

1.4

1.2

50

1

30

e d t l p m A 0.8

0.6

10 0.4

0.2

1

0 1 2 3 4 5 6

Tim e (sec)

仿真结果表明:随着Kp值的增大,系统响应超调量加大,动作灵敏,系统的响

应速度加快。Kp偏大,则振荡次数加多,调节时间加长。随着Kp增大,系统的稳态误差减小,调节应精度越高,但是系统容易产生超调,并且加大Kp只能减小稳态误差,却不能消除稳态误差。

G (s) K

PI P 1 1 T s I

(2)PI 控制器:PI 控制器的传递函数为:(K=50,分别取积分时间Ti 等于10、1 和0.1 得图所示)

Scope 输出波形:

仿真结果表明:Kp=50,随着Ti值的加大,系统的超调量减小,系统响应速度略微变慢。相反,当Ti的值逐渐减小时,系统的超调量增大,系统的响应速度加快。Ti越小,积分速度越快,积分作用就越强,系统震荡次数较多。PI控制可以消除系统的稳态误差,提高系统的误差度。

11

G(s)K T s

PID P D

T s

I

(3)PID控制器:PID控制器的传递函数为:

(取K=50,Ti=100改变微分时间大小,得到系统的阶跃响应曲线为)

Scope输出波形:

仿真结果表明:Kp=50、Ti=0.01 ,随着Td 值的增大,闭环系统的超调量减小,响应速度加快,调节时间和上升时间减小。加入微分控制后,相当于系统增加了零点并且加大了系统的阻尼比,提高了系统的稳定性和快速性。

(4)、选定合适的控制器参数,设计PID 控制器

根据上述分析,Kp=50,Ti=0.15 ;Td=0.2,可使系统性能指标达到设计要求。经计算,超调量% 10% 20%,过渡过程时间T s 1.3( s) 2( s) 满足设计要求。系统的阶跃曲线如下图

Step Response

1.5

1.3

1

e d u

t i l p m A 0.9

0.7

0.3

0.2

0 0.5 1 1.5 2 2.5 3

Tim e (sec)

六、总结

PID参数的整定就是合理的选取PID三个参数。从系统的稳定性、响应速度、超调量和稳态误差等方面考虑问题,三参数作

用如下:

(1)比例调节器:比例调节器对偏差是即时反应的,偏差一旦出现,调节器立即产生控制作用,使输出量朝着减小偏差的方向

变化,控制作用的强弱取决于比例系数KP。比例调节器虽然简单快速,但对于系统响应为有限值的控制对象存在稳态误差。加大比例系数KP可以减小稳态误差,但是,KP过大时,会使系统的动态质量变坏,引起输出量振荡,甚至导致闭环系统不稳定。

(2)比例积分调节器:为了消除在比例调节中的残余稳态误差,可在比例调节的基础上加入积分调节。积分调节具有累积成分,只要偏差e不为零,它将通过累积作用影响控制量u(k),从而减小偏差,直到偏差为零。如果积分时间常数TI大,积分作用弱,反之为强。增大TI将减慢消除稳态误差的过程,但可减小超调,提高稳定性。引入积分调节的代价是降低系统的快速性。

(3)比例积分微分调节器:为了加快控制过程,有必要在偏差出现或变化的瞬间,按偏差变化的趋向进行控制,使偏差消灭在萌芽状态,这就是微分调节的原理。微分作用的加入将有助于减小超调。克服振荡,使系统趋于稳定。

相关文档
最新文档