有理数的乘法(2)学案

合集下载

2.7有理数的乘法(2)学案

2.7有理数的乘法(2)学案

2.7有理数的乘法(2)【预习目标】:理解和初步掌握有理数乘法的运算律,并进行简单的计算. 【预习导航】1.计算下列各题,并比较它们的结果:(1) (-7)×8 = 8×(-7)= (-35)×(-109)= (-109)×(-35)=乘法的交换律(用字母表示): (2) [ (-4)×(-6) ]×5= (-4)×[ (-6)×5 ]= [ (21)×(-37) ]×(-4)= (21)×[ (-37)×(-4) ]= 乘法的结合律(用字母表示):(3) (-2)×[ (-3) + (-23) ]= (-2)×(-3) + (-2)×(-23) = 5×[ (-7) + (-54) ]= 5×(-7) + 5×(-54) =乘法对加法的分配律(用字母表示): 【预习诊断】 (1)(-65 + 83)×(-24) (2)(-7)×(-34)×145【预习反思】通过预习,你认为本节课的重点知识是什么,你还有哪些困惑,赶紧写下来吧! 【学习目标】熟练并灵活运用乘法的运算律进行计算. 【学习过程】一、小组交流,合作解疑。

二、随堂练习 A 组:巩固练习 1、计算下列各题: (1)30×(21-31) (2)(0.25-32)×(-36) (3)(81+65-43)×(-24) (4)(41-21+81)×162、判断:(1) -5×(-4)×(-2)×(-2)=5×4×2×2=80 ( )(2) (-12)×(31-41-1)= -4+3+1=0 ( )(3) (-9)×5×(-4)×0=9×5×4=180 ( ) (4) -2×5+(-2)×1-(-2)×2= -2×(5+1-2)=-8 ( ) B 组:能力提升 1.计算(1)(-2)×(-8)×(-125) (2) 8×(-54)×161(3) (-32)×72×(-43) (4) 0.25×(-3.1)×(-8) 2.计算(1) 53×17 + 53×8 (2)37×7+37×(-3)+37×6(3) 60×73-60×71+60×75 (4) 74×(-245)-(-73)×(-245)C 组:拓展延伸1. 有6张不同数字的卡片:—3,+2,0, —8, 5, +1,如果从中任取3张,(1)使数字的积最小,应如何抽?最小积是多少? (2)使数字的积最大,应如何抽?最大积是多少?2.已知:a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是1,求:3x - [(a +b)+cd]x 的值3.定义一种运算符号△的意义:a △b=ab —1,。

2019版七年级上册初一数学北师大版全套课件学案作业本作业本第2章第14课时有理数的乘方(2)

2019版七年级上册初一数学北师大版全套课件学案作业本作业本第2章第14课时有理数的乘方(2)

请你帮他检查一下,他一共做对了( C )
A.1 题
B.2 题
C.3 题
D.4 题
5.计算:-(-2)4= -16 .
6.计算:(-1)2 020= 1 .
7.计算:(-1)99+(-1)100= 0 . 8.若|a|=4,|b|=3,且 a<0<b,则 ab 的值为 -64 .
二、解答题(每题 18 分,共 36 分) 9.有一根长为 64 米的钢筋,第 1 次截去一半,第 2 次截去 剩下的一半,如此下去,截取第 6 次后剩下的钢筋长多少米? 解:由题意得 64×126=64×614=1(米). 答:截取第 6 次后剩下的钢筋长 1 米.
10.问题:你能比较 2 0192 020 和 2 0202 019 的大小吗?为了解 决这个问题,首先写出它的一般形式,即比较 nn+1 和(n+1)n 的大小(n 是正整数),然后我们从分析 n=1,n=2,n=3,…, 这些简单情况入手,从中发现规律,经过归纳,猜想出结论. (1) 通 过 计 算 , 比 较 下 列 各 组 数 的 大 小 : ( 在 横 线 上 填 写 “>”“<”或“=”)
第二章 有理数及其运算
第14课时 有理数的乘方(2)
一、选择或填空题(每题 8 分,共 64 分)
1.下列运算结果为负数的是( D )
A.-(-2)B.(-2)2源自C.|-2|D.(-2)3
2.下列各组数中,不相等的一组是( B )
A.(-2)3 和-23
B.(-2)2 和-22
C.(-2)1 和-2
D.|-2|3 和|2|3
3.下列各数:
①-12;②-(-1)2;③-13;④(-1)3.
其中结果等于-1 的是( D )

2.9.2-2.11科学计数法预习学案

2.9.2-2.11科学计数法预习学案

2.9《有理数的乘方(2)》预习学案1.自学60P “例3”,回答(1)=210_________;=310_________ =410_________;=510_________ (2)=-2)10(_________;=-3)10(_________ =-4)10(_________;=-5)10(_________ (3)观察1(1)的四个式子,猜想:正数的任何次幂都是___________(正数或负数); 观察1(2)的四个式子,猜想:负数的奇数次幂都是___________(正数或负数), 负数的偶数次幂都是___________(正数或负数)。

(4)观察1(1)的四个式子,回答 210的计算结果中有2个0; 310的计算结果中有______个0 ; 410的计算结果中有______个0; 510的计算结果中有______个0; 910的计算结果中有______个0; n 10的计算结果中有______个0。

