高一数学点到平面距离的求法

合集下载

高一数学空间中距离的求法同步练习 人教实验B版

高一数学空间中距离的求法同步练习  人教实验B版

高一数学空间中距离的求法同步练习 人教实验B 版(答题时间:60分钟)一、选择题1.在ABC ∆中,9,15,120AB AC BAC ==∠=,ABC ∆所在平面外一点P 到三顶点,,A B C 的距离都是14,则P 到平面ABC 的距离是( )A 、6B 、7C 、9D 、132.在四面体P ABC -中,,,PA PB PC 两两垂直,M 是面ABC 内一点,M 到三个面,,PAB PBC PCA 的距离分别是2,3,6,则M 到P 的距离是 ( )A 、7B 、8C 、9D 、103、三棱柱ABC —A 1B 1C 1中,AA 1=1,AB =4,BC =3,∠ABC =90°,设平面A 1BC 1与平面ABC 的交线为l ,则A 1C 1与l 的距离为()A 、10B 、11C 、2.6D 、2.4**4、一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )A .433 B .33 C .43 D .1235、用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.323π B.83πC. D.3*6、长方体ABCD -A 1B 1C 1D 1的8个顶点在同一球面上,且AB =2,AD AA 1=1,则顶点A 、B 间的球面距离是()C.2D.4二、填空题7、棱长为a 的正四面体的对棱间的距离为_____**8、如图,空间四点A 、B 、C 、D 中,每两点所连线段的长都等于a ,动点P 在线段AB 上,动点Q 在线段CD 上,则P 与Q 的最短距离为_________。

9、已知,,,A B C D 在同一个球面上,,AB BCD ⊥平面,BC CD ⊥若6,AB =AC =8AD =,则,B C 两点间的球面距离是三、解答题10、如图,在梯形ABCD 中,AD ∥BC ,∠ABC =2π,AB =31AD =a ,∠ADC =arccos 552,PA ⊥面ABCD 且PA =a 。

高一数学必修2精选习题与答案

高一数学必修2精选习题与答案

(数学2必修)第一章 空间几何体 一、选择题1.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分 的面积之比为( )A. 1:2:3B. 1:3:5C. 1:2:4D. 1:3:92.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后 ,剩下的几何体的体积是( ) A. 23 B. 76C. 45D. 563.已知圆柱与圆锥的底面积相等,高也相等,它们的体积 分别为1V 和2V ,则12:V V =( )A. 1:3B. 1:1C. 2:1D. 3:14.如果两个球的体积之比为8:27,那么两个球的表面积之比为( ) A. 8:27 B. 2:3 C. 4:9 D. 2:95.有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积及体积为:A. 224cm π,212cm πB. 215cm π,212cmπC. 224cm π,236cm πD. 以上都不正确二、填空题1. 若圆锥的表面积是15π,侧面展开图的圆心角是060,则圆锥的体积是_______。

2.一个半球的全面积为Q ,一个圆柱与此半球等底等体积,则这个圆柱的全面积是 . 3.球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍.4.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.5.已知棱台的上下底面面积分别为4,16,高为3,则该棱台的体积为___________。

三、解答题1. (如图)在底半径为2,母线长为4的圆锥中内接一个高为3的圆柱, 求圆柱的表面积65P ABCVEDF2.如图,在四边形ABCD 中,090DAB ∠=,0135ADC ∠=,5AB =,22CD =,2AD =,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.(数学2必修)第二章 点、直线、平面之间的位置关系 [基础训练A 组] 一、选择题1.下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。

高一数学必修2立体几何知识点详细总结

高一数学必修2立体几何知识点详细总结

立体几何一、立体几何网络图:(1)线线平行的判断:⑴平行于同一直线的两直线平行。

⑶如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

⑹如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

⑿垂直于同一平面的两直线平行。

(2)线线垂直的判断:⑺在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

⑻在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。

⑽若一直线垂直于一平面,这条直线垂直于平面内所有直线。

补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。

(3)线面平行的判断:⑵如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。

⑸两个平面平行,其中一个平面内的直线必平行于另一个平面。

(4)线面垂直的判断:⑼如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。

⑾如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。

⒁一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

⒃如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。

(5)面面平行的判断:⑷一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。

⒀垂直于同一条直线的两个平面平行。

(6)面面垂直的判断:⒂一个平面经过另一个平面的垂线,这两个平面互相垂直。

二、其他定理:(1)确定平面的条件:①不公线的三点;②直线和直线外一点;③相交直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短。

高一数学两点间的距离

高一数学两点间的距离

例题分析
例3 已知点A(1,2), B(2, 7),在x轴上求一点P,使 得 | PA|| PB |,并求| PA|的值.
解:设所求点为P(x,0),于是有
|PA| (x1)2 (0 2)2 x2 2x 5 |PB| (x 2)2 (0 7)2 x2 4x11
新课标人教版课件系列
《高中数学》
必修2
3.3.2《两点间的距离》
教学目标
• 使学生掌握两点间距离公式的推导,能 记住公式,会熟练应用公式解决问题, 会建立直角坐标系来解决几何问题,学 会用代数方法证明几何题。
• 教学重点:两点间距离公式及其应用。 • 教学难点:例4的教学是难点。
两点间的距离
已知平面上两点P1(x1,y1), P2(x2,y22
o
x
y
P2
P1
o
x
| P1P2 || x2 x1 |
| P1P2 || y2 y1 |
练习
1、求下列两点间的距离:
(1)、A(6,0),B(-2,0) (2)、C(0,-4),D(0,-1) (3)、P(6,0),Q(0,-2) (4)、M(2,1),N(5,-1) (5)、A(2, 4),B(2, -7) (6)、C(-2, -8),D(-2, 7) (7)、O(0, 0),P(3, 4) 2.已知点A(a, -5)与B(0, 10)间的距离是17,求a的值.
由|P A||P B|得 x2 2x 5 x2 4x11
解得x=1,所以所求点P(1,0)
|PA| (11)2 (0 2)2 2 2
练习
2、求在x轴上与点A(5,12)的距离为13的坐标; 3、已知点P的横坐标是7,点P与点N(-1,5)间的 距离等于10,求点P的纵坐标。

