3.1同底数幂的乘法典型习题1
同底数幂的乘法基础练习(1)

3.1同底数幂的乘法(1)班级姓名第小组【课前尝试预学题】1.知识回顾(1)计算:a2+a2= ,x3-3x3= . 以上运算的依据是合并同类项法则,即把同类项的系数,所得的结果作为,字母和字母的指数.(2)求几个相同因数的的运算叫做乘方,乘方的结果叫做.在a n中,a叫做,n叫做.(3)请写出32与33的共同点:2.法则的形成(思考:由上表左右两列的结果,你发现了什么规律?(2)同底数幂的乘法法则:同底数幂相乘,,.即:a m·a n= (其中m,n)(3)当三个或三个以上同底数幂相乘时,是否也具有这一性质?例如a m·a n·a p= .3.同底数幂的乘法运算请阅读课本例1并模仿其解题格式,计算下列各题:(1)(-8)12×(-8)5(2)x·x7(3)10711-22⎛⎫⎛⎫⨯⎪ ⎪⎝⎭⎝⎭(4)a3m·a2m-1(m是正整数)【知识宝典】使用同底数幂的乘法必须注意:①必须相同;②同底数幂相乘时没有发生变化,指数为原各个因式的同底数的幂的和;③当指数是时,可以省略不写,但在运算时却不能丢掉.4.底数是多项式的同底数幂的乘法(1)填“+”或“-”号:(a+b)5= (b+a)5;(a-b)4= (b-a)4;(a-b)5= (b-a)5.归纳:当n为正整数时,(a+b)n= (b+a)n;(a-b)2n= (b-a)2n;(a-b)2n-1= (b-a)2n-1. (2)计算:①(a+b)4·(b+a) ②(m-n)3·(m-n)5③(x-y)2·(y-x)3·(y-x)④(a-b)2·(b-a)4·(b-a)·(a-b)35.同底数幂的乘法的简单应用请阅读课本例2后解答本题:2002年9月,一个国际空间站研究小组发现了太阳系以外的第100颗行星,距离地球纸约100光年。
同底数幂、幂的乘方、积的乘方知识点及习题

幂的运算1、同底数幂的乘法同底数幂相乘,底数不变,指数相加.公式表示为:()mnm na a am n +⋅=、为正整数同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即()m n p m m p a a a a m n p ++⋅⋅=、、为正整数注意:(1)同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.例1: 计算列下列各题 (1) 34a a ⋅; (2) 23b b b ⋅⋅ ; (3) ()()()24c c c -⋅-⋅-练习:简单 一选择题1. 下列计算正确的是( )A.a2+a3=a5B.a2·a3=a5C.3m +2m =5mD.a2+a2=2a42. 下列计算错误的是( )A.5x2-x2=4x2B.am +am =2amC.3m +2m =5mD.x·x2m-1= x2m3. 下列四个算式中①a3·a3=2a3 ②x3+x3=x6 ③b3·b·b2=b5④p 2+p 2+p 2=3p 2正确的有( )A.1个B.2个C.3个D.4个4. 下列各题中,计算结果写成底数为10的幂的形式,其中正确的是( )A.100×102=103B.1000×1010=103C.100×103=105D.100×1000=104二、填空题1. a4·a4=_______;a4+a4=_______。
2、 b 2·b ·b 7=________。
3、103·_______=10104、(-a)2·(-a)3·a5=__________。
5、a5·a( )=a2·( ) 4=a186、(a+1)2·(1+a)·(a+1)5=__________。
3.1同底数幂的乘法(3)

(1) 23×53 ; (2×5)3 = 103 = (2) 28×58 ;= (2×5)8 = 108
(3) (-5)16 × (-2)15 ;= (-5)×[(-5)×(-2)]15 = -5×1015 ;
(4) 24 × 44 ×(-0.125)4 ; = [2×4×(-0.125)]4 = 14 =1.