2.60P “做一做”有一张厚度是mm 1.0的纸,将它对折1次后,厚度为mm 21.0⨯; 将它对折2次后,厚度为mm 221.0⨯; 将它对折3次后,厚度为_________mm ; 将它对折10次后,厚度为_________mm ; 将它对折20次后,厚度为__________mm .2.10《科学计数法》预习学案1.复习回顾)(10100=;)(101000=;)(1010000=)(101000000=;)(101000000000=2.自学63P “例”上方的文字,回答 (1)3000=⨯3( )=)(103⨯;6400 000=⨯4.6( )=)(104.6⨯;1370 000 000=⨯37.1( )=)(1037.1⨯(2)一般地,一个大于10的数可以表示成_______ 的形式,其中____a ____,n 是正整数,这种计数方法叫做科学记数法3.先自学63P “例”,后完成下列练习(1)连接英法两国的英吉利海底隧道全长m 53000,用科学记数法表示53000为__________ (2)洞庭湖的蓄水量约为17 800 000 0003m ,用科学记数法表示17 800 000 000为___________2.11《有理数的混合运算》预习学案1.根据小学的知识回答(1)计算=+÷⨯-)21(328__________________ (2)运算顺序:先算______,后算________;如果有括号,_______________ 2.阅读65P “例1”上方的文字加入“乘方”后的运算顺序为:先算______,再算______,最后算______,如果有扩号,___________ 3.先自学65P “例1”,后完成下列练习 计算:)31()3(612-⨯-÷-4.先自学65P “例2”,后完成下列练习 )]41(21[)2(2-+-⨯-(用两种方法)。

2.11_有理数的乘方_学案2

2.11_有理数的乘方_学案2

有理数的乘方(二)目的:1正确的进行有理数的乘方运算。

2.使学生了解什么是科学计数法,并会用科学计数法表示。

过程:一。

复习提问什么叫乘方?底数?指数?幂?1.把下列各式写成幂的形式:32323232⨯⨯⨯-,6.06.0⨯,)10()10(10-⨯-⨯-, )21()21()21(21-⨯-⨯-⨯ 2.计算:2)8(-,-8,,23,)24(,24,)8(2222⨯-⨯⨯-- 3. 平方是25的数是--------,立方是-27的数是---------4. 二。

新授:例一:计算分析:(1)一般可以利用有理数的乘法运算进行有理数的乘方运算(2)在乘方,乘除混合运算中,一般先乘方,再算乘除例二:计算:练习:计算定义:把一个数记成 的形式,其中a 是整数数位只有一位的数,这种计数的方法叫科学计数法说明:(1)应为a 是整数数位只有一位的小数,而a 是带有一个整数位的小数或一位整数。

即(1<=|a|< 10), (2)小于的有理数也可以用科学计数法表示例三:下列用科学计数法表示的数原来的各是什么数?例四:用科学计数法记下例各数:100000000,570000000说明:(1)科学计数法表示形式 ,其中1=<a<10, n 为整数(这里n 为正整数)(2)一个数的科学计数法中,n 的指数比原数的指数位少1.练习:P110:1,2三.小结:1混合运算中的运算顺序22242,22)511(,)28(,28,103,)103(,)103(,)23(--÷÷---⨯-7525243107.5)6(,10)96.6)(5(,107.5)4()1()4)(3(,3)92)(2(,)2(3)1(⨯-⨯-⨯-÷-⨯--⨯)94(312)75(32)5(,)8.0()32(3)4()]4(3)1)[(3(,)212()213)(2(,)4()3()1)(1(323332333-⨯+-⨯-÷-⨯--++-----++-746222431050002)6(,10)03.6)(5(,105.8)4()5(4)3)(3(,]4)5()3)[(2(,)3(6)1(÷⨯-⨯-++-+-+--⋅-1059.2,10001.6,1014.3,101425⨯⨯⨯⨯2.科学计数法的一般形式。

人教版七年级上数学:1.4.1《有理数的乘法(2)》学案

人教版七年级上数学:1.4.1《有理数的乘法(2)》学案

数学:1.4.1《有理数的乘法(2)》学案(人教版七年级上)【学习目标】:1、经历探索多个有理数相乘的符号确定法则;2、会进行有理数的乘法运算;3、通过对问题的探索,培养观察、分析和概括的能力;【学习重点】:多个有理数乘法运算符号的确定;【学习难点】:正确进行多个有理数的乘法运算;【导学指导】一、温故知新1、有理数乘法法则:二、自主探究1、观察:下列各式的积是正的还是负的?2×3×4×(-5),2×3×(-4)×(-5),2×(-3)× (-4)×(-5),(-2) ×(-3) ×(-4) ×(-5);思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?分组讨论交流,再用自己的语言表达所发现的规律:几个不是0的数相乘,负因数的个数是时,积是正数;负因数的个数是时,积是负数。

2、新知应用1、例题3,(P31页)请你思考,多个不是0的数相乘,先做哪一步,再做哪一步?你能看出下列式子的结果吗?如果能,理由7.8×(-8.1)×O× (-19.6)师生小结:【课堂练习】计算:(课本P32练习)(1)、—5×8×(—7)×(—0.25);(2)、5812 ()() 121523-⨯⨯⨯-;(3)5832(1)()()0(1)41523-⨯-⨯⨯⨯-⨯⨯-;【要点归纳】:1.几个不是0的数相乘,负因数的个数是时,积是正数;负因数的个数是时,积是负数。