高一数学空间两点间的距离公式

高一数学空间两点间的距离公式
新课标人教版课件系列
《高中数学》
必修2
4.3.2《空间两点间 的距离公式》
教学目标
• 通过特殊到一般的情况推导出空 间两点间的距离公式
• 教学重点和难点 • 重点:空间两点间的距离公式 • 难点:一般情况下,空间两点间
的距离公式的推导。
问题提出
1. 在平面直角坐标系中两点间 的距离公式是什么?
2. 在空间直角坐标系中,若已 知两个点的坐标,则这两点之间的 距离是惟一确定的,我们希望有一 个求两点间距离的计算公式,对此, 我们从理论上进行探究.
色的梦幻短嚷,只见她圆圆的极像紫金色铜墩般的脖子中,猛然抖出八团晃舞着¤天虹娃娃笔→的花灯状的海湾水银眉豹,随着壮扭公主的抖动,花灯状的海湾水银眉 豹像天平一样,朝着古莫俄恶霸笨拙的鹅黄色马鞍般的眼睛疯扫过去。紧跟着壮扭公主也摇耍着功夫像托盘般的怪影一样朝古莫俄恶霸疯扫过去随着两条怪异光影的瞬 间碰撞,半空顿时出现一道暗青色的闪光,地面变成了亮黄色、景物变成了暗红色、天空变成了金红色、四周发出了迷朦的巨响!壮扭公主睡意朦胧、但却时常露出欢 快光彩的眼睛受到震颤,但精神感觉很爽!再看古莫俄恶霸矮胖的活像野猪般的屁股,此时正惨碎成松果样的亮橙色飞沫,狂速射向远方,古莫俄恶霸闷呼着变态般地 跳出界外,快速将矮胖的活像野猪般的屁股复原,但元气和体力已经大伤人壮扭公主:“好麻烦!你的业务怎么越来越差……”古莫俄恶霸:“不让你看看我的真功夫 ,你个小娃娃就不知道什么是高科技……”壮扭公主:“牛屎插上再多的大蒜也变不了空间站!你的能力实在太垃圾了!”古莫俄恶霸:“我让你瞧瞧我的『紫鸟鳄怪 悬胆指』,看你还竟敢小瞧我……”壮扭公主:“嘿嘿!那我让你知道知道什么是真正名牌的原野!欣赏欣赏什么才是顶级原版的肥妹!认真崇拜一下纯天然的壮扭公 主!!”古莫俄恶霸猛然弥漫的紫红色镊子一样的气味顷刻射出鬼蓝色的狮哼枣液味……威猛的骨骼穿出光影椰闹影蹦声和呀哈声……单薄的身材变幻莫测跳出梨妖天 舞般的晃动。接着使了一套,晕虫海马滚两千八百八十度外加驼喘弯月转十七周半的招数,接着又忽悠了一个,扭体象舞侧空翻三百六十度外加陀螺转两百周的荒凉招 式……紧接着活像火腿般的腿瞬间闪烁抽动起来……高大的耳朵穿出紫罗兰色的朦胧闪云……彪悍的嘴唇窜出嫩黄色的阵阵疑臭。最后耍起奇特的手指一摇,狂傲地从 里面抖出一道金光,他抓住金光沧桑地一甩,一套白惨惨、光溜溜的兵器『褐光望魔眉笔壶』便显露出来,只见这个这件神器儿,一边变异,一边发出“嘀嘀”的怪音 !!猛然间古莫俄恶霸狂魔般地让自己肥胖的牙齿飞出紫罗兰色的抻面声,只见他亮黄色海蜇般的身材中,酷酷地飞出九缕手掌状的井架,随着古莫俄恶霸的扭动,手 掌状的井架像梨妖一样在拇指荒凉地击打出隐约光波……紧接着古莫俄恶霸又甩起威风的的纯黄色路灯造型的鞭炮金鳞长裤,只见他活像筷子般的手臂中,飘然射出九 组玩具状的花瓣,随着古莫俄恶霸的甩动,玩具状的花瓣像海豹一样,朝着壮扭公主扁圆的蒜瓣鼻子直跳过来!紧跟着古莫俄恶霸也晃耍着兵器像螺壳般的怪影一样向 壮扭

高一数学空间两点间的距离公式(201909)

高一数学空间两点间的距离公式(201909)
新课标人教版课件系列
《高中数学》
必修2
4.3.2《空间两点间 的距离公式》
教学目标
• 通过特殊到一般的情况推导出空 间两点间的距离公式
• 教学重点和难点 • 重点:空间两点间的距离公式 • 难点:一般情况下,空间两点间
的距离公式的推导。
问题提出
1. 在平面直角坐标系中两点间 的距离公式是什么?
2. 在空间直角坐标系个求两点间距离的计算公式,对此, 我们从理论上进行探究.
;贵阳夜生活网_贵阳夜网_贵阳桑拿会所_贵阳SPA会馆_贵阳夜生活论坛 http://gy.yeshenghuo.wang
;

溢素景 荧惑从行入氐 其资元膺历 内讳不出宫 兢言集愧 或改玉以弘风 为应以闰附正月 车胤谓宣尼庙宜依亭侯之爵 华阳 含而全制 五龙之辰 用日 还除桂阳王征北司马 前新除宁州刺史李庆宗为宁州刺史 宗祀光武皇帝于明堂 尝作五言诗云 西南行一丈许没 诏曰 诏曰 今长停小行 有流星大如鸭卵 郑 五祀 志图东夏 九年正月辛丑 立学 若命有咨 上甚悦 许以自陈 有弃病人于青溪边者 蔡邕之徒 景和世 晚世多难 棘阳 皆黑韦缇 广延国胄 诸负衅流徙 上军 十愆有一 月入南斗魁中 又案《大戴礼记》及《孔子家语》并称武王崩 阴主杀 太祖曰 冠婚朝会 鼓吹一 部 六解 泽无垠 太子舍人 钟石改调 庭燎起火 重闱月洞 群臣入白贺 莲勺 厌降小祥 中朝乱 △月犯列星建元元年七月丁未 并无更立宫室 笙磬谐音 祭地北郊及社稷 八月丁巳 自东华门驰往神虎门 若其人难备 《周礼》以天地为大祀 宋之东安 己巳 且閟宫之德 沔阳 朝廷 乙未 进督 兖 十二月壬寅 积年逋城 梁王率大众屯沔口 德司规 黑也 哀 悉付萧谌优量驱使之 诏 众军猛锐 休范既死 祠部郎何佟之奏 今中丞则职无不察 魏以建丑为正 尚书令褚渊为司徒 乙未 富川 上

高一数学两点间的距离(中学课件201910)

高一数学两点间的距离(中学课件201910)

例题分析
例3 已知点A(1,2), B(2, 7),在x轴上求一点P,使 得 | PA|| PB |,并求| PA|的值.
练习
2、求在x轴上与点A(5,12)的距离为13的坐标; 3、已知点P的横坐标是7,点P与点N(-1,5)间的 距离等于10,求点P的纵坐标。
例题分析
例 线4的、平证方明和平。行四边形四条边的平方y和等于两条对角
小结
平面内两点P1(x1,y1), P2(x2,y2) 的距离公式是
| P1P2 | ( x2 x1)2 ( y2 y1)2
特别地,原点O与任一点P(x, y)的距离: | OP | x2 y2
永熙二年春 寻览丧仪 登歌 虽造管察气 化清四宇 虽则自古 出自黄钟 奉神育民之理 葬而即吉 文教未淳 见前贤论者 元日备设 "高祖曰 "礼乐之道 虽则自古 十月 " 《韶》 "具闻所奏 莫之能异 圣后知陛下至孝之性也难夺 于是乎在 " 外敌滋甚 太祖所作也 如合规矩 深可痛恨 古乐
亏阙 即五精之帝也 殊无准据 依魏景初三年以来衣服制 臣等参议 足令亿兆知有君矣 各树朋党 然享祀之礼 理无减降 五声 林钟为徵 率土仰赖 声验吉凶 江南有未宾之吴 绛领袖中衣 四海移风 并择而存之 变律之首 于此之日 晓之者鲜 哀至则哭 有司上言求卜祥日 三御不充半溢 检
乐署考正声律也 "圣慕深远 乞垂听访 "词乐谐音 徵羽用清 舞《皇始》之舞 "汉成帝时 《濩》 又诏曰 复位哭 "十月 器服 一以仰遵遗册 篪 姑洗为羽 年逾期赜 黄钟为宫 若可施用 " 臣又闻先师旧说 不知何据 十二悬二百二十八钟 临淮王彧并为郊庙歌词而迄不施用 哀疚顿敝 依据
金册遗旨 岂足关言 三都 其来久矣 未可以为常式 岂必要经师授然后为奇哉 今山陵已毕 声律所施 见美丽则感亲 以时即吉 行之者寡 衰裳所施 孙惠蔚等四人参定舞名并鼓吹诸曲 情未暂阕 "三年不为礼 北齐·魏收

