有理数的乘法(一)导学案
有理数的乘法(1)导学案

有理数的乘法(1)导学案第一篇范文:有理数的乘法(1)导学案1.4.1《有理数的乘法》导学案【学习目标】1、通过类比、归纳研究有理数的乘法法则。
2、记住有理数乘法法则,利用乘法法则正确进行有理数乘法运算。
【学习重点】运用有理数乘法法则正确进行计算。
【学习难点】有理数乘法法则的探索过程,符号法则及对法则的理解;导学过程【温故知新】计算:(1)0-6(2)(-18)+18 (3)9-(-21)(4)-30-(+8)-(-6)【新知导学】自学指导一:有理数乘法法则的推导(用5分钟时间,阅读课本第28,29页内容,思考并回答下面的问题。
)思考:3×3= 3×2= 观察两个因数、积的符号3×1= 3×0=3 × 0 =观察两个因数、积的符号3×(-1)= 3×(-2)=3×(-3)=0 × 3=观察两个因数、积的符号(-1)×3= (-2)×3= (-3)×3=(-3)×0 =观察两个因数、积的符号(-3)×(-1)=(-3)×(-2)= (-3)× (-3) =积的绝对值与两因数绝对值的积有什么关系?归纳:有理数乘法法则:两数相乘,得正,得负,并把相乘。
任何数与0相乘得。
运用有理数乘法法则进行计算(请同学们仿照书中第30页例题,独立完成)(1)6×(―9)(2)(―4)×6(3)(―6)×(―1)(4)(―6)×0(5)15×5归纳1:非0两数相乘,步骤是什么?1、2、归纳2_:_________的两个数互为倒数。
(观察例1(3)和以上计算(5))【巩固练习】(P30)练习13自学指导二学以致用(仿照书中第30页例2,独立完成下面问题)商店降价销售某种商品,每天盈利50元,一周后该商店盈利多少元?每天亏损70元,一个月盈利多少元?(一月按30天计)【巩固练习】(P30)练习2【课堂小结】通过本节课的学习,我学会了哪些知识?1、有理数乘法法则:两数相乘,得正,得负,并把相乘。
有理数乘法1、2课时

有理数的乘法导学案(第一课时)学习目标(1分钟)1掌握有理数的乘法法则 2能运用法则进行有理数的乘法的运算3经历探索有理数乘法法则的过程,培养积极探索精神,感受数学与实际生活的联系。
学习重点:1、应用法则正确地进行有理数乘法运算 2、多个因数的乘积运算 学习难点:两负数相乘,积的符号为正与两负数相加的符号为负号容易混淆 学习过程:导入新课:(1分钟)我们已经熟悉正数及0的乘法运算,那么引入负数以后,像3×(-3)这样的乘法怎样计算呢? 自主学习(教材28-30页内容)(7分钟)1、两数相乘,同号得 ,异号得 ,并把 相乘; 任意数与0相乘,得2、(-4)×8= ,9×(-1)= ,(-31)×(-3)= 3、 的两个数互为倒数。
反馈交流(各组找个代表回答一题)(3分钟) 合作探究(10分钟)1、积的符号与两乘数符号的关系:①正数乘正数积为 数,②负数乘正数积为 数 ③正数乘负数积为 数,④负数乘负数积为 数。
2、积的绝对值与两乘数绝对值的关系:乘积的绝对值等于各乘数绝对值的_______3、思考:任意数与0相乘,得数是总结:有理数的乘法法则:①两数相乘,同号得 ,异号得 ,并把 相乘。
②任何数同0相乘,都得 。
4、例一 计算:(1)(-5)×9 (2) |- 4| ×(- 0.2) (3)[- (-5)]×(-|-0.4|); (4)(-31)×31想一想:第(4)题中,两乘数之间有什么关系?你能由此猜想到什么?的两个数互为倒数,即A ×1/A = 1 (A ≠0)5、例二:用正负数表示气温的变化量,上升为正,下降为负,登山队攀登一座山峰,每登高1km ,气温的变化量为-60.C ,向上攀登3km 后,气温有什么变化? 继续向上攀 登-3km 之后 ,气温又如何变化?此时登山队位于何处?展示提升(学生板演,教师精讲点拨)(12分钟) 教师精讲点拨(5分钟) 课堂小结,整理笔记(4分钟) 当堂测试(4分钟)计算①(-3)×(-4)= ②(-25)×(+3/5)=③(-8)×(-1.25)= ④(-9)×(+4)=有理数的乘法导学案(第二课时)学习目标(1分钟)1、能确定多个因数相乘时,积的符号。