2.几个数相乘,如果其中有一个因数为0,积等于0;【拓展训练】:一、选择1.若干个不等于0的有理数相乘,积的符号( )A.由因数的个数决定B.由正因数的个数决定C.由负因数的个数决定D.由负因数和正因数个数的差为决定2.下列运算结果为负值的是( )A.(-7)×(-6)B.(-6)+(-4)C. 0×(-2)(-3)D.(-7)-(-15)3.下列运算错误的是( )A.(-2)×(-3)=6B.1(6)32⎛⎫-⨯-=- ⎪⎝⎭C.(-5)×(-2)×(-4)=-40D.(-3)×(-2)×(-4)=-24二、计算:1、111111111111234567⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯---⨯-⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;2、111111 111111 223344⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯+⨯-⨯+⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;【总结反思】:2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,OB 是∠AOC 的平分线,OD 是∠COE 的平分线.如果∠AOB =50°,∠COE =60°,则下列结论错误的是( )A.∠AOE =110°B.∠BOD =80°C.∠BOC =50°D.∠DOE =30°2.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°3.如图,甲从A 点出发向北偏东60°方向走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则BAC ∠的度数是( )A.105°B.115°C.125°D.135°4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( ) A.()31001003x x +-= B.()31001003x x --= C.10031003x x -+= D.10031003x x --= 5.方程1﹣22x -=13x +去分母得( ) A.1﹣3(x ﹣2)=2(x+1)B.6﹣2(x ﹣2)=3(x+1)C.6﹣3(x ﹣2)=2(x+1)D.6﹣3x ﹣6=2x+26.若单项式2x 3y 2m 与﹣3x n y 2的差仍是单项式,则m+n 的值是( )A .2B .3C .4D .57.有理数m ,n 在数轴上的位置如图所示,则化简│n│-│m -n│的结果是( )A.mB.2n-mC.-mD.m-2n8.人类的遗传物质是DNA ,DNA 是一个很长的链,最短的22号染色体也长达30 000 000个核苷酸.30 000 000用科学记数法表示为( )A .3×107B .30×106C .0.3×107D .0.3×1089.运用等式性质的变形,正确的是( )A.如果 a=b ,那么 a+c=b ﹣cB.如果a b c c =,那么 a=bC.如果 a=b ,那么a b c c =D.如果 a=3,那么 a 2=3a 210.若8a =, 5b =,且 0a b +>,那么-a b 的值为( ) A .3或13 B .13或-13 C .3或-3 D .-3或-1311.如果温度上升10℃记作+10℃,那么温度下降5℃记作( )A .+10℃B .﹣10℃C .+5℃D .﹣5℃12.据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积面积约为多少平方千米( )A.73610⨯B.83.610⨯C.90.3610⨯D.93.610⨯二、填空题13.如图是正方体的一个表面展开图,在这个正方体中,与“晋”字所在面相对的面上的汉字是_____.14.22.5°=________°________′;12°24′=________°.15.一商店在某一时间以每件a 元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,若卖出这两件衣服商店共亏损8元,则a 的值为______.16.小明买了20本练习本,店主给他八折优惠,结果便宜1.6元,每本练习本的标价是________元 .17.﹣3xy ﹣x 3+xy 3是_____次多项式.18.填在如图各正方形中的四个数之间都有相同的规律,则a+b ﹣c 的值是_____.193-的相反数是_____.20.对于有理数a ,()b a b ≠,我们规定:2*5a b a ab =--,下列结论中:()()3*22--=-①;**a a b b =②;**a b b a =③;()()**.a b a b -=-④正确的结论有______.(把所有正确答案的序号都填在横线上)三、解答题21.如图,在四边形ABCD 中, //AD BC ,B D ∠=∠延长BA 至点E ,连接CE ,且CE 交AD 于点F ,EAD ∠和ECD ∠的角平分线相交于点P .(1)求证:①//AB CD ;②2EAD ECD APC ∠+∠=∠;(2)若70B ∠=︒,60E ∠=︒,求APC ∠的度数;(3)若APC m ∠=︒,EFD n ∠=︒请你探究m 和n 之间的数量关系.22.解下列方程(1)2x+5=3(x ﹣1)(2).23.如图,点O 为原点,A ,B 为数轴上两点,AB=15,且OA :OB=2(1)A ,B 对应的数分别为 , .(2)点A ,B 分别以2个单位/秒和5个单位/秒的速度相向而行,则几秒后A ,B 相距1个单位长度?(3)点AB 以(2)中的速度同时向右运动,点P 从原点O 以4个单位秒的速度向右运动,是否存在常数m ,使得3AP+2PB ﹣mOP 为定值?若存在,请求出m 值以及这个定值;若不存在,请说明理由.24.一辆出租车从A 地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x >6且x <14,单位:km):(1)写出这辆出租车每次行驶的方向;(2)求经过连续4次行驶后,这辆出租车所在的位置(结果可用x 表示);(3)这辆出租车一共行驶了多少路程(结果用x 表示)?25.先化简,再求值:5(3a 2b-ab 2)-4(-ab 2+3a 2b ),其中a=12,b=-13. 26.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着格线运动,它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.