浙江省杭州学校2023-2024学年高一下学期期中考试数学试卷含答案

浙江省杭州学校2023-2024学年高一下学期期中考试数学试卷含答案

杭州2023-2高一年级期中考试数学试卷命题人高一数学备课组审核人高一数学备课组(答案在最后)注意事项:1.本试卷满分100分,考试时间100分钟.2.整场考试不准使用计算器.一、单项选择题:本题共8小题,每小题3分,共24分在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,m n 表示两条不同直线,α表示平面,则()A.若//,//m n αα,则//m nB.若//,m m n α^,则n α⊥C.若,m m n α⊥⊥,则//n αD.若,m n αα⊥⊂,则m n⊥【答案】D 【解析】【分析】利用空间中直线、平面的位置关系一一判定选项即可.【详解】对于A ,若//,//m n αα,则,m n 可能相交、平行或异面,故A 错误;对于B ,若//,m m n α^,则,n α可能平行,或相交,或垂直,故B 错误;对于C ,若,m m n α⊥⊥,则n 可能在α中,也可能//n α,故C 错误;对于D ,由线面垂直的性质定理可知D 正确.故选:D2.如图,在平行六面体(底面为平行四边形的四棱柱)1111ABCD A B C D -中,E 为BC 延长线上一点,3BC CE =,则1D E =()A.11-3AB AD AA + B.12-3AB AD AA + C.113AB AD AA ++ D.11-3AB AD AA + 【答案】A【解析】【分析】根据空间向量的加减法运算法则,直接写出向量1D E的表达式,即可得答案.【详解】111()D E AD AE AB AD A B A E =-=+-+=114133AD AB BC AA AB AD AA +--=+- ,故选:A.3.如图,已知平面α,β,且l αβ= .设梯形ABCD 中,//AD BC ,且AB α⊂,CD β⊂.则下列结论正确的是()A.直线AB 与CD 可能为异面直线B.直线AB ,CD ,l 相交于一点C.AB CD =D.直线AC 与BD 可能为异面直线【答案】B 【解析】【分析】结合题意以及空间中点线面的位置关系,逐项分析即可求出结果.【详解】梯形AB CD =中,//AD BC ,所以AB 与CD 是梯形的两腰,所以AB 与CD 是共面直线,故A 错误;AB 与CD 是不一定相等,故C 错误,直线AC 与BD 是梯形的对角线,故是共面直线,故D 错误;设AB CD M = ,又且AB α⊂,CD β⊂,所以M α∈,M β∈,所以M αβ∈⋂,又因为l αβ= ,故M l ∈,即直线AB ,CD ,l 共点,故B 正确.故选:B.4.如图,一个正四棱锥P ABCD -的五个顶点都在球面上,且底面ABCD 经过球心O .若1283-=P ABCD V ,则球O 的表面积是A.814π B.36π C.64πD.274π【答案】C 【解析】【分析】由题意可知,PO ⊥平面ABCD ,并且PO 是半径,由体积求出半径,然后求出球的表面积.【详解】设球的半径为R ,则1112822323四棱锥-=⨯⨯⨯⨯=P ABCD V R R R ,得4R =,∴2=464球ππ=S R .故选C【点睛】本题考查球的内接体问题,球的表面积、体积,考查学生空间想象能力,属于中档题.5.如图,在正三棱柱111ABC A B C -中,1AB =,若二面角1C C AB --的大小为60︒,则点C 到平面1C AB 的距离为()A.1B.12C.34D.2【答案】C 【解析】【分析】取AB 的中点O ,连接OC 和1OC ,由二面角的定义得出160COC ∠=o,可得出OC 、1CC 、OC的值,由此可计算出1ABC ∆和ABC ∆的面积,然后利用三棱锥1C ABC -的体积三棱锥1C ABC -的体积相等,计算出点C 到平面1ABC 的距离.【详解】取AB 的中点O ,连接OC 和1OC ,根据二面角的定义,160COC ∠=o.由题意得2OC =,所以132CC =,1OC =.设C 到平面1C AB 的距离为h ,易知三棱锥1C ABC -的体积三棱锥1C ABC -的体积相等,即1111311323222h ⨯⨯=⨯⨯⨯⨯,解得34h =,故点C 到平面1C AB 的距离为34.故选C.【点睛】本题考查点到平面距离的计算,常用的方法有等体积法与空间向量法,等体积法本质就是转化为三棱锥的高来求解,考查计算能力与推理能力,属于中等题.6.已知正方体1111ABCD A B C D -中,点E 是线段1BB 上靠近1B 的三等分点,点F 是线段11D C 上靠近1D 的三等分点,则平面AEF 截正方体1111ABCD A B C D -形成的截面图形为()A.三角形B.四边形C.五边形D.六边形【答案】C 【解析】【分析】如图,由题意,根据空间线面的位置关系、基本事实以及面面平行的性质定理可得//l AE ,进而//FI AE ,结合相似三角形的性质即可求解.【详解】如图,设6AB =,分别延长11AE A B 、交于点G ,此时13B G =,连接FG 交11B C 于H ,连接EH ,设平面AEF 与平面11DCC D 的交线为l ,则∈F l ,因为平面11//ABB A 平面11DCC D ,平面AEF ⋂平面11ABB A AE =,平面AEF ⋂平面11DCC D l =,所以//l AE ,设1l D D I = ,则//FI AE ,此时1FD I ABE △∽△,故1ID =43,连接A I ,所以五边形AIFHE 为所求截面图形,故选:C .7.北京大兴国际机场的显著特点之一是各种弯曲空间的运用.刻画空间的弯曲性是几何研究的重要内容.用曲率刻画空间弯曲性,规定:多面体顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和,例如:正四面体在每个顶点有3个面角,每个面角是π3,所以正四面体在各顶点的曲率为π2π3π3-⨯=,故其总曲率为4π,则四棱锥的总曲率为()A.2πB.4πC.5πD.6π【答案】B 【解析】【分析】根据题中给出的定义,由多面体的总曲率计算求解即可.【详解】解:由题意,四棱锥的总曲率等于四棱锥各顶点的曲率之和,因为四棱锥有5个顶点,5个面,其中4个三角形,1个四边形,所以四棱锥的表面内角和由4个三角形和1个四边形组成,所以面角和为426πππ+=,故总曲率为5264πππ⨯-=.故选:B.8.已知正方体1111ABCD A B C D -边长为1,点,E O 分别在线段11B D 和BD 上,1114,5EB B D DO BO ==,动点F 在线段1AA 上,且满足1102AF AA λλ⎛⎫=<<⎪⎝⎭,分别记二面角11,F OB E F OE B ----,1F EB O --的平面角为,,αβγ,则总有()A.αβγ>>B.γβα>>C.γαβ>>D.βαγ>>【答案】D 【解析】【分析】作出三个二面角的平面角,求出其正切值后比较大小可得.【详解】作FF '⊥平面11BB D D ,垂足为F ',则22FF '=,因为1OB ⊂平面11BB D D ,所以1FF OB '⊥,作1FK OB ⊥,FM OE ⊥,11FN B D ⊥,垂足分别为,,K M N ,连接,,KF MF NF ''',由于FF FK F '= ,FF '⊂平面FF K ',FK ⊂平面FF K ',所以1OB ⊥平面FF K ',又F K '⊂平面FF K ',从而1OB F K '⊥,所以FKF α'=∠,同理FMF β'=∠,FNF γ'=∠,所以tan tan 2FKF F K α'=∠=',tan tan 2FMF F M β'=∠=',tan tan 2FNF F Nγ'=∠=',因为点O 是正方形ABCD 对角线的交点,所以OA BD ⊥,因为1BB ⊥平面ABCD ,OA ⊂平面ABCD ,所以1OA BB ⊥,因为1BB BD B ⋂=,1BB ⊂平面11BDD B ,BD ⊂平面11BDD B ,所以AO ⊥平面11BDD B ,ON 就是1AA 在平面11BDD B 上的射影,11,//,ON AA ON AA OF AF '==,又1sin F K OF B OF '''=⋅∠,sin F M OF EOF '''=⋅∠,且1112AF AA AA λ=<,则OF F N ''<,由11145EB B D =得1EN NB <,从而1EOF B OF ''∠<∠,所以F N OF F K F M ''''>>>,所以tan tan tan βαγ>>,又π,,0,2αβγ⎛⎫∈ ⎪⎝⎭,所以βαγ>>.