阅读 体验
☞
(2)(-2b2)5 ;
4
【例1】计算: (1)(3x)2 ;
(3)(-x2y3)4 ;
2 2 (4) a b . 3 解: (1)(3x)2 =32x2 = 9x2
(2)(-2b2)5 = (-2)5(b2)5 = -32b10 (3)(-x2y3)4 = (-1)4(x2)4 (y3)4 =x8 y12 4 4 2 2 2 2 4 4 16 8 4 (4) a b a b a b 81 3 3
一、脱口而出:
(1) a6b3=( a2b )3;
(3)16x8=( ±4x4 )2
9x2y5 (2)81x4y10=( ±9x2y5 )2 (4)-x5=( -x )3 x2
2013
1 二、计算: 2
1 2
2012
2012
2
=2
2012
2
2013
=2
1 2
温故而知新,不亦乐乎。
幂的意义: n个 a
a· … · = an a· a
同底数幂的乘法运算法则:
am · n = am+n (m,n都是正整数) a
幂的乘方运算法则: (am)n= amn (m、n都是正整数)
正确写出得数,并说出是属于哪一种幂的运算。 ① a3·4· = a8( 同底数幂相乘 ) a a
3.1 同底数幂的乘法1

二、例题分析
例题1、计算下列各式,结果用幂的形式表示 1、 2、 3、
7 7 (2)8 (2)7
3 6
注意事项:
1、注意法则使用的条件是底数相同 2、同底数幂相乘时,指数是相加的 3、不能疏忽指数为1的情况 4、公式中的a可代表一个数、字母、式子等
3
25 (2)7 5 4、 2 2 5 4 5、 x x
(3)已知:am=2, an=3.则am+n = 6 (4)把a8写am·an,有几种结果 ,
×)
)
(2)b5 · b5= 2b5(
b5 · b5= b10
(4)73×78= 711(
×)
x2 · x3 = x5
(5)a · a6 = a6 (
×
√)
a · a6 = a7
×)
2、完成课本61页练习
3、能力提升 (1)8× 4 = 2x,则 x = 5 23 × 22 = 25=2x ;
±2 (2)已知a2×a6=28,则a=________
6、 (4 105源自) (5.8 10 )3
5、运算结果的底数一般应为正数 6、若底数不同,先化为相同,后运用法则
7、 (a b) 8、
(a b)
4
8 2
4
三、经典练习 1、下面的计算对不对?如果不对,怎样改正? (1)b5 + b5 = b10 (
b5 + b5 = 2b5
(3)x2 ·x3 = x6 (
一、探索新知 103×104 =10×10×10 ×10×10×10×10 =107 (-2) 3× (-2) 4 =(-2) × (-2) × (-2) × (-2) ×(-2) × (-2) × (-2) =(-2) 7
同底数幂的乘法练习题(含答案)

优秀资料 欢迎下载!七年级下册同底数幕的乘法基础练习1 .填空:(1)46a a 二5(2) b b -(3) 23m m m 二 359(4) c C C C = (5)m . n . pa a a -(6) t t 2mJ 二 n 1(7) qq 二.计算:(8) n n 2p 1 n p 」二(1) .3.2_b b 口 3(2) (-a) a 二(3) 23(-y) (-y)二 4(4) (-a) (-a)二 (5) -34 32 二 (6) (-5)7 (-5)6 二 (7) (—q)2n (—q)3 二 (8) (-m)4 (-m)2 二(9) -23 =45(10) (-2) (-2)二(11) -b 9(-b)6二33(12) (-a) (-a )=.下面的计算对不对?如果不对, 应怎样改正? (1)^3小2^523 =6 ;6(2) a a a ; (3) nn2ny y 2y ;/ 、 2 2(4) m m 二 m ;(5) (-a)2(-a 2) =a 4; 412(6) a a a ; (7) (-4)^43 ; (8) 7 72 73 = 76 ; (9) _a 2 二-4 ;/ 、 丄 2 3(10) n n n .2.计算: 3 4 (1) a m 叫做a 的m 次幕,其中a 叫幕的 ,m 叫幕的 (2) 写出一个以幕的形式表示的数,使它的底数为 c ,指数为3,这个数为(3) (-2)4表示 (4) 根据乘方的意义,a 3因此a 3 a 4=()()()5•选择题:(1)a2m 2可以写成()•m 1A • 2aB •2m 2a a 2m 2C • a a2 md!D • a a(2)下列式子正确的是( )•A • 34 = 3 4B •4 4(-3) =3J JC • -3 二3D •34=43(3)下列计算正确的是( )•八 4 4A • a a a r 4 . 