例如从A 到B 记为:A→B(+1,+4),从D 到C 记为:D→C(﹣1,+2),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(______,_____),B→C(______,_____),D→_____(﹣4,﹣2);(2)若这只甲虫从A 处去P 处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P 的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.27.已知a 、b 互为倒数,c 、d 互为相反数,2x =,且x 在数轴上表示的数在原点的左边. 求式子32339()4c d x ab+-⨯-+的值 28.如图1,已知∠MON=140°,∠AOC 与∠BOC 互余,OC 平分∠MOB ,(1)在图1中,若∠AOC=40°,则∠BOC=__________°,∠NOB=__________°.(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB 绕着点O 顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.【参考答案】***一、选择题1.A2.A3.D4.C5.C6.C7.C8.A9.B10.A11.D12.B二、填空题13.祠14.30 12.415.6016.417.四18.-12819.3﹣ SKIPIF 1 < 0 .解析:320. SKIPIF 1 < 0解析:①②④三、解答题21.(1)①见解析,②见解析;(2)65°;(3)12m n=,见解析.22.(1)x=8;(2)x=423.﹣10 524.(1)第一次是向东,第二次是向西,第三次是向东,第四次是向西;(2)这辆出租车所在的位置是向东(7﹣12x)km;(3)这辆出租车一共行驶了(7172x-)km的路程.25.-11 3626.(1) (3,4);(2,0);A;(2)答案见解析;(3)10.27.6428.(1)50°,40°;(2)2α-β=40°;(3)不成立,2α+2β=40°.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°2.在直线l 上有A 、B 、C 三点,AB=5cm,BC=2cm,则线段AC 的长度为( )A .7cmB .3cmC .7cm 或3cmD .以上答案都不对3.∠A 的余角与∠A 的补角互为补角,那么 2∠A 是( )A .直角B .锐角C .钝角D .以上三种都有可能4.方程x ﹣4=3x+5移项后正确的是( )A .x+3x =5+4B .x ﹣3x =﹣4+5C .x ﹣3x =5﹣4D .x ﹣3x =5+45.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ).A.3229x x -=+B.3(2)29x x -=+C.2932x x +=- D.3(2)2(9)x x -=+ 6.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.现有一个长方形的周长为30cm ,这个长方形的长减少1cm ,宽增加2cm ,就可以变成一个正方形,设长方形的宽为x cm ,可列方程为( )A.2(30)1x x -=-+B.2(15)1x x -=-+C.2(30)1x x +=--D.2(15)1x x +=-- 7.若A 和B 都是五次多项式,则( )A.A+B 一定是多项式B.A ﹣B 一定是单项式C.A ﹣B 是次数不高于5的整式D.A+B 是次数不低于5的整式8.下列说法中正确的是( )A .4xy x y -+-的项是xy ,x ,y ,4B .单项式m 的系数为0,次数为0C .单项式22a b 的系数是2,次数是2D .1是单项式 9.下列结论正确的是( )A .x =2是方程2x+1=4的解B .5不是单项式C .﹣3ab 2和b 2a 是同类项D .单项式3ab 的系数是3 10.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )A.a b -<B.0ab <C.0a b +>D.b-a >011.如果a 与-3的和是0,那么a 是( ) A.13- B.13 C.-3 D.312.下列各组数中互为相反数的一组是( )A.3与13B.2与|-2|C.(-1) 2与1D.-4与(-2) 2二、填空题13.若90,90αββγ∠+∠=︒∠+∠=︒,则α∠与γ∠的关系是_______ ,理由是_____14.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则2x+3y 的值为____.15.某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要 40h 完成.现在该小组全体同学一起先做 8h 后,有 2 名同学因故离开,剩下的同学再做 4h ,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有 x 名同学,根据题意可列方程为___________.16.若a 、b 互为相反数,c 、d 互为倒数,p 的绝对值等于2,则关于x 的方程(a+b)x 2+3cd•x-p 2=0的解为________.17.有理数a ,b ,c 在数轴上的对应点如图所示,化简:|b|-|c +b|+|b -a|=________.18.若23a b =,则a b b +=_____. 19.用“>”“<”或“=”填空.(1)-56________-67;(2)-45________-35; (3)|-7|________0;(4)|-2.75|________|+234| 20.计算(﹣0.25)2007×(﹣4)2008=______.三、解答题21.如图,已知O 为直线AD 上一点,∠AOC 与∠AOB 互补,OM 和ON 分别是∠AOC 和∠AOB 的平分线.(1) 试说明:∠AOB =∠COD ;(2) 若∠COD =36°,求∠MON 的度数.22.(1)如图,点C 、D 在线段AB 上,点C 为线段AB 的中点,若AC =5cm ,BD =2cm ,求线段CD 的长.(2)如图,已知∠COB =2∠AOC ,OD 平分∠AOB ,且∠COD =20°,求∠AOB 的度数.23.(12分)阅读:我们知道, 于是要解不等式,我们可以分两种情况去掉绝对值符号,转化为我们熟悉的不等式,按上述思路,我们有以下解法:解:(1)当30x -≥,即3x ≥时: 34x -≤解这个不等式,得:由条件,有: (2)当< 0,即 x < 3时,解这个不等式,得:由条件x < 3,有: < 3∴ 如图, 综合(1)、(2)原不等式的解为:根据以上思想,请探究完成下列2个小题:(1); (2)。