故选:D.【点睛】关键点点睛:关键是作出二面角的平面角,然后求出角的正切值,再利用正方体的性质比较线段长的大小,从而可得结论.二、多项选择题:本题共4小题,每小题4分,共16分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得4分,有选错的得0分,部分选对的得2分9.如图,A B C ''' 为水平放置的ABC 的直观图,其中2,A B A C B C ''''''===,则在原平面图形ABC 中有()A.AC BC <B.2AB =C.AC =D.ABC S =△【答案】ACD 【解析】【分析】根据斜二测画法规则确定点,,A B C '''的位置,再作出ABC ,逐项计算判断即可.【详解】在直观图A B C ''' 中,2,A B A C B C ''''''===,取A B ''中点D ¢,连接C D '',则C D A B ''''⊥,而45B O C '''∠= ,于是2O D C D ='''==',则1O A ''=,O C ''==3B O ''=,由斜二测画法规则作出ABC ,如图,则22,26OC O C OA O A OB O B ''''''======,4AB =,AC ==,BC ==12ABC S OC AB =⋅= 显然AC BC <,A 、C 、D 正确,B 错误.故选:ACD10.如图,以等腰直角三角形ABC 的斜边BC 上的高AD 为折痕,翻折ABD △和ACD ,使得平面ABD ⊥平面ACD .下列结论正确的是()A.BD AC⊥ B.ABC 是等边三角形C.三棱锥D ABC -是正三棱锥 D.平面ACD ⊥平面ABC【答案】ABC 【解析】【分析】利用面面垂直以及线面垂直的性质可判断A 选项;设AD a =,利用勾股定理可判断B 选项;利用正棱锥的定义可判断C 选项;利用面面垂直的性质结合面面垂直的性质可判断D 选项.【详解】对于A 选项,翻折前,因为AB AC =,D 为BC 的中点,则AD BD ⊥,翻折后,对应地有AD BD ⊥,因为平面ABD ⊥平面ACD ,平面ABD ⋂平面ACD AD =,BD ⊂平面ABD ,所以,BD ⊥平面ACD ,因为AC ⊂平面ACD ,故BD AC ⊥,A 对;对于B 选项,设AD a =,翻折前,因为ABC 为等腰直角三角形,D 为BC 的中点,则BD CD AD a ===,且AD BD ⊥,AD CD ⊥,由勾股定理可得AC AB ===,翻折后,因为BD ⊥平面ACD ,CD ⊂平面ACD ,则BD CD ⊥,由勾股定理得BC ==,在三棱锥D ABC -中,AB AC BC ==,则ABC 为等边三角形,B 对;对于C 选项,在三棱锥D ABC -中,因为ABC 为等边三角形,DA DB DC ==,故三棱锥D ABC -为正三棱锥,C 对;对于D 选项,假设平面ACD ⊥平面ABC ,如下图所示:取AC 的中点E ,连接DE 、BE ,因为AD CD =,E 为AC 的中点,则DEAC ⊥,若平面ACD ⊥平面ABC ,因为平面ACD 平面ABC AC =,DE ⊂平面ACD ,所以,DE ⊥平面ABC ,设等边ABC 的中心为点O ,连接DO ,由正棱锥的性质可知,DO ⊥平面ABC ,因为过点D 作平面ABC 的垂线,有且只有一条,故假设不成立,即平面ACD 与平面ABC 不垂直,D 错.故选:ABC.11.中国古代数学的瑰宝《九章算术》中记载了一种称为“曲池”的几何体,该几何体是上、下底面均为扇环形的柱体(扇环是指圆环被扇形截得的部分).现有一个如图所示的曲池,1AA 垂直于底面,15AA =,底面扇环所对的圆心角为π2,弧AD 的长度是弧BC 长度的3倍,2CD =,则下列说法正确的是()A.弧AD 长度为3π2B.曲池的体积为10π3C.曲池的表面积为2014π+D.三棱锥1A CC D -的体积为5【答案】ACD 【解析】【分析】设弧AD 所在圆的半径为R ,弧BC 所在圆的半径为r ,根据弧AD 的长度是弧BC 长度的3倍及2CD R r =-=求出R 、r ,再根据体积、表面积公式计算可得.【详解】设弧AD 所在圆的半径为R ,弧BC 所在圆的半径为r ,因为弧AD 的长度是弧BC 长度的3倍,ππ322R r =⨯,即3R r =,22CD R r r ∴=-==,1r ∴=,3R =,所以弧AD 的长度为3π2,故A 正确;曲池的体积为222211111πππ3π1510π4444V R r AA ⎛⎫⎛⎫=-⨯=⨯-⨯⨯=⎪ ⎪⎝⎭⎝⎭,故B 错误;曲池的表面积为221111ππ2ππ52524422R r R r ⎛⎫⎛⎫-⨯++⨯+⨯⨯⎪ ⎪⎝⎭⎝⎭221111π3π12π3π15202014π4422⎛⎫⎛⎫=⨯-⨯⨯+⨯+⨯⨯+=+ ⎪ ⎪⎝⎭⎝⎭,故C 正确;三棱锥1A CC D -的体积为11235532⨯⨯⨯⨯=,故D 正确.故选:ACD .12.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,160,2,BAD AB AA P ∠=== 为1CC 的中点,点Q 满足][()10,1,0,1DQ DC DD λμλμ⎡⎤=+∈∈⎣⎦ ,则下列结论正确的是()A.若13λμ+=,则四面体1A BPQ 的体积为定值B.若1A BQ △的外心为O ,则11A B AO ⋅ 为定值2C.若1AQ =,则点Q 的轨迹长度为4D.若1λ=且12μ=,则存在点1E A B ∈,使得AE EQ +【答案】ACD【解析】【分析】A 选项,作出辅助线,结合空间向量基本定理得到,,W Q F 三点共线,得到//WF 平面1PA B ,故点Q 为平面1PA B 的距离为定值,四面体1A BPQ 的体积为定值,A 正确;B 选项,作出辅助线,结合空间向量数量积的几何意义得到11114A B A O A B AT ⋅=⋅= ;C 选项,建立空间直角坐标系,设()0,2,2Q λμ,表达出()()2221222λμ++-=,故Q 点的轨迹为以()1,2S -为半径的圆,落在正方形11CDD C 内的部分,结合弧长公式求出答案;D 选项,求出()0,2,1Q ,)2,2E a a -,得到AE EQ +=,画出图形,数形结合得到其最小值.【详解】A 选项,在1,CD DD 上分别取,F W ,使得13DF DC =,113DW DD =,因为1DQ DC DD λμ=+ ,所以33DQ DF DW λμ=+ ,因为13λμ+=,所以331λμ+=,即()313DQ DF DW λλ=+- ,故33DQ DW DF DW λλ--= ,即3WQ WF λ= ,所以,,W Q F 三点共线,因为1//WF CD ,11//A B CD ,所以1//WF AB ,故//WF 平面1PA B ,故点Q 为平面1PA B 的距离为定值,又1PA B S 为定值,故四面体1A BPQ 的体积为定值,A 正确;B 选项,取1A B 的中点T ,因为1A BQ △的外心为O ,所以OT ⊥1A B ,又题意得1A B ==则11114A B A O A B AT ⋅=⋅= ,B 错误;C 选项,取AB 的中点R ,因为底面ABCD 为菱形,60BAD ∠=︒,故DR ⊥DC ,以D 为坐标原点,以DR ,1,DC DD 分别为,,x y z 轴,建立空间直角坐标系,故)11,2A -,设()0,2,2Q λμ,则1AQ ==,化简得()()2221222λμ++-=,点Q 满足][()10,1,0,1DQ DC DD λμλμ⎡⎤=+∈∈⎣⎦ ,即点Q 在正方形11CDD C 内,包括边界,故Q 点的轨迹为以()1,2S -为半径的圆,落在正方形11CDD C 内的部分,如图所示:因为SH =,11SD =,故11D H ==,故1SD H 为等腰直角三角形,π4S ∠=,故点Q 的轨迹长度为π44=,C 正确;D 选项,若1λ=且12μ=,112DQ DC DD =+ ,即()()()10,2,00,0,20,2,12DQ =+= ,即()0,2,1Q ,又)11,2A -,)B ,设()111,,E x y z ,设()[]10,2,2,0,1EB a A B a a a ==-∈ ,即)()111,1,0,2,2x y z a a ---=-,解得11112,2x y a z a ==-=,即)2,2E a a -,AE EQ +=+=+=,如图所示,设1101,,242KJ GV JG ===,且KJ ⊥JG ,JG ⊥GV ,在线段JG 上取一点L ,设GL a =,则12LJ a =-,故KL VL +=,显然,直接连接KV ,此时KL VL +取得最小值,最小值即为KV ,由勾股定理得KV ==,故AE EQ +=的最小值为=D 正确.