七年级数学上册 第三章 有理数的运算 3.2《有理数的乘法与除法(1)》导学案 (新版)青岛版

3.2 有理数的乘法与除法(第1课时)【学习目标】1、经历探索有理数乘法法则的过程,培养自主探索、归纳、验证的能力。
2、掌握有理数的乘法法则,并且能够熟练运用有理数的乘法法则进行准确的计算。
【学习重点】有理数的乘法法则。
【学习难点】有理数的乘法法则中的两个负数相乘的法则。
【学习过程】一、【课前预习】预习任务(一):根据下列条件与要求,从0℃开始计算温度的变化(说明:温度上升记为正,下降记为负,几小时后记为正,几小时前记为负):(1)设温度每小时上升2℃,问经过4小时以后温度是多少?(2)设温度每小时上升2℃,5小时以前的温度是多少?(3)温度每小时下降2℃,问经过4小时以后温度是多少?(4)温度每小时下降2℃,5小时以前的温度是多少?预习任务(二):观察以上问题在解决过程中所列的算式,小组讨论:①积的符号与因数的符号有什么关系?②积的绝对值与因数的绝对值有什么关系?用自己的语言叙述有理数的乘法运算:二、【课中实施】2 例1 计算下列各题并注明每一步计算的理由(1) (-4)×(-6) (2) (-21)×31 (3) 0.5×(-8) (4) (-32)×(—1)巩固练习1、课本60页练习1,22、计算(1) (-356)⨯(-27) (2)(-43)⨯(-78)小结反思这节课我学会了: ;我的困惑: 。
三、【限时作业】1、填空(1)如果一个数与“+1”相乘,那么两数的积与原数______,如果一个数与“-1”相乘,那么所得的积与原数__________。
(2)两个负整数的积是6,这两个负整数是___________(3)-1,2,-3,4,-5这五个数中任取两个数相乘,所得的积最大的是______,最小的是______。
2、计算:(1))32(23-⨯ (2)(-24)825⨯ (3)43⨯78参考答案:1、(1)相等,互为相反数 (2)-2和-3 或 -1和-6 (3)15,-202、(1)-1 (2)-75 (3)67。
最新人教版初中七年级上册数学《有理数的乘法》导学案

1.4 有理数的乘除法1.4.1 有理数的乘法第1课时有理数的乘法一、新课导入1.课题导入:我们已经熟悉正数及0的乘法运算,引入负数后,怎样进行有理数的乘法运算呢?(板书课题)2.三维目标:(1)知识与技能①经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证的能力.②会进行有理数的乘法运算.(2)过程与方法通过对问题的变式探索,培养观察、分析、抽象的能力.(3)情感态度通过观察、归纳、类比、推断获得数学猜想,体验数学活动中的探索性和创造性.3.学习重、难点:重点:有理数乘法法则及应用.难点:探索有理数乘法法则.二、分层学习1.自学指导:(1)自学内容:探究有理数乘法的法则.(2)自学时间:10分钟.(3)自学方法:在探究提纲的引导下进行自主探究,有困难的学生可以相互交流总结归纳出有理数乘法法则.(4)探究提纲:①观察下面的乘法算式:3×3=93×2=63×1=33×0=0a.四个算式有一个共同点:前一个乘数都是3.b.四个算式中其他两个数有什么变化规律?(后一个乘数逐次递减1,积逐次递减3.)②要使①中得出的规律在引入负数后仍然成立,那么下面的一些积应该是什么?3×(-1)=-33×(-2)=-63×(-3)=-9从符号和绝对值两个角度观察这三个算式,你能说说它们的共性吗?(正数乘负数,积都是负数,积的绝对值等于各乘数绝对值的积.)③再观察下面的算式:3×3=92×3=61×3=30×3=0a.类比上述过程,你又能发现什么规律?(前一个乘数逐次递减1,后一个乘数不变,积逐次递减3.)b.要使这个规律在引入负数后仍然成立,你认为下面的空格应各填什么数?