有理数乘除法学案

有理数乘除法学案

有理数加减混合复习1.判断题(1)运用加法交换律,得-7+3=-3+7. ( ) (2)-5-4=-9.( ) -5-4=-1.( ) (3)两个数相加,和一定大于任一个加数. ( ) (4)两数差一定小于被减数. ( ) (5)零减去一个数,仍得这个数. ( )2.选择题(1)把(+5)-(+3)-(-1)+(-5)写成省略括号的和的形式是 ( ) A.-5-3+1-5 B.5-3-1-5 C.5+3+1-5 D.5-3+1-5(2)算式8-7+3-6正确的读法是 ( )A.8、7、3、6的和B.正8、负7、正3、负6的和C.8减7加正3、减负6D.8减7加3减6的和 (3)两个数相加,其和小于每个加数,那么这两个数( )A.同为负数B.异号C.同为正数D.零或负数 (4)甲数减去乙数的差与甲数比较,必为( )A.差一定小于甲数B.差不能大于甲数C.差一定大于甲数D.差的大小取决于乙是什么样的数 3.计算下列各题(1)(+17)-(-32)-(+23) (2)(+6)-(+12)+(+8.3)-(+7.4)(3)1.2-2.5-3.6+4.5 (4)-7+6+9-8-5;(5)73-(8-9+2-5) (6)-16+25+16-15+4-104.有十箱梨,每箱质量如下:(单位:千克)51,53,46,49,52,45,47,50,53,48。

你能较快地算出它们的总质量吗?列式计算。

5. 若5=a ,2=b ,6=c 且,),(c a c a b a b a +=++-=+求a-b+c 的值。

有理数乘法 (1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘; 任何数与0相乘都得0。

多个有理数乘法法则:几个不等于0的数相乘,积的符号由负因数的个数来确定。

当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;几个数相乘,有一个因数为0时,积就为0。

1、计算:(1)-4×12×()-0.5 (2)-37×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-724练一练:(1)-15×2.5×⎝ ⎛⎭⎪⎫-716×()-8 (2)-35×⎝ ⎛⎭⎪⎫-56×()-6【知识巩固】 1.填空_______×(-2)=-6 ; (-3)×______=9 ;______×(-5)=0 2.选择:1. 一个有理数与它的相反数的积 ( ) A . 是正数 B . 是负数 C . 一定不大于0 D . 一定不小于02. 下列说法中正确的是 ( ) A .同号两数相乘,符号不变B .异号两数相乘,取绝对值较大的因数的符号C .两数相乘,积为正数,那么这两个数都为正数D .两数相乘,积为负数,那么这两个数异号3. 两个有理数,它们的和为正数,积也为正数,那么这两个有理数 ( ) A . 都是正数 B . 都是负数 C . 一正一负 D . 符号不能确定4. 如果两个有理数的积小于零,和大于零,那么这两个有理数 ( ) A .符号相反 B .符号相反且绝对值相等 C .符号相反且负数的绝对值大 D .符号相反且正数的绝对值大5.若ab =0,则( )A . a =0B . b =0C . a =0或b =0D . a =0且b =0 6. 两个有理数a,b 满足下列条件,能确定a,b 的正负吗( ) A . a +b >0,ab <0 B . a +b >0,ab >0 C . a +b <0,ab <0 D . a +b <0,ab >0 3.判断① 同号两数相乘,取原来的符号,并把绝对值相乘。