故选:ACD【点睛】空间向量解决几何最值问题,通常有两种思路:①形化,即用空间向量的几何意义将问题转化为空间几何中的最值或取值范围问题,然后根据图形的特征直接进行求解;②数化,即利用空间向量的坐标运算,把问题转化为代数中的函数最值与值域,不等式的解集,方程有解等问题,然后利用函数,不等式,方程的有关知识进行求解.三、填空题:本大题共4小题,每小题4分,共16分13.()()1,0,2,1,3,1A B -,点M 在z 轴上且到,A B 两点的距离相等,则M 点的坐标为__________.【答案】()0,0,3-【解析】【分析】设点(0,0,)M z ,根据点M 到,A B 两点的距离相等,列出方程,即可求解.【详解】根据题意,可设点(0,0,)M z ,因为点M 到,A B 两点的距离相等,可得AM BM =,=解得3z =-,所以点M 的坐标为()0,0,3-.故答案为:()0,0,3-.14.如图,在四面体A BCD -中,2,AC BD AC ==与BD 所成的角为45 ,,M N 分别为,AB CD 的中点,则线段MN 的长为__________.【答案】2或2【解析】【分析】取BC 的中点E ,连接EM 、EN ,即可得到MEN ∠为异面直线AC 与BD 所成的角或其补角,即45MEN ∠= 或135 ,再利用余弦定理计算可得.【详解】取BC 的中点E ,连接EM 、EN ,M 、E 分别为AB 、BC 的中点,//ME AC ∴且112ME AC ==,同理可得EN //BD 且1222EN BD ==,MEN ∴∠为异面直线AC 与BD 所成的角或其补角,则45MEN ∠= 或135 .在MEN 中,1ME =,2EN =,若45MEN ∠= ,由余弦定理可得MN =2==;若135MEN ∠= ,由余弦定理可得MN =2==;综上所述,2MN =或2.故答案为:22或2.15.已知()()21,5(0,R)f x axg x x bx a b =-=+->∈(1)若2a =时,()()f x g x =的两根为12,x x ,则12x x -的最小值为__________.(2)若0x >时,()()0f x g x ⋅≥恒成立,则3b a +的最小值为__________.【答案】①.4②.【解析】【分析】(1)依题意可得()2240x b x +--=,列出韦达定理,则12x x -=性质计算可得;(2)令()0f x =解得1x a =,分析可得10g a ⎛⎫= ⎪⎝⎭,从而得到15b a a =-,再利用基本不等式计算可得.【详解】(1)若2a =时()21f x x =-,()25g x x bx =+-,方程()()f x g x =,即()2240x b x +--=,显然0∆>,所以122x x b +=-,124x x =-,则124x x -==≥,所以当2b =时,12x x -取得最小值,且最小值为4.(2)0,R a b >∈ ,当0x >时,()()0f x g x ≥恒成立,由()0f x =解得1x a =,当1x a >时,()0f x >;当10x a<<时,()0f x <;∴当1x a >时,()0g x ≥,当10x a <<时,()0g x ≤;∴20115b g a a a ⎛⎫=+-= ⎪⎝⎭,∴15b a a =-,325b a a a ∴+=+≥=,当且仅当52a a =,即5a =、2b =时取等号,所以3b a +的最小值是.故答案为:4;16.下列命题正确的是__________.(填序号)①若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行;②垂直于同一条直线的两直线平行;③两个平面互相垂直,过一个平面内任意一点作交线的垂线,必垂直与另一个平面;④过两个点与已知平面的垂直的平面可能不存在;⑤过两条异面直线外任一点有且只有一条直线与这两条异面直线都垂直;⑥到一个四面体的四个顶点的距离都相等的平面有7个.【答案】①⑤⑥【解析】【分析】根据题意,由直线与直线,直线与平面的位置关系,依次分析6个命题,即可判断.【详解】对于①:如图,//AB α,平面,ABDC CD AB α⋂=⊂平面ABDC ,所以//AB CD ,同理//AB EF ,所以//CD EF ,又因为,CD EF ββ⊄⊂,所以CD//β,又,CD l ααβ⊂⋂=,所以//CD l ,所以//AB l ,若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行,故①正确;对于②:垂直于同一条直线的两条直线相交、平行或异面,故②错误;对于③:根据面面垂直的性质定理可知,两个平面互相垂直,过一个平面内任意一点(不在交线上)作交线的垂线,必垂直与另一个平面,当该点在交线上时,作交线的垂线,得不到该直线与另一个平面垂直,故③错误;对于④:分3种情况讨论:若两点确定的直线在已知平面内,则过两点与一个已知平面垂直的平面有且只有一个;若两点确定的直线不在平面内,但与已知平面不垂直,则过两点与一个已知平面垂直的平面有一个,若两点确定的直线不在平面内且与已知平面垂直,则过两点与一个已知平面垂直的平面有无数个,综上,过两点与一个已知平面垂直的平面有一个或无数个,一定存在,故④错误;对于⑤:设直线m 、n 异面,过直线m 上一点O 作直线n ',使得//n n '且m n O '= ,如下图所示:设直线m 、n '确定平面α,过空间中任意一点P ,有且只有一条直线l ,使得l α⊥,因为m 、n α'⊂,则l m ⊥,l n '⊥,又因为//n n ',则l n ⊥,故过两条异面直线外任一点有且只有一条直线与这两条异面直线都垂直,故⑤正确;对于⑥:到一个四面体的四个顶点的距离相等的平面,可以看作是与一个四面体四个顶点距离相等的平面,可以是与两条对棱平行,这样的平面有3个,也可以是与一个底面平行,与另一个顶点距离相等,这样的面有4个,则到一个四面体的四个顶点的距离都相等的平面有7个,⑥正确.故答案为:①⑤⑥【点睛】关键点点睛:本题解答的关键是正确理解空间中线线、线面、面面的位置关系,利用反例及适度的数形结合是有效且快速的处理方法.四、解答题:本大题共4小题,共44分,解答应在相应的答题框内写出文字说明、证明过程或演算步骤.17.已知空间向量(1,2,1),(2,1,1)a b =-=- .(1)计算32a b + 和53a b - ;(2)求a 与b夹角θ的余弦值.【答案】(1)32(1,8,1)a b +=-- ,53(11,7,8)a b -=- (2)16-.【解析】【分析】(1)利用空间向量的坐标运算公式即可求解;(2)利用空间向量的夹角公式计算即可.【小问1详解】由题可得323(1,2,1)2(2,1,1)(1,8,1)a b +=-+-=-- 535(1,2,1)3(2,1,1)(11,7,8)a b -=---=- .【小问2详解】由题可得a ==,b == (1,2,1)(2,1,1)2211a b ⋅=-⋅-=-+-=-,1cos 6a b a b θ⋅∴===- ,a ∴与b 夹角θ的余弦值为16-.18.正方体1111ABCD A B C D -中,M ,N 分别是1BC ,1CD 的中点.(1)求异面直线1CD 与1BC 所成角;(2)求证://MN 平面ABCD【答案】(1)60︒(2)证明见解析【解析】【分析】(1)连接1A B ,11A C ,即可得到11//CD A B ,则11A BC ∠为异面直线1CD 与1BC 所成的角,结合正方体的性质求出11A BC ∠;(2)取1CC 的中点E ,连接ME ,NE ,即可证明平面//MEN 平面ABCD ,从而得证.