(-1)×3=-3(-2)×3=-6(-3)×3=-9c.类比正数乘负数规律的归纳过程,同样从符号和绝对值两个角度观察这三个算式,说说它们的共性.(负数乘正数,积都是负数,积的绝对值等于各乘数绝对值的积.)d.综合正数乘负数,负数乘正数两种情况下的结论,你能用一句话把它们概括出来吗?(异号两数相乘,积的符号为负号,积的绝对值等于各乘数绝对值的积.)④a.利用③中归纳的结论计算下面的算式:(-3)×3=-9 (-3)×2=-6 (-3)×1=-3 (-3)×0=0观察这四个算式,你能发现其中的规律吗?(后一个乘数逐次递减1,积逐次增加3.)b.按照上述规律,完成下面填空:(-3)×(-1)=3 (-3)×(-2)=6 (-3)×(-3)=9观察这三个算式,说说其中有什么规律?(负数乘负数,积为正数,积的绝对值等于各乘数绝对值的积.)⑤总结上面所有的情况,你能试着自己给出有理数乘法的法则吗?两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,都得0.2.自学:同学们结合探究提纲进行探究学习.3.助学:(1)师助生:①明了学情:了解学生对探究提纲中的问题的回答情况,尤其要关注第①题的b小题及第②、⑤题的解答情况.②差异指导:指导帮助那些不能顺利完成探究提纲中问题的学生进行有效学习.(2)生助生:学生通过互助交流帮助解决一些自学中的疑难问题.4.强化:有理数乘法法则.1.自学指导:(1)自学内容:教材第29页倒数第四行至教材第30页的内容.(2)自学时间:4分钟.(3)自学要求:认真阅读课文,仔细领会有理数乘法法则的运用步骤.(4)自学参考提纲:①有理数相乘,先看是怎样的两数相乘(同号还是异号),再确定积的符号,最后确定积的绝对值.②例1中,8×(-1)=-8,8和-8互为相反数,由此启示:要得到一个数的相反数,只要将它乘-1.③有理数中仍然有:乘积是1的两个数互为倒数.数a(a≠0)的倒数是1a;0没有倒数.④写出下列各数的倒数:1,-1,13,-13,5,-5,23,-231,-1,3,-3, 15,-15,32,-32⑤你能说说互为倒数与互为相反数有哪些区别吗?和为0,互为相反数;积为1,互为倒数.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:深入学生中了解学生运用法则进行计算的步骤是否掌握,了解学生对互为倒数的理解及能否掌握求一个数的倒数的方法.②差异指导:指导在法则运用中计算不当或不正确的学生.(2)生助生:学生通过交流探讨相互帮助解决一些自学疑难问题.4.强化:(1)总结交流.①如何正确运用法则计算.②互为倒数与互为相反数的区别.(2)练习:①计算:②商店降价销售某种商品,每件降5元,售出60件后,与按原价销售同样数量的商品相比,销售额有什么变化?解:-5×60=-300,销售额下降300元.三、评价1.学生的自我评价(围绕学习目标):自我评价本节课学习的感受和收获.2.教师对学生的评价:(1)表现性评价:对学生在本节课学习中的积极表现及不到之处进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时是学生在小学学习的数的乘法及刚接受有理数加减法的基础上,进一步学习有理数的基本运算,它既是对前面知识的延续,又是后面有理数除法的铺垫,所以,教学时强调学生自主探索,在互相交流的过程中理解和掌握有理数乘法法则的本质;另外,要求学生在探索有理数乘法法则的过程中,初步体验分类讨论的数学思想,鼓励学生归纳和总结,形成良好的数学心理品质.1.(20分)下列运算结果为负值的是(B )A.(-7)×(-6)B.(-4)+(-6)C.0×(-2)D.(-7)-(-10)2.(20分)计算题.