4B • a a8二aC. a4 a4 =2a4r 4 4D • a a16二a综合练习1 •计算:(1) n n 1 n 吃a a a(2)b n b3n b5n二(3) 2 m 3 m Jb b b b (4)(-1)31 (-1宀(5)7 632-62= (6) 4 56 37 3 =(7) 2 4 3 3 52x x 3x x x x □(8)x4 x3 7x6 x-2x5 x2(9)3n^1 n 1 2n&1x x 3x x (10)a x y a x^ 3a2x =(11) 3 2 6 . 5 6(-a) (-a) (一a ) 3a a 二(12)2n -2^3 2n1 =(13)3 5 mc (「c) c 二2•计算:(结果可以化成以(a b)或(a -b)为底时幕的形式)(1) (a -b)2 (a -b)3 (a -b)4二(2) (a b)m 1 (a b) (a b)m (a b)2 =2 n _1(3) (b —a) (a -b) (b —a)=(4) (a -b)n 1 (b -a)3 (b -a)"'二(5) 2(a b)2 (a b)n4 -3(a b)n^ (a b)3二(6) 3(a -b)2m 1 (a -b)22(b —a)2m (a —b)3(7) (a+b)m (a+b)n -(a+b)卩+3(a + b)n 羊,(a+b)p 」= (8) 3(b —a)2 4(a —b)3 5(b —a)5 =3•填空题: (1)a 3 a 4( ) =a 12 •(2) a 2 ( Ha 4 ( Ha 10 • (3)(x —y)3 (x - y)6 =(x —y)()(x —y) - -()5 (x — y)4•(4) 已知 b m =3 , b n =4,贝U b m * = ________ •2 3 4 5 () ()(6) (a-b) (b_a) (a -b) (b_a) (a _b) =(a_b) _-(b_a)4•选择题:5B . (b - a - c)八、5D . _ (b _ a _ c)5•解答题:m -n3n 113(1)如果 y y 二 y , (2)设 123 ......... m = p ,计算:x m y x m4y 2 x m_2 y 3 :4•把下列各题的计算结果写成 10的幕的形式,其中正确的选项是()•36A • 1000 10 =10B .100 200100 10 =10C . 102n 10m =100m n 108 10 =1008 1. (2a b)m (2a - b)n 等于()•2. 3. 2(2 a b)a 2m1可写成(a _b c)2m “nB . (2a b))• 2mtaB . a(b - a - c)3等于(C . C . )•(2a b)2ma a mnm _nD . (2a b)m -1D . 2aC .2(a-b c)x 4^=x 6 的值.mxy •1 .下面的算式是按一定规律排列的:5 3, 7 9,9 9,11 12,……你能找出其中的规律吗?试一试,算出它的第90个算式的得数.2•某商店一种货物售价目表如下:数量x (千克)售价c (元) 1 14+1.2 2 28+2.4 370+6(1) 写出用x 表示c 的公式; (2) 计算3千克的售价.3.观察下列等式:13 = 12,13 23=32,13 2333=62,13 23 33 • 43 =102,……想一想等式左边各项幕的底数与右边幕的底数有什么关系?猜一猜可以引出什么规律, 并把这种规律用等式写出来.4•下列各个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n (n 畀)盆花,每个图案花盆的总数是 s.o o o o oo o o o o o ort =5, J = 12按此规律推算,求出 s 与n 的关系式.OO O O O On = 3, 5 = 6 O O O O O O O O OM =4t i = 9基础3(2) c ( 3) 4个一2相乘,4个2相乘的积的相反数(4) a a a a a a a ,a ,3,4,7 (3) — (a-b)6 (4) (-1)n (a-b)2「3(5) -(a bT 1(6)2m : :35(a -b)(7) 4(a b)m n p(8) _60(b_a)103. (1) -b 5(2)-a 454(3) - y(4) -a 7(5)- -729(6) 一 513(7)2n 3_q(8) -m 6 (9)- -8(10)- 512(11) -b 15(12)6a4. (1) 应改为 2332二12(2)改为3a a 36=a(3) 改为ynn 