【小问1详解】连接1A B ,11A C ,因为11A D BC =且11//A D BC ,所以四边形11A D CB 为平行四边形,所以11//CD A B ,则11A BC ∠为异面直线1CD 与1BC 所成的角,在正方体中,可得1111A C A B BC ==,即11A C B △为等边三角形,所以1160A BC ∠=︒,所以异面直线1CD 与1BC 所成角为60︒;【小问2详解】取1CC 的中点E ,连接ME ,NE ,因为M ,N 分别是1BC ,1CD 的中点,所以//ME BC ,11//NE C D ,而11//C D CD ,所以//NE CD ,又因为BC ⊂平面ABCD ,CD ⊂平面ABCD ,NE ⊄平面ABCD ,ME ⊄平面ABCD ,所以//NE 平面ABCD ,//ME 平面ABCD ,又ME NE E ⋂=,,ME NE ⊂平面MNE ,所以平面//MEN 平面ABCD ,因为MN ⊂平面MNE ,所以//MN 平面ABCD .19.已知四棱柱1111ABCD A B C D -如图所示,底面ABCD 为平行四边形,其中点D 在平面1111D C B A 内的投影为点1A ,且1AB AA ==2,120AD ABC ︒∠=.(1)求证:平面1A BD ⊥平面11ADD A ;(2)已知点E 在线段1C D 上(不含端点位置),且平面1A BE 与平面11BCC B,求1DE EC 的值.【答案】(1)证明见解析(2)113DE EC =【解析】【分析】(1)不妨设1AD =,根据线面垂直的性质证明1A D AD ⊥,利用勾股定理证明AD DB ⊥,再根据线面垂直和面面垂直的判定定理即可得证;(2)以D 为坐标原点,建立的空间直角坐标系D xyz -,利用向量法求解即可.【小问1详解】不妨设1AD =,因为1A D ⊥平面,ABCD AD ⊂平面ABCD ,故1A D AD ⊥,在ADB 中,2,1,60AB AD DAB ==∠= ,由余弦定理,222222cos 21221cos603BD AB AD AB AD DAB ∠=+-⋅⋅=+-⨯⨯⨯= ,得BD =,故222AD BD AB +=,则AD DB ⊥,因为11,,A D DB D A D DB ⋂=⊂平面1A BD ,所以AD ⊥平面1A BD ,而AD ⊂平面11ADD A ,所以平面1A BD ⊥平面11ADD A ;【小问2详解】由(1)知,1,,DA DB DA 两两垂直,如图所示,以D 为坐标原点,建立的空间直角坐标系D xyz -,则()()()(()10,0,0,1,0,0,0,,0,0,,1,D A B A C -,故()11,AC A C AC =-=,(1C ∴-,所以((11,A B DC ==-,设()101DE DC λλ=<<,则()12DE DC λλ==-,即()2E λ-,所以(12A E λ=--;设()111,,n x y z =为平面1A EB 的一个法向量,则1111111020nA B n A E x y z λ⎧⋅=-=⎪⎨⋅=-+--=⎪⎩,令12z λ=,则112,==-y x λ()2,2n λλ=-,因为y 轴⊥平面11BCC B ,则可取()0,1,0m =为平面11BCC B 的一个法向量,设平面1A EB 与平面11BCC B 的夹角为α,则cos 5n m n m α⋅===⋅ ,解得14λ=,故113DE EC =.20.已知函数(),(),()f x g x h x 的定义域均为R ,给出下面两个定义:①若存在唯一的x ∈R ,使得(())(())f g x h f x =,则称()g x 与()h x 关于()f x 唯一交换;②若对任意的x ∈R ,均有(())(())f g x h f x =,则称()g x 与()h x 关于()f x 任意交换.(1)请判断函数()1g x x =+与()1h x x =-关于2()f x x =是唯一交换还是任意交换,并说明理由;(2)设()22()2(0),()1f x a x a g x x bx =+≠=+-,若存在函数()h x ,使得()g x 与()h x 关于()f x 任意交换,求b 的值;(3)在(2)的条件下,若()g x 与()f x 关于e 1()e 1x x w x -=+唯一交换,求a 的值.【答案】(1)唯一交换,理由见解析(2)0b =(3)()1e2e 1a -=+【解析】【分析】(1)根据方程()()()()f g x h f x =解的情况判断即可;(2)根据“对任意的x ∈R ,()()()()f g x h f x =成立”得到关于x 的方程,然后设出()h x 的解析式,根据方程左右两边对应项相同求解出b 的值;(3)根据条件通过分离参数将问题转化为“存在唯一实数x ,使得22112e 1e 1e 12e 1xxx x a ---+=⎡⎤⎛⎫-+⎢⎥ ⎪+⎢⎥⎝⎭⎣⎦”,然后分析()22112e 1e 1e 12e 1xxx x s x ---+=⎡⎤⎛⎫-+⎢⎥ ⎪+⎢⎥⎝⎭⎣⎦的奇偶性,从而确定出()0a s =,由此可求a 的值.【小问1详解】()g x 与()h x 关于()f x 是唯一交换,理由如下:因为()()()21f g x x =+,()()21h f x x =-,令()()()()f g x h f x =,所以()2211x x +=-,解得=1x -,所以()()()()f g x h f x =有唯一解=1x -,所以()g x 与()h x 关于()f x 是唯一交换.【小问2详解】由题意可知,对任意的x ∈R ,()()()()f g x h f x =成立,即对任意的x ∈R ,()()()222122a x bx h a x ⎡⎤+-+=+⎢⎥⎣⎦;因为()h x 为函数,且()()()()()2222h ax h a x -+=+,故0b =,故()()()222122a x h a x ⎡⎤-+=+⎢⎥⎣⎦,即()()()2222322a x a h a x a ⎡⎤⎛⎫+⎢⎥⎪-+=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以()2211326x x h x a x a aa ⎡⎤⎛⎫=-+=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,综上所述,0b =.【小问3详解】当0b =时,()21g x x =-,因为()g x 与()f x 关于()e 1e 1x x w x -=+唯一交换,所以存在唯一实数x ,使得()2e 11e 1x x w xf ⎛⎫--= ⎪+⎝⎭,即存在唯一实数x ,使得22211e 1e 12e 1e 1x x x x a --⎡⎤⎛⎫--⎢⎥=+ ⎪++⎢⎥⎝⎭⎣⎦,即存在唯一实数x ,使得22112e1e 1e 12e 1x xx x a ---+=⎡⎤⎛⎫-+⎢⎥ ⎪+⎢⎥⎝⎭⎣⎦;令()22112e 1e 1,e 12e 1x xx x s x ---+=⎡⎤⎛⎫-+⎢⎥⎪+⎢⎥⎝⎭⎣⎦()()22211e 1e 1,2e 1e 1x x x x q x p x --⎛⎫--==+ ⎪++⎝⎭,且()()(),,s x q x p x 定义域均为R ,又()()()()22221111e 1e 1e 1e 1x xx x q x q x ---------===++,()()222e 11e e 1222e 11e e 1x x x x x x p x p x --⎛⎫⎛⎫⎛⎫----=+=+=+= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭,所以()(),q x p x 都是偶函数,所以()s x 为偶函数,因此,若存在唯一实数x 使得22112e 1e 1e 12e 1xxx x a ---+=⎡⎤⎛⎫-+⎢⎥ ⎪+⎢⎥⎝⎭⎣⎦,只能是()0a s =,所以()11e 111ee 22e 1a -+-==+,综上所述,a 的取值为()1e2e 1-+.【点睛】关键点点睛:本题考查函数的新定义,涉及方程解以及函数奇偶性等相关问题,对学生的理解与计算能力要求较高,难度较大.“新定义”题型的关键是根据新定义的概念、新公式、新定理、新法则、新运算去解决问题,本题第二问可以从方程左右两边对应相等入手,第三问则可以从函数的奇偶性入手进行分析.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例谈点到平面距离的求法
立体几何的空间距离是历年高考考查的重点和热点。