第二章 有理数的运算 综合实践 学案 2024—2025学年人教版数学七年级上册

第二章 有理数的运算  综合实践 学案 2024—2025学年人教版数学七年级上册

学案设计(一)学习目标1.理解进位制的基本概念,包括十进制和其他进制的表示方法.2.能够运用进位制解决实际问题,如货币计算、时间换算等.3.培养团队协作能力,通过小组合作实践,提高问题解决能力和沟通能力.自主学习二进制是逢二进一,其各数位上的数字为0或1.请把二进制数1011表示成各数位上的数字与基数的幂的乘积之和的形式,从而转换成十进制数.课堂探究活动1认识进位制,探究不同进位制的数之间的转换任务1把89转换为二进制数和八进制数.任务2通过研究二进制数及十进制数之间的转换,你有哪些发现?进一步地,你能进行其他不同进制数之间的转换吗?活动2探究进制数的加法运算任务1查阅资料,分析计算机运算选择二进制的原因,从多个角度分析选择二进制的优越性.任务2小组合作,研究二进制数的加法运算法则,并填写表1中的活动记录单.表1活动记录单加0011数加0101数和(1)根据上面的加法运算法则,计算(10010)2+(111)2,并交流一下计算方法.(2)①计算45+23;②把45,23分别转换为二进制数,利用二进制数的加法运算法则计算它们的和,再把和转换为十进制数;③比较①②的计算结果是否相同.任务3计算机的存储容量是指存储器能存放二进制代码的总位数,用于计量存储容量的基本单位是字节.请研究手机、计算机等电子存储设备的容量以及它们存储的一些电子文件的大小,它们通常以什么单位表示?这些单位之间有什么关系?任务4古人在研究天文、历法时,也曾经采用七进制、十二进制、六十进制记数法.至今,我们仍然使用一星期7天、一年12个月、一小时60分钟的记时方法.结合角度、时间等实际问题,分小组讨论一下六十进制数的加法运算法则.活动3任选教材第65~66页主题之一进行研究综合与实践活动研究报告的参考形式报告主题:年级班组报告时间:1.活动名称2.研究小组成员与分工3.选题的意义4.研究方案5.研究过程6.研究结果7.收获与体会8.对此研究报告的评价(由评价小组或教师填写)学以致用基础达标1.二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制数是1×23+1×22+0×21+1×20=13.将(10111)2转换成十进制数是()A.23B.15C.18D.312.我们常用的数是十进制数,大多数计算机程序使用的是二进制(只有数码0和1).十进制数和二进制数可以互相换算,例如将(101)2换算成十进制数为(101)2=1×22+0×21+1×20=4+0+1=5;按此方式,将(1010)2换算成十进制数为()A.10B.9C.11D.183.计算机内部使用的是二进制(共有两个数码0,1).将一个十进制数转化为二进制数,只需将该数写为若干个2n的数字之和,依次写出1或0即可.如十进制数19可以写为二进制数10011,因为19=16+2+1=1×24+0×23+0×22+1×21+1×20;37可以写为二进制数100101,因为37=32+4+1=1×25+0×24+0×23+1×22+0×21+1×20,则十进制数70是二进制下的()A.7位数B.6位数C.5位数D.4位数4.日常生活中我们使用的数是十进制数,数的进位方法是“逢十进一”.而计算机内部使用的数是二进制数,即数的进位方法是“逢二进一”.二进制数只使用数字0、1,如二进制数1101记为1101(2),1101(2)通过式子1×23+1×22+0×2+1可以转换为十进制数13.仿照上面的转换方法,将11101(2)转换为十进制数是()A.15B.29C.30D.335.计算机的二进制数据是用0和1两个数码来表示的数,进位规则是“逢二进一”,二进制数和十进制数可以互换,例如,二进制数“01011011”换成十进制数为0×27+1×26+0×25+1×24+1×23+0×22+1×21+1×20=91.依此算法,二进制数“01001001”换成十进制数为.素养提升1.阅读材料:现在我们常用的数的进制是十进制,如4 657=4×103+6×102+5×101+7×100.该进制需用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9.在电子计算机中用的是二进制,只需用两个数码:0和1.两种进制的数可以互相换算,如二进制的数110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.(注意:对于任何非零数a 都有a0=1,即20=1)解决问题:二进制的数101011等于十进制的哪个数?应用拓展:我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量.由图可知,她一共采集到的野果数量为个.2.日常生活中,我们通常用到的数,称之为十进制数.在表示十进制数时,我们需要用到10个数码:0,1,2,…,8,9.例如:9 812=9 000+800+10+2=9×10×10×10+8×10×10+1×10+2×1.而在计算机中,常使用二进制数,即使用两个数码:0,1.例如:1011.如果想要知道这个二进制数等于十进制中的哪个数字,我们可以这样计算: (1011)2=(1×2×2×2+0×2×2+1×2+1×1)10=(11)10即二进制数1011等于十进制数11.阅读以上资料后,(1)请你把二进制数10101转换为十进制数的过程补充完整:(10101)2=()10=()10;(2)现在,请你尝试把六进制数421转化为十进制数,并写出转换过程.参考答案自主学习二进制数1011表示成各数位上的数字与基数的幂的乘积之和的形式如下:1×23+0×22+1×21+1×20.这个数转换成十进制数为11.课堂探究活动1认识进位制,探究不同进位制的数之间的转换任务1解:首先,对89进行不断除以2的整除操作,直到商为0,然后将每次的余数按相反的顺序组合起来,即得到二进制数.89÷2=44,余144÷2=22,余022÷2=11,余011÷2=5,余15÷2=2,余12÷2=1,余01÷2=0,余1将余数按相反的顺序组合起来,得到二进制数:1011001将89转换为八进制数:同样,对89进行不断除以8的整除操作,直到商为0,然后将每次的余数按相反的顺序组合起来,即得到八进制数.89÷8=11,余111÷8=1,余31÷8=0,余1将余数按相反的顺序组合起来,得到八进制数:131因此,89的二进制表示为1011001,八进制表示为131.任务2通过研究二进制数和十进制数之间的转换,可以得到以下发现:1.二进制到十进制的转换:二进制数的每一位代表2的幂,从右向左依次增加.将每位的值与对应的2的幂相乘,再相加,即可得到十进制数.2.十进制到二进制的转换:使用除2取余法,不断将十进制数除以2,将余数按相反的顺序组合,即可得到对应的二进制数.3.