2ny y(4)改为 m m 2 =m 3 (5)改为 (_a)2 ( _a 2) _ -a 4 ⑹ 347改为a a a(7)改为 (一4)3--43(8)对(9)对(10)改为n2n3 二n5. (1) C(2) B (3)C综合1. (1)a3n 3(2) b 9n(3) 2 m -2 b(4)- 1 (5) 0 7 6(6) 3 (7) 6x2. (1) (a —b)9 (2) 2(a b)m 2 (3) 一(a —b)6 (5) -(a b)n1(6) 5( >-b)2m3(7) 4(a -b )m n p(8) _6O(b_a)103. (1) 58a(2) a 6,a(3) 8, y-x (4)12(5)1 5, 一 —10 32(6) 15, 154. (1) B(2) C(3) C (4) A5. (1) n =3, m =6(2) p px y拓展1.( 1)底数,指数2.( 1)a 10(2)2(a b)m 2(8) 6x 7(9) 4x -n 2(10) 4a 2x11(11) 4a(12) -2n 2(13) -c m 8(4) (-b)n (a-b)2n 31. 4532. c = 15.2x3. 132333n3 =(1 亠2亠3亠n)24. x = 3( n T)。
同底数幂乘法基本练习题

同底数幂乘法基本练习题一、选择题:1. 同底数幂的乘法法则是什么?A. a^m * a^n = a^(m+n)B. a^m * a^n = a^(m-n)C. a^m * a^n = a^(m*n)D. a^m * a^n = a^(m/n)2. 计算下列表达式的值:2^3 * 2^4A. 64B. 32C. 16D. 83. 下列哪个表达式是正确的?A. (3x^2)^3 = 27x^6B. (3x^2)^3 = 9x^6C. (3x^2)^3 = 3x^6D. (3x^2)^3 = 9x^34. 根据同底数幂的乘法法则,下列哪个等式是正确的?A. a^2 * a^3 = a^5B. a^2 * a^3 = a^6C. a^2 * a^3 = a^1D. a^2 * a^3 = a^45. 如果x^m = 8,那么x^3m的值是多少?A. 64B. 256C. 8D. 无法确定二、填空题:6. 根据同底数幂的乘法法则,计算下列表达式的值:5^2 * 5^3 = __________。
7. 如果a^3 = b,那么a^6 = __________。
8. 计算下列表达式的值:(2a)^3 * (2a)^2 = __________。
9. 如果x^4 = 16,那么x的值是 __________。
10. 根据同底数幂的乘法法则,下列表达式可以化简为:(3^2)^3 = __________。
三、计算题:11. 计算下列表达式的值:(3x)^2 * (3x)^3。
12. 已知a^5 = 32,求a^10的值。
13. 计算下列表达式的值:(4y^2)^3 * (4y^2)^4。
14. 已知2^3 = 8,求2^12的值。
15. 计算下列表达式的值:(5^2)^3 * 5^2。
四、解答题:16. 证明同底数幂的乘法法则:a^m * a^n = a^(m+n)。
17. 解释为什么(2x^2)^3 不等于 2^3 * x^6。
同底数幂的乘法典型例题

典型例题(一)例1计算题:(1)(2);(3).分析:由同底数幂相乘的法则知,能运用它的前题必须是“同底”,注意最后结果中的底数不能带负号,如不是最后结果,应写成才是最后结果.解:(1)(2)(3)例 2 计算:(1) a6·a6(2) a6+a6分析:对于(1),可利用“同底数幂的乘法公式”计算,而第(2)题,是两个幂相加,需进行合并同类项,注意两者的区别.解:(1) a6·a6=a6+6=a12(2) a6+a6=2a6说明:注意区分:同底数幂的乘法是乘法运算,且底数不变,指数相加.而合并同类项是加(减)法,且系数相加,字母与字母的指数不变.例3计算:(1);(2);(3);(4)分析:在幂的运算法则中的底数,可以是数字、字母,也可以是单项式或多项式.例如(1)中的,(3)中的,(2)中的,(4)中的.指数可以是自然数,也可以是代表自然数的字母.解:(1)(2)(3)(4)说明:(1)中的指数是1,不是0;(2)要注意区别与的不同,,而;(4)指数中含有自然数和字母,相加时要合并同类项化简.例4计算题:(1);(2);(3).分析:运用同底数幂相乘的法则要求必须“同底”,注意与的不同,它们的底不同,必须变成相同的底数之后再运算.解:(1)原式;(2)原式;(3)原式.说明:分别把,看作一修整一,第一个是三个同底数幂相乘,但必须把转化为,或者把转化为,其实质是相同的,因为互为相反数的奇次幂仍是互为相反数.例5计算:(1);(2);(3).分析:此题为混合运算,应先根据同底数幂的运算性质进行乘法运算,再进行加减运算.解:(1)原式(2)原式(3)原式说明:(2)中用到,是逆向使用运算公式.。