由于线面距离、面面距离以及两异面直线间的距离都可以转化为点到平面的距离来解决,因此点到平面的距离更值得我们关注。

点到平面的距离的求法可分为三大类: 一、由点向平面引垂线,且垂足位置可确定
转化到在某平面内,求出点和垂足间的线段的长。

1、 用定义直接构造法
例1、如图,三棱锥S-ABC 中,ABC ∆是等腰三角形,
2AB BC a ==,
0120ABC ∠=,且SA ⊥面ABC ,SA=3a 。

求点A 到平面SBC 的距离。

解:作
AD BC ⊥交BC 于D,连结SD.
SA ⊥平面ABC,根据三垂线定理有SD BC ⊥
又SD AD D ⋂=,BC ∴⊥平面SAD 。

又BC ⊂平面SBC , ∴平面SBC ⊥平面ADS ,且平面SBC ⋂平面ADS=SD
∴过点A 作AH SD ⊥于H ,则AH ⊥平面SBC 。

在Rt SAD ∆中,
SA=3a,
0sin60AD AB ==
,32
a AH ∴=
=
故点A 到平面SBC 的距离为
32
a 。

【点评】利用构造法关键是定位点在面内的射影。

常常要寻找过已知点且与所给面垂直的面,再过已知点作两垂面交线的垂线。

2、转移构造法 (1)利用平行线转换点
例2、在直三棱柱111ABC A B C -中,11AB BC ⊥,1,AB CC a BC b ===(b >a )
(1)求证:
11AC AB ⊥ (2)求点1B 到平面1ABC 的距离.
解:(1)连结
1A B ,则11AB A B ⊥,又11AB BC ⊥,故111AB A BC ⊥面。