其他进制数的转换:类似地,可以研究不同进制数之间的转换,例如八进制到十进制、十六进制到十进制等.转换的基本思想是一致的,只需根据不同进制的基数进行相应的运算.4.十进制到其他进制的转换:使用除基数取余法,将十进制数不断除以目标进制的基数,将余数按相反的顺序组合,即可得到对应的进制数.5.其他进制到二进制的转换:首先将其他进制数转换为十进制数,然后再将十进制数转换为二进制数.总体来说,不同进制数之间的转换基于相似的原理,只需注意不同进制的基数和相应的幂次关系.进一步地,可以研究其他进制数之间的转换,例如八进制到十六进制、十六进制到八进制等.活动2探究进制数的加法运算任务1略任务2(1)首先,我们按照二进制数的加法运算的规则逐位相加,从右向左进行.10010+11110101在二进制数的加法运算中,对应位相加时,0+1的结果为1,1+1的结果为0并进位.因此,计算过程如下:·在最右边的位上,0+1=1.·接下来的位上,1+1=0(写下0),并向左进位1.·然后,进位的1与下一个位相加,1+1=0,再次产生进位1.·接着,进位的1与下一位相加,0+1=1.·最后,最左边的位上,1+0(进位)=1.因此,二进制数10010与二进制数111的和为10101.在交流计算方法时,强调了二进制数的加法运算的规则,尤其是0+1和1+1的情况,并通过逐位相加的方式展示了计算过程.(2)①68②将45转换为二进制数:45=(101101)2将23转换为二进制数:23=(10111)2利用二进制数的加法运算规则计算它们的和:101101+101111000100(45的二进制表示)(23的二进制表示)(和的二进制表示)将和转换为十进制数:(1000100)2=68③相同任务3略任务4略活动3略学以致用[基础达标]1.A2.A3.A4.B5.73[素养提升]1.解:∵101011=1×25+0×24+1×23+0×22+1×21+1×20=43,∴二进制数101011等于十进制数43.应用拓展:1×64+2×63+3×62+0×61+2×60=1 838(个),故她一共采集到的野果数量为1 838个.2.解:(1)(10101)2=(1×2×2×2×2+0×2×2×2+1×2×2+0×2+1)10=(21)10,故答案为1×2×2×2×2+0×2×2×2+1×2×2+0×2+1,21.(2)(421)6=(4×6×6+2×6+1)10=(157)10.学案设计(二)学习目标1.理解进位制的基本概念,包括十进制和其他进制的表示方法.2.能够运用进位制解决实际问题,如货币计算、时间换算等.3.培养团队协作能力,通过小组合作实践,提高问题解决和沟通能力.自主学习查阅资料,准备一个与时间有关的小故事,为何钟表分为六十分钟?为何我们有7天一周等.一小时60分钟的来历.课堂探究1.二进制数的加法运算练习题:a.11012+1012b.100112+11012c.11102+101012d.1100102+1011102e.110112+11011022.将下列二进制数转换为十进制数a.11012b.1001102c.111112d.10101012e.110110123.将下列八进制数转换为十进制数a.348b.1278c.5438d.74268e.652178学以致用基础达标1.生活中常用的十进制是用0~9这十个数字来表示数,满十进一,例:12=1×10+2,212=2×10×10+1×10+2;计算机也常用十六进制来表示字符代码,它是用0~F 来表示0~15,满十六进一,它与十进制对应的数如表:十进012…891011121314151617…制十六012…89A B C D E F1011…进制例:十六进制的数2B对应十进制的数为2×16+11=43,10C对应十进制的数为1×16×16+0×16+12=268,那么十六进制的数16F对应十进制的数为()A.28B.62C.367D.3342.2021年7月,第十四届国际数学教育大会在上海召开,本次大会会徽主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力.如图,右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,由0~7共8个基本数字组成.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2 021,则八进制数2023换算成十进制数是()A.1 041B.1 043C.2 023D.3 7473.计算机是将信息转换成二进制数处理的,二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制数是1×23+1×22+0×21+1×20=13.将(10111)2转换成十进制数是()A.23B.15C.18D.314.我们常用的数是十进制数,大多数计算机程序使用的是二进制(只有数码0和1).十进制数和二进制数可以互相换算,例如将(101)2换算成十进制数为(101)2=1×22+0×21+1×20=4+0+1=5.按此方式,将(1010)2换算成十进制数为()A.10B.9C.11D.18素养提升1.计算机中常用的十六进制是逢16进1的记数制,采用数字0~9和字母A~F共16个记数符号,这些记数符号与十进制的数之间的对应关系如下表:十六0123456789A B C D E F进制十0123456789101112131415进制例如:十进制中的26=16+10,可用十六进制表示为1A;在十六进制中,E+D=1B等.由上可知,在十六进制中,3×E=()A.42B.2AC.A2D.3E2.(多选)八进制是以8作为进位其数的数字系统,有0~7共8个基本数字.如:八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2 021.以下说法正确的是()A.若八进制数最后一位是偶数,换算成十进制依然是偶数B.八进制数111与十进制数111相等C.八进制数2023换算成十进制数是1 045D.十进制数2 023换算成八进制数是3747参考答案自主学习略课堂探究1.a.11012+1012=100102b.100112+11012=111002c.11102+101012=1001112d.1100102+1011102=10110002e.110112+1101102=101000122.a.11012=1310b.1001102=3810c.111112=3110d.10101012=8510e.11011012=109103.a.348=2810b.1278=8710c.5438=35510d.74268=388210e.652178=2709510学以致用[基础达标]1.C2.B3.A4.A [素养提升]1.B2.AD。