(完整版)同底数幂的乘法练习题与答案

同底數冪の乘法-練習一、填空題1.同底數冪相乘,底數 , 指數 。
2.A ( )·a 4=a 20.(在括號內填數) 3.若102·10m =102003,則m= . 4.23·83=2n ,則n= .5.-a 3·(-a )5= ; x ·x 2·x 3y= . 6.a 5·a n +a 3·a 2+n –a ·a 4+n +a 2·a 3+n = .7.(a-b )3·(a-b )5= ; (x+y )·(x+y )4= . 8. 111010m n +-⨯=__ _____,456(6)-⨯-= __. 9. 234x x xx +=_ 25()()x y x y ++=_ _.10. 31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=__ __.11. 若34m a a a =,則m=________;若416a x x x =,則a=__________; 12. 若2,5m n a a ==,則m n a +=________.13.-32×33=_________;-(-a )2=_________;(-x )2·(-x )3=_________;(a +b )·(a +b )4=_________;0.510×211=_________;a ·a m ·_________=a 5m +115.(1)a ·a 3·a 5= (2)(3a)·(3a)= (3)=⋅⋅-+11m m m X X X(4)(x+5)3·(x+5)2= (5)3a 2·a 4+5a ·a 5= (6)4(m+n)2·(m+n)3-7(m+n)(m+n)4+5(m+n)5= 14.a 4·_________=a 3·_________=a 9 二、選擇題1. 下面計算正確の是( )A .326b b b =; B .336x x x +=; C .426a a a +=; D .56mm m =2. 81×27可記為( )A.39 B.73 C.63 D.1233. 若x y ≠,則下面多項式不成立の是( )A.22()()y x x y -=-B.33()x x -=-C.22()y y -=D.222()x y x y +=+ 4.下列各式正確の是( )A .3a 2·5a 3=15a 6 B.-3x 4·(-2x 2)=-6x 6 C .3x 3·2x 4=6x 12 D.(-b )3·(-b )5=b 8 5.設a m =8,a n =16,則a n m +=( )A .24 B.32 C.64 D.128 6.若x 2·x 4·( )=x 16,則括號內應填x の代數式為( )A .x 10B. x 8C. x 4D. x 2 7.若a m =2,a n =3,則a m+n =( ).A.5 B.6 C.8 D.9 8.下列計算題正確の是( )A.a m ·a 2=a 2m B.x 3·x 2·x =x 5 C.x 4·x 4=2x 4 D.y a+1·y a-1=y 2a 9.在等式a 3·a 2( )=a 11中,括號裏面の代數式應當是( )A.a 7B.a 8 C.a 6D.a 5 10.x 3m+3可寫成( ).A.3x m+1 B.x 3m +x 3 C.x 3·x m+1 D.x 3m ·x 311:①(-a)3·(-a)2·(-a)=a 6;②(-a)2·(-a)·(-a)4=a 7;③(-a)2·(-a)3·(-a 2)=-a 7;④(-a 2)·(-a 3)·(-a)3=-a 8.其中正確の算式是( )A.①和②B. ②和③ C.①和④ D.③和④12一塊長方形草坪の長是x a+1米,寬是x b-1米(a 、b 為大於1の正整數),則此長方形草坪の面積是( )平方米.A.x a-b B.x a+b C.x a+b-1 D.x a-b+2 13.計算a -2·a 4の結果是( )A .a -2B .a 2C .a -8D .a 814.若x ≠y ,則下面各式不能成立の是( ) A .(x -y )2=(y -x )2B .(x -y )3=-(y -x )3C .(x +y )(x -y )=(x +y )(y -x )D .(x +y )2=(-x -y )215.a 16可以寫成( )A .a 8+a 8 B .a 8·a 2 C .a 8·a 8D .a 4·a 416.