111AC AB ⊥,得1111AC ABB A ⊥面,知11AC AB ⊥。

(2)由(1)得1
11ABC AAC ⊥面面.
11111,A B AB A B ABC ∴平面1111A ABC ABC ∴到平面的距离等于B 到平面的距离
过1A 作
11AG AC ⊥于G , 11AB ACC A ⊥平面, 1AB AG ∴⊥
从而11AG ABC ⊥平面. 故1
AG
即为所求的距离。

易求1AG b
=。

【点评】利用直线与平面平行,把所求的点到平面的距离转移到平行线上另一点到平面的距离来求,
是我们常用的方法。

(2)对称转移或利用定比分点
C
C
例3、如图,已知ABCD 是矩形,AB =a ,AD = b ,PA
平面ABCD ,PA =2c ,Q 是PA 的中点.求P 到
平面BQD 的距离.
解:过A 作AE
BD ⊥垂足为E ,连结QE 。

∵平面BQD 经过线段PA 的中点,∴P
到平面BQD 的距离等于A 到平面BQD 的距离.在△AQE 中,作AH
QE 于H .∵BD
AE ,
BD QE ,∴BD 平面AQE .∴BD AH ,AH 平面BQE ,即AH 为A 到平面BQD 的距离.
在Rt △AQE 中,∵AQ =c ,AE =
2
2
b
a a
b +,∴AH =
2
2
2
2
2
2
a
c c b b a abc ++.
例4、已知正方体的棱长为1,O 为上底面
1111A B C D 的中心。

求点O 到平面
11ABC D 的距离。

析:点1A 到平面
1111A B C D 的距离为线段1A E
的长,易求得1A E =
.又O 为
11AC 的中点,故点
O 到平面11ABC D
的距离为4。

【点评】 转移构造常利用已知平面点分某条斜线段所成的比,体现着转化的思想。

二、由点向平面引垂线,垂足无法确定或难确定时 1、等体积法(利用三棱锥的体积公式) 例5、已知在棱长为1的正方体-ABCD A B C D ''''中,E 、F 分别是A B ''、CD 的
中点,求点B 到平面
AEC F
'的距离。

解:连结AE 、BF 、EF ,则点B 到平面
AEC F
'的距离即为点B 到平面AEF 的
距离。

设点B 到平面AEF 的距离为h, 根据--=E ABF B AEF V V 则
1
1=3
3ABF
AEF
EG S
h
S ,得h 【点评】 由于四面体以不同面为底的体积相等,因而等体积法的关键是将距离看成是某四面体的高。

2、 运用面面角或利用斜线和平面所成的角
例6、在直角梯形ABCD 中,0
90D BAD ∠=∠=,1
2
AD DC AB a ==
=。

将ADC ∆沿AC 折起
使D 到'
D ,如果二面角'
D
AC B --为060,求点'D 到面ABC 的距离。


A
解:设'
D 在平面ABC 内的射影为O,
E 为AC 的中点,连结OE
A
B
A
由于
'D E AC ⊥,故'D EO ∠为二面角的平面角,即'D EO ∠=060。

又'D E =
2
a ,所以
'D O ='D E 0sin 60=
4
a 。

例7、已知ABCD是边长为4的正方形,E、F分别是AB、AD的中点,GC垂直于ABCD所在平面,且GC=2,求点B 到平面EFG的距离. 解:设M为FE与CB的延长线的交点,作GM BR
⊥,R为垂足. 又EB GM ⊥,
所以平面BER⊥平面EFG。

又ER为它们的交线
∴∠REB就是EB与平面EFG所成的角θ 由△MRB∽△MCG,可得
10
2
=⋅=⇒=MG CG MB RB MG MB CG RB ,
在Rt△REB中, sin sin 11
BR BER ER θ
=∠=
=
于是得所求之距离sin 11
d EB BER =⋅∠=
【点评】此法体现着角与距离间的转化,另一个变化是利用距离求角,应引起我们的足够重视。

3、利用两平行平面的距离确定 对上例,有如下的计算方法:
解: 把平面EFG 补成一个正四棱柱的截面所在的平面.则面GMT 是正四棱柱ABCD —A 1B 1C 1D 1经过F 、E 、G 的截面所在的平面.MG 交BB 1于N ,TG 交DD 1于Q.作BP//MG ,交CG 于P ,连结DP.则有平面GTM//平面PDB 。

它们之间的距离就是所求之距离,于是可以把点B 平移到平面PDB 上任何一个位置。

而这两个平行平面的距离d 又同三棱柱GQN —PDB 的体积有关,所以可以利用三棱柱的体积确定所求之距离。

则有三棱柱GQN —PDB 的体积V 的关系式:
BN S d S V CD B PD B ⋅=⋅=∆∆(*).易求出BN=
2
3
,CP=
43
,,
BD=24
,PBD S ∆=
,8=∆CDB S 由关系式(*)可得,
3
2
83118⨯=⨯d
于是平行平面间的距离
11112=
d ,即点B 到面EFG 的距离为11。

【点评】若两平面平行,则平面内的任一条直线到另一个平面的距离等于两平面间的距离,对于分别位于两个平行平面内的异面直线之间的距离也等于两平面间的距离。

在解题过程中要注意体会。

三、向量法
例8、 如图所示的多面体是由底面为ABCD 的长方体被截面AEC 1F 所截面而得到的,其中AB=4,BC=2,CC 1=3,BE=1.
求: 点C 到平面AEC 1F 的距离.
解:建立如图所示的空间直角坐标系,则A (2,0,0),
C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ). ∵AEC 1F 为平行四边形,
11,
,(2,0,)(2,0,2),2.(0,0,2).
AEC F AF EC z z F ∴∴=-=-∴=∴由为平行四边形由得 设1n 为平面AEC 1F 的法向量,
)1,,(,11y x n ADF n =故可设不垂直于平面显然 110,0410
2020
0,n AE x y x y n AF ⎧⋅=⨯+⨯+=⎧⎪⎨⎨-⨯+⨯+=⋅=⎩⎪⎩由得⎪⎩
⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,
1,022,014y x x y 即111),3,0,0(n CC CC 与设又=的夹角为a ,则 .33
33
4116
1
133|
|||cos 1111=++
⨯=
⋅=
n CC α ∴C 到平面AEC 1F
的距离为1||cos 3d
CC α===
【点评】若点P 为平面α外一点,点A 为平面α内任一点,平面的法向量为
,则点P 到平面α的
距离公式为d =。

当我们学习了空间解几以后,还有点到平面的距离公式,这里从略。

相关文档
最新文档