(1)(-8)×(-7) (2)12×(-5) (3)2.9×(-0.4)(4)-30.5×0.2(5)100×(-0.001)(6)-4.8×(-1.25) (7)14×-89(8)(-56)×(-310)(9)-3415×25(10)(-0.3)×(-107)解:(1)56;(2)-60;(3)-1.16;(4)-6.1;(5)-0.1;(6)6;(7)-2 9;(8)14;(9)-1703;(10)37.3.(30分)写出下列各数的倒数.(1)-15(2)-59(3)-0.25(4)0.17(5)414(6)-525解:(1)-115;(2)-95;(3)-4;(5)10017;(6)417;(6)-527.二、综合应用(20分)4.(10分)若a、b互为相反数,若x、y互为倒数,则a-xy+b=-1.5.(10分)相反数等于它本身的数是0;倒数等于它本身的数是1,-1;绝对值等于它本身的数是非负数.三、拓展延伸(10分)6.(10分)计算:2×1,2×12,2×(-1),2×(-12)联系这类具体的数的乘法,你认为一个非0有理数一定小于它的2倍吗?为什么?解:2×1=2,2×12=1,2×(-1)=-2,2×-12=-1不一定,一个负数大于它的2倍.后序亲爱的朋友,你好!非常荣幸和你相遇,很乐意为您服务。
2.3有理数的乘法导学案

2.3有理数的乘法(1)导学案一、学习目标1.经历乘法法则的发生过程,理解乘法法则的合理性;2.掌握有理数的乘法法则;3.会运用乘法法则求若干个有理数相乘的积;4.理解倒数的概念,会求一个数的倒数.二、自主学习预习书39~40页1.根据乘法的意义:3×2=3+3=6.用数轴表示如下图:根据乘法的意义,(-3)×2= + = .用数轴表示如下:x–1–2–3–4–5–61234562. (1)完成下列填空:4×2= ;(-4)×2= + =5×3= ;(-5)×3= + + =6×4= ;(-6)×4= =(2)观察上面左右两列算式中相乘两数及计算结果的符号,你有什么发现?(3)根据你的发现,3×(-2)等于多少呢?为什么?那么(-3)×(-2)又应该等于多少呢?这又是为什么?3.写出下列各算式的结果:3×7= ;(-3)×7= ;3×(-7)= ;(-3)×(-7)= ;0×7= ;0×(-7)= ;由此你认为两个数相乘,积的符号与这两个数的符号有什么关系?积的绝对值呢?三、展示交流1.计算:(1) 5445⨯(2) (-0.25)×4 (3) (-3.1415926)×0×14(4)1--55⨯()()(5)5-8--33⨯⨯()()()思考:(1)几个有理数相乘,怎样确定积的符号?(2)通过以上计算,你对几个有理数相乘的运算有什么体会?新知:倒数的定义:练一练4 9的倒数是;8-3与互为倒数;0的倒数.2.把-6表示成两个整数的积,有多少种可能性?把他们全部写出来.四、目标检测1.用“>”“<”或“=”填空:(1)(-7)×(1+39)0(2)(-13)×(-7.9)0(3)0×(11-19)0(4)1-1--52⨯⨯()()()02. 1的倒数是;1-9的倒数是;-10的倒数是;58的倒数是;315的倒数是;3.计算:(1)(-1)×97(2)(-1.5)×(-45)(3)102-75⨯()(4)(-2)×3×(-0.5)(5)11---2 26⨯⨯()()()(6)-1.25-84⨯⨯()4.甲乙两辆出租车在一条南北走向的街道上行驶,车速分别为每小时40千米和45千米,他们同时从A地出发,甲车向北,乙车向南.问经半个小时后,他们分别位于何处?(要求用有理数乘法来解决,记向北行驶的速度为正)五、我思我成长。
数学七年级上册第15课时《有理数的乘方(1)》导学案

第15课时 第2章第7节 有理数的乘方(1)【学习目标】1、理解乘方的意义,会进行有理数乘方运算。
2、在学习有理数乘方法则的过程中,体会“特殊到一般”的数学思想。