下列計算中正確の是( )A .a 2+a 2=a 4B .x ·x 2=x 3C .t 3+t 3=2t 6D .x 3·x ·x 4=x 717.下列題中不能用同底數冪の乘法法則化簡の是( ) A .(x +y )(x +y )2B .(x -y )(x +y )2C .-(x -y )(y -x )2D .(x -y )2·(x -y )3·(x -y )18. 計算2009200822-等於( ) A 、20082 B 、 2 C 、1 D 、20092- 19.用科學記數法表示(4×102)×(15×105)の計算結果應是( ) A .60×107 B .6.0×107 C .6.0×108 D .6.0×1010 三.判斷下面の計算是否正確(正確打“√”,錯誤打“×”)1.(3x+2y)3·(3x+2y)2=(3x+2y)5( ) 2.-p 2·(-p)4·(-p)3=(-p)9( ) 3.t m ·(-t 2n )=t m-2n ( ) 4.p 4·p 4=p 16( ) 5.m 3·m 3=2m 3( ) 6.m 2+m 2=m 4( ) 7.a 2·a 3=a 6( ) 8.x 2·x 3=x 5( ) 9.(-m )4·m 3=-m 7( ) 四、解答題1.計算(1)(-2)3·23·(-2) (2)81×3n (3)x 2n+1·x n-1·x 4-3n (4)4×2n+2-2×2n+1 2、計算題(1) 23x x x ⋅⋅ (2) 23()()()a b a b a b -⋅-⋅- (3) 23324()2()x x x x x x -⋅+⋅--⋅ (4) 122333m m m x x x x x x ---⋅+⋅-⋅⋅。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同底数幂的乘法
1、同底数幂的乘法
一、知识点检测
1、同底数幂相乘,底数 ,指数 ,用公式表示=n
m a a (m ,n 都是正整数)
2、计算32)(x x ⋅-所得的结果是( )
A.5x
B.5x -
C.6x
D.6x -
3、下列计算正确的是( )
A.822b b b =⨯
B.642x x x =+
C.933a a a =⨯
D.98a a a =
4、计算: (1)=⨯4
61010 (2)=⎪⎭⎫ ⎝⎛-⨯-6
231)31( (3)=⋅⋅b b b 32 (4)2y ⋅ 5y = 5、若53=a ,63=b ,求b a +3
的值
二、典例分析
例题:若1255
12=+x ,求()x x +-20092的值
三、拓展提高
1、下面计算正确的是( )
A.4533=-a a
B.n m n m +=⋅632
C.109222=⨯
D.10
552a a a =⋅ 2、=-⋅-23)()(a b b a 。
3、()=-⋅-⋅-62
)()(a a a 。
4、已知:5 ,3==n m a a
,求2++n m a 的值
5、若62=-a m
,115=+b m ,求3++b a m 的值
2、幂的乘方
一、知识点检测
1、幂的乘方,底数 ,指数 ,用公式表示=n m a )( (m ,n 都是
正整数)
2、计算23()a 的结果是( )
A .5a
B .6a
C .8a
D .2
3a 3、下列计算不正确的是( )
A.933)(a a =
B.326)(n n a a =
C.2221)(++=n n x x
D.623x x x =⋅
4、如果正方体的棱长是2
)12(+a ,则它的体积为 。
二、典例分析
例题:若52=n ,求n 28
的值
三、拓展提高
1、()=-+-2332)(a a 。
2、若63=a ,5027=b ,求a b +33
的值
3、若0542=-+y x ,求y x 164⋅的值
4、已知:625255=⋅x x ,求x 的值
5、比较5553
,4444,3335的大小
3、积的乘方
一、知识点检测
1、积的幂,等于幂的积。
用公式表示:n ab )(= (n 为正整数)
2、下列计算中,正确的是( )
A. ()6
33xy y x =⋅ B.6326)3()2(x x x =-⋅- C. 2222x x x =+ D. 2221)1(-=-a a
3、计算:()23ab
=( ) A .22a b B .23a b C .26a b D .6ab
二、典例分析
例题:求603020092125
.0⨯的值
三、拓展提高
1、=3)2(ab =43)2(a =-2)3(m n b a
2、计算:201020092010)2.1()6
5()
1(-⨯⨯-
3、计算:3920964252
25.0⨯⨯⨯
4、已知332=-b a ,求96b a 的值
5、若13310052
+++=⨯x x x , 求x 的值。