有理数的乘法学案2

有理数的乘法学案2

有理数的乘法学案(2)一、课前小测:(1)、(-2)×3= ; (2)、(-2)×(-3)= ; (3)、4×(-1.5)= ;(4)、(-5)×(-2.4)= ;(5)、29×(-21)= ; (6)、(-2.5)×16= ;(7)、 97×0×(-6)= ; (8)、(-9.3)×(-7.8)×0= ;(9)、-35×2= ;(10)、(-84)×(-86)= ;二、教学目标:1.进一步掌握有理数乘法法则; 2.能准确确定几个因数相乘时积的符号。

三、自学指导:认真阅读课本p31—32页内容,3分钟后看谁能既快又准确地解决以下问题:1、找规律,计算下列各题,找出其结果的符号有什么规律?(1)3×(-5);(2)3×(-5)×(-2);(3)3×(-5)×(-2)×(-4);(4) 3×(-5)×(-2)×(-4)×(-3);(5) 3×(-5)×(-2)×(-4)×(-3)×(-6)。

当负因数个数是 时,积为 ;当负因数个数是 时,积为 。

2、再看两题:(1)(-2)×(-3)×0×(-4); (2) 2×0×(-3)×(-4)。

它们结果都是 。

由此得出:几个有理数相乘时,只要有一个因数为 ,积就为 。

3、几个不等于0的数相乘,积的符号由 的个数决定。

当 有奇数个时,积为 ;当负因数有 个时,积为正。

几个有理数相乘,有一个因数为0,积就为0。

四、典例分析:()()⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⨯-41596531、 ()()4154652⨯⎪⎭⎫ ⎝⎛-⨯⨯-、五、当堂训练1、判断下列积的符号(口答):①(-2)×3×4×(-1); ②(-5)×(-6)×3×(-2);③(-2)×(-2)×(-2); ④(-3)×(-3)×(-3)×(-3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数的乘法(2)学案
年级:七年级 学科:数学 执笔:吴达辉 审核:
内容:有理数的乘法(2) 课型:新授 时间:2011年 月 日 学习目标:
1、经历探索多个有理数相乘的符号确定法则;熟练有理数的乘法运算并能用乘法运算律简化运算。

2、会进行有理数的乘法运算。

3、经历探索有理数的乘法运算律的过程,发展观察、归纳、猜想、验证等能力。

学习重点:多个有理数乘法运算符号的确定;正确运用运算律,使运算简化 学习难点:正确运用运算律,使运算简化
一、无师自通:
1、利用自学时间预习课本P 44-47,将重点内容及未弄懂的知识在课本上做上
记号;
2、试一试:计算
(1)、(-0.5)×(+1)×(-0.75)×(-6) ×(-4)
(2)、⎪⎭⎫ ⎝⎛-⨯⨯⎪⎭⎫ ⎝⎛-321853
(3)、12300.423⎛⎫⨯-+ ⎪⎝⎭
二、探究活动:
1、小组合作
将“无师自通”中大家的解答进行小组合作交流,各组进行归纳发言,同学们整理记录:
2、小组合作·掌握重难点
【活动一】1、下面两组练习,请同学们选择一组计算.并比较左右式子的计算结果:
(1)(-7)×8 8×(-7)
[(-2)×(-6)]×5 (-2)×[(-6)×5]
5×[(-3)+(-7)] 5×(-3)+ 5×(-7)
(2)(-5
3)×(-
9
10)(-
9
10)×(-
5
3)
[1
2×(-
7
3)]×(-4)
1
2×[(-
7
3)×(-4)]
(-6)×[1
2+(-
7
3)] (-6)×
1
2+(-6)×(-
7
3)
2、请以小组为单位,相互检查,合作交流:
1)仔细观察上面的式子与结果,有什么共同特点?把你的发现相互交流交流. ____
2)它们分别反映了怎样的运算率?猜想在有理数运算律中,乘法的交换律,结合律以及分配律还成立吗?____________
3)你能用字母表示吗?通过上面这几组题目你有什么感受?请进行归纳总结
乘法交换律:两个数相乘,交换因数的位置,积____。

即:ab=____
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积____。

即:(ab)c= ____
乘法对加法的分配律:____________________即:(a+b)c=____
由此可得:在有理数运算中,____律____律______律仍然成立。

【活动二】
1、观察:下列各式的积是正的还是负的?
(1)2×3×4×(-5),
(2)2×3×(-4)×(-5),
(3)2×(×3)× (×4)×(-5),
(4)(-2) ×(-3) ×(-4) ×(-5)
(5)2×(-3) ×4×(-5) ×0
2、思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?分组讨论交流,再用自己的语言表达所发现的规律:几个不是0的数相乘,积的正负号由决定,负因数的个数是____时,积是正数;负因数的个数是____时,积是负数。

几个数相乘,有一个因数为零,
积就为 。

【例题讲解】计算:
1、(-0.25)×(-7
4)×4×(-7)
2、(-3) ×(+
65)×(-154)×(-41)×(+172)
3、(-0.25) ×(-7) ×32×0.125×(-7
3)×0
4、(12+16-1
2)×12
5、911
18 ×(-15)
【巩固练习】计算:
1、(-2) ×(-7) ×(+5) ×(-
71) 2、()()()5251111431211⨯-⨯⎪⎭
⎫ ⎝⎛-⨯-⨯-⨯⎪⎭⎫ ⎝⎛-
3、()⎪⎭
⎫ ⎝⎛-+-⨯-1.0512******* 4、-102322×(-69) 三、归纳总结:
1.本节课学习的概念有哪些?
2.易错点有哪些?怎样避免这些错误?
四、显显身手:
1、如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )
A.一定为正
B.一定为负
C.为零
D. 可能为正,也可能为负
2、若干个不等于0的有理数相乘,积的符号( )
A.由因数的个数决定
B.由正因数的个数决定
C.由负因数的个数决定
D.由负因数和正因数个数的差为决定
3、如果a +b <0, 且 ab ﹥0, 那么a_____0,b_____0。

4、若∣a ∣=1,∣b ∣=4, 且 ab <0, 那么a +b=__________。

5、计算①(-87)×15×(-171); ②(151109-)×30;
③-9×(-11)+12×(-9) ④753736
96418⎛⎫-+-⨯ ⎪⎝⎭
⑤(-9987
) ×16。

相关文档
最新文档