【活动方案】活动一 问题引入手工拉面是我国的传统面食.制作时,拉面师傅将一团和好的面,揉搓成1根长条后,手握两端用力拉长,然后将长条对折,再拉长,再对折(每次对折称为一扣),如此反复操作,连续拉扣若干次后便成了许多细细的面条.你能算出拉扣6次后共有多少根面条吗?活动二 乘方的有关概念1.试一试:将一张报纸对折再对折……直到无法对折为止.你对折了多少次?请用算式表示你对折出来的报纸的层数.2.你还能举出类似的实例吗?2×2×2×2×2×2记作26,读作“2的6次方”;7×7×7可记作73;读作“7的3次方”.3.归纳:一般地,n a a a a a ⋅⋅⋅⋅个记作a n ,读作“a 的n 次方”. 求相同因数的积的运算叫做乘方.乘方运算的结果叫幂.26、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的6次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数.4. 思考:(1).(-4)3的底数是什么?指数是什么?幂是多少?(2).23和32的意义相同吗?(3).(-2)3、-23、-(-2)3分别表示什么意义?(4).(-23 )4、-243分别表示什么意义? 活动三 实践应用1 计算:(1)①37;②73;③(-3)4;④(-4)3.(2)①(12 )5;②(35 )3;③(-23)4.2 计算并思考幂的符号如何确定:(1)52、0.23、(23)4; (2)(-4)3、(-23)5、(-1)7; (3)(-1)4、(-3)2、(-12)6.3. 口答(1)(-5)3; (2)(-12 )5; (3)(-13)4; (4)-53; (5)0.14; (6)18.4.如果你第1个月存2元.从第2个月起每个月的存款都是上个月的2倍.那么第6个月要存多少钱?第12个月呢?[检测反馈]1、(-3)4表示 ( )A.4个(-3)相乘的积B. -3乘4的积C.3个(-4) 相乘的积D. 4个(-3)相加的积2、关于式子(-3)4,正确的说法是 ( )A.(-3)是底数,4是幂B.3是底数,4是幂C.3是底数,4是指数D.(-3)是底数,4是指数3、 求 的运算叫做乘方,乘方的结果叫做4、 3)2(-的底数是 ,指数是 ,它表示 ,运算的结果是5、32-的底数是 ,指数是 ,它表示 ,运算的结果是6、把下列各式写成乘方运算的形式:6×6×6= (-3) (-3) (-3) (-3)=2.1×2.1×2.1×2.1×2.1= ⨯21⨯21⨯21⨯21⨯2121= 7、 把下列各式写成乘法运算的形式:34 = ,43=(-1)4= ,3)32(-=8、思考:(-2)3与 –23的意义相同么?为什么?9、计算:=-4)1( ,=-3)1( ,=-4)2( ,-24=(1)(-1 )10,(-1)7,(-21)4,(-21)5是正数还是负数? (2)负数的幂的符号如何确定?【巩固提升】1、()20063-是 ( )A.负数B.正数C.非负数D.以上都不对2、计算()20082007)1(1-+-的值是 ( )A.0B.-1C.1D.23、 下列各式中,不相等的是 ( )A 、(-3)2和-32B 、(-3)2和32C 、(-2)3和-23D 、|-2|3和|-23|4、任何一个数的偶次幂都是 ( )A.正数B.负数C.非正数D.非负数5、一根一米长的绳子,第一次截去一半,第二次截去剩下的一半,如此下去,第六次剩下的绳子的长度为 ( ) A.3)21(米 B.5)21(米 C. 6)21(米 D. 12)21(米6、如果n 为正整数,则=-n 2)1( ; 如果n 为非负整数,则12)1(+-n = .7、一个数的平方等于49 ,这个数是 。
七年级数学有理数的乘法教案及教学设计(精选6篇)

七年级数学有理数的乘法教案及教学设计(精选6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!七年级数学有理数的乘法教案及教学设计(精选6篇)作为一位杰出的老师,有必要进行细致的教案准备工作,教案有利于教学水平的提高,有助于教研活动的开展。
有理数乘法导学案1

课题 1.2.4有理数的乘法(1) 主备:七年级数学组授课日期: 授课教师 学生姓名学习目标:1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算;2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力;学习重点:了解有理数乘法的实际意义,理解有理数的乘法法则,学习难点:理解有理数乘法法则,并能熟练地进行有理数的乘法运算:.学习过程:一、情境引入:1.计算(1)2+2+2+2= (2)(-2)+(-2)+(-2)(-2)+(-2)=2.你能将上面两个算式写成乘法算式吗?二、探究学习: 【探索1】1、在水文观测中,常遇到水位上升与下降的问题,请根据日常生活经验,回答下列问题:(1)如果水位每天上升4cm ,那么3天后的水位比今天高还是低?高(或低)多少?(2)如果水位每天上升4cm ,那么3天前的水位比今天高还是低?高(或低)多少?(3)如果水位每天下降4cm ,那么3天后的水位比今天高还是低?高(或低)多少?(4)如果水位每天下降4cm ,那么3天前的水位比今天高还是低?高(或低)多少?我们规定水位上升为正,水位下降为负;几天后为正,几天前为负;你能用正数或负数表示上述问题吗?你算的结果与经验一致吗?2、两个有理数相乘,积的符号怎样确定?积的绝对值怎样确定?小组讨论,总结、归纳得出有理数乘法法则。
正数乘正数积为_____数:负数乘正数积为_____数;正数乘负数积为_____数;负数乘负数积为_____数。
乘积的绝对值等于各乘数绝对值的______。
【法则归纳】两数相乘,同号得______,异号得_______,并把________相乘.任何数同0相乘,都得______.3、直接写出下列两数相乘所得积的符号1)5×(—3) ; 2)(—4)×6 ;3)(—7)×(—9); 4)0.9×8 ;4、请同学们自己完成:例1 计算:(1)(-3)×9; ( 2)(-21)×(-2); (3)(- 4)×5; (4)(- 5) ×(-7)5、实际应用用正负数表示气温的变化量,上升为正,下降为负,登山队攀登一座山峰,每登高1km 气温的变化量为-6℃,攀登3km 后,气温有什么变化?【旧课复习】1.满足什么条件的两个数互为倒数?求下列数的倒数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章有理数及其运算
7. 有理数的乘法(一)
一、教学目标:
1、经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证能力;
会进行有理数的乘法运算。
二、教学重难点
教学重点:应用有理数的乘法法则正确的进行有理数乘法计算。
教学难点:有理数乘法运算中符号确定的理解。
三、教学过程
本节课设计了七个环节:第一环节:创设情境,复习导新;第二环节:师生互动,探究新知;第三环节:分析法则,掌握实质;第四环节:解决问题,综合运用;第五环节:体验成功,享受快乐;第六环节:总结收获,畅谈体会;第六环节:布置作业,巩固深化
第一环节:创设情境,复习导新
活动1:1、计算:①、—5)+(—5)
②、(—5)+(—5)+(—5)
③、(—5)+(—5)+(—5)+(—5)
④、(—5)+(—5)+(—5)+(—5)+(—5)
2、猜想下列各式的值
(—5)×2;(—5)×3;
(—5)×4;(—5)×5,
3、两个有理数相乘有几种情况?
第二环节:师生互动,探究新知
活动2:如图,一只蜗牛沿直线L爬行:它现在位置恰在L上的点0.
x
(1)如果蜗牛一直以每分2cm 的速度向右爬行,3分钟后它在什么位置?
(+2)×(+3)=+6
(2)如果蜗牛一直以每分2cm 的速度向左爬行,3分钟后它在什么位置?
(-2)×(+3)=-6
(3)如果蜗牛一直以每分2cm 的速度向右爬行,3分钟前它在什么位置?
(+2)×(-3)=-6
(4)如果蜗牛一直以每分2cm 的速度向左爬行,3分钟前它在什么位置?
(-2)×(-3)=+6
思考:一个数同0相乘,如何解释?
活动3:(1)那么下列一组算式的结果应该如何计算?请同学们思考:
(-3)×3=_____;
(-3)×2=_____;
(-3)×1=_____;
(-3)×0=_____.
(2)当同学们写出结果并说明道理时,让学生通过观察这组算式等号两边的特点去发现积的变化规律,然后再出示一组算式猜想其积的结果:
(-3)×(-1)=______;
(-3)×(-2)=______;
(-3)×(-3)=______;
(-3)×(-4)=______.
活动4:
正数乘正数积为______数。
负数乘正数积为______数。
正数乘负数积为______数。
负数乘负数积为_____数。
乘积的绝对值等于各乘数绝对值的___________
归纳:
有理数的乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0.
第三环节:分析法则,掌握实质
活动5 :
填空
1.(—5)×(—3)同号相乘
(—5)×(—3)=+()______得正
5×3=15把绝对值相乘
2.(—7)×4__________
(—7)×4=—()___________
7×4=28__________
(—7)×4=__________
归纳:有理数相乘,先确定积的_____ ,再确定积的 _____________.
第四环节:解决问题,综合运用
例1 计算
(1)(-3)×9 (2)(-!/2)×2 (3)(-!/3)×(-3)(4)(-2/3)×(-3/2)注意:乘积是1的两个数互为倒数.一个数同+1相乘,得原数,一个数同-1相乘,得原数的相反数。
例2 用正负数表示气温的变化量,上升为正,下降为负。
登山队攀登一座山峰,每登高1km 气温的变化量为-60C,攀登3km后,气温有什么变化?
问题:实际生活中,还存在其他类似的例子吗,说出来和大家一起分享吧!
思考:用“>”“<”“=”号填空。
(1)如果a>0,b>0,那么a·b____0.
(2)如果a>0b<0,那么a·b____0.
(3)如果a<0,b<0 , 那么a·b____0 .
(4)如果a=0, b≠0,那么a·b____0(
例3.计算
⑴(-4)×5×(-0.25);⑵(-3÷5)×(-5÷6)×(-2);
结论:多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正.只要有一个数为零,积就为零。
教学要求与效果:(1)例题讲解板书时,要注意格式归范,一开始对每一步运算应注明理由,运算熟练后,可不要求书写每一步的理由;
(2)在计算完例1的⑶⑷小题后,引出有理数的互为倒数的概念的同时,要注意复习互为相反数的概念,避免产生混淆错误,并注意本节课不讨论如何求倒数的问题;
(3)例3讲解之后,要启发学生完成"议一议"的内容,鼓励学生通过对例2的运算结果观察分析,用自己的语言表达所发现的规律,学生有困难时,教师可设置如下一组算式让学生计算后观察发现规律,而不应代替学生完成这个任务.
(-1)×2×3×4=_____;
(-1)×(-2)×3×4=_____;
(-1)×(-2)×(-3)×4=_____;
(-1)×(-2)×(-3)×(-4)=_____;
(-1)×(-2)×(-3)×(-4)×0=_____.
通过对以上算式的计算和观察,学生不难得出结论:多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正.只要有一个数为零,积就为零.当然这段语言,不需要让学习背诵,只要理解会用即可.
第五环节:体验成功,享受快乐
活动6
1.抢答题
(1)、翻牌游戏
老师任意摸两张扑克牌,学生说出它的积,规定:红色为正,黑色为负。
(2)、计算
①6×(-9) ②(-4)×6 ③(-6)×(-1)
④(-6)×0 ⑤(–34)×(–4
1) ⑥(-1/3)×18 (3)、写出下列各数的倒数。
1,-1,1/3, -1/3, 5, -5, 2/3, -2/3.
2、商店降价销售某种商品,每件降5元,售出60件后,与原价销售同样数量的商品相比,销售额有什麽变化?
第六环节:总结收获,畅谈体会
1、今天这节课我学到的新知识是________
2、今天这节课我学到的数学思想或解决问题的方法是_______________________
3、今天这节课给我留下印象最深的是_______
4、今天这节课留给我的疑惑还有__________。