封闭图形的植树问题
五年级上册数学植树问题(例3) (封闭图形)人教版课件PPT【精品】

果一共有38人,需要并多少张桌子才能坐下?
4×10+2=42(人)
(选自教材P110练习二十四第11题)
(38-2)÷4=9(张)
答:10张桌子并成一排可以坐42人,
如果一共有38人,需要并9张桌子才能坐下。
5、一条项链长60 cm,每隔5 cm有一颗水晶。这条项链上 共有多少颗水晶? (选自教材P110练习二十四第12题)
封闭图形的特点有: (1)无论什么图形,只要起点和终点重合,即首尾相连
就是封闭图形。
(2)观察封闭图形上棵数与间隔数的关系,我们发现: 只要在封闭路线上植树,棵数总是等于间隔数。
正确解答: 因为圆形池塘是封闭图形,最外层的棵数=间隔数 所以 120÷10=12(个)间隔,也就是要栽12棵树。 120÷10=12(棵) 答:一共要栽12棵树。
9.笔直的跑道一旁插着51面小旗,它们的间隔是2m。现 在要改为只插26面小旗(两端的旗子不动),间隔应改 为多少米? (51-1)×2=100(m) 100÷(26-1)=4(m) 答:间隔应改为4m。
10.解下列方程。 16+x=71 x=55
18+7x=39 x =3
3(2x- 4)=9
x =3.5
60÷5=12(颗) 答:这条项链上共有12颗水晶。
6、小区花园是一个长60m、宽40m的长方形。现在要在花园四 周栽树,四个角上都要载,每相邻两棵间隔5m。一共要栽 多少棵树? (选自教材P110练习二十四第13题) (60÷5+1)×2=26(棵) (40÷5-1)×2=14(棵) 26+14=40(棵) 答:一共要栽40棵树。
人教版五年级数学上册第七单元植树问题
第3课时 封闭图形的植树问题 (例3)
1.了解沿封闭图形植树的特征,掌握解决沿封闭图 形植树问题的方法。 (重点)
五年级上7.2封闭图形的植树问题

五年级上7.2封闭图形的植树问题《五年级上 72 封闭图形的植树问题》在我们的日常生活中,植树是一项非常有意义的活动。
而在数学世界里,植树问题也是一个有趣且实用的知识领域。
今天,让我们一起来探索五年级上册 72 节中封闭图形的植树问题。
首先,我们来明确一下什么是封闭图形。
封闭图形就像是一个圆圈,或者是一个长方形、正方形等,它们的首尾是相连的,没有开口。
比如说,一个圆形的花坛,一个正方形的池塘四周,这都属于封闭图形。
那么在封闭图形中植树,又有什么规律和特点呢?我们先来看一个简单的例子。
假设有一个圆形的花坛,周长是 20 米,每隔 5 米种一棵树,那么一共能种多少棵树呢?我们来算一算。
因为是在封闭图形上植树,所以树的数量和间隔的数量是相等的。
这个圆形花坛的周长是 20 米,每隔 5 米一个间隔,那么间隔数就是 20÷5 = 4(个),所以树的数量也是 4 棵。
再比如一个正方形的池塘,边长是 12 米,每隔 3 米种一棵树,四个角都种,一共要种多少棵树呢?我们先算出每条边的间隔数:12÷3 = 4(个)。
因为正方形有四条边,所以总间隔数就是 4×4 = 16(个)。
但是要注意,由于四个角的树都被重复计算了一次,所以实际上树的数量就是 16 4 = 12(棵)。
通过这两个例子,我们可以总结出封闭图形植树问题的公式:植树的棵数=间隔数。
那为什么在封闭图形中,植树的棵数会等于间隔数呢?这其实很好理解。
想象一下我们围着一个圆形的操场跑步,起点和终点是重合的。
在这种情况下,跑过的间隔数和经过的位置数是一样的。
植树也是同样的道理,在封闭图形上,树就相当于跑步时经过的位置,间隔就相当于跑过的距离。
掌握了封闭图形的植树问题,对我们的生活也有很大的帮助呢。
比如说,在规划一个公园的时候,如果要在湖边种一排树,知道了湖的周长和树的间隔距离,就能很快算出需要种多少棵树,从而合理安排预算和人力。
再比如,要在一个圆形的广场周围安装路灯,如果知道了广场的周长和路灯之间的间隔,也能轻松算出需要安装多少盏路灯,让广场在夜晚能够明亮又美观。
植树问题2(封闭图形)

巩固练习
巩固练习 (3)四(2)共有48名同学,他们也在操场上围成了一个正
方形,每边人数相等,四个顶点都站了人,每边站了几个人?
尝试评价
巩固练习
(1)四(1)班的同学在操场上围成了一个正方形,每边各站 12人,四个顶点都站了人,这个班级一共有多少人? (2)四(2)共有48名同学,他们也在操场上围成了一个正 方形,每边人数相等,四个顶点都站了人,每边站了几个人?
巩固练习 (1)四(1)班的同学在操场上围成了一个正方形,每边各
站12人,四个顶点都站了人,这个班级一共有多少人?
(1)在每边种2、3、4、5棵这几种情况中选择 几种来研究。 (2)利用小磁贴摆一摆,数一数,并完成表格。 (3)完成表格后想一想,你们发现了什么?
反馈提炼 每边棵数 每边段数 总棵数 总段数
尝试解决 如果要在正方形的植物园四周种上小树, 每边要种19棵树,四个顶点都要种,一共 要种多少棵树?
Hale Waihona Puke 自学提高植树问题准备问题
在100米的小路的一边,每隔5米种一棵柳树, 起点和终点都栽,一共种了多少棵?
尝试问题 如果要在正方形的植物园四周种上小树, 每边要种19棵树,四个顶点都要种,一共 要种多少棵树?
合作交流
如果要在正方形的植物园四周种上小树, 每边要种19棵树,四个顶点都要种,一共 要种多少棵树? 小组合作要求
《封闭图形植树问题》教案

《封闭图形植树问题》教案《封闭图形植树问题》教案作为一名教学工作者,很有必要精心设计一份教案,借助教案可以更好地组织教学活动。
那要怎么写好教案呢?以下是作者收集整理的《封闭图形植树问题》教案,仅供参考,欢迎大家阅读。
《封闭图形植树问题》教案1教材分析本册教材的数学广角主要是渗透有关植树问题的方法。
它通过生活中常见实际问题,让学生发现规律,抽取出植树问题的数学模型,再用来解决简单的实际问题。
本课时是本单元的第3课时,探讨封闭图形的植树问题(如果是矩形,每边可看作一端种另一端不种)。
教学目标1、建立“棵数=间隔数”的数学模型,解决简单的实际问题。
2、在解决问题的过程中发现规律,建立模型,应用模型,建立初步的解决植树问题的方法。
3、体会数学模型的'生活意义与作用,体验到学习的喜悦。
学习重点:建立“树的棵数=间隔数”的数学模型学习难点:为什么“树的棵数=间隔数”?预设过程一、复习开放情形……在一条20米路的一侧种树(两端都种),每2米种一棵,共需种几棵?在一条20数路的一侧种树(两端都不种),每2米种一棵,共需种几棵?……在一条20米路的一侧种树(一端种),每2米种一棵,共需种几棵?1、揭题:植树问题。
2、呈现问题,请学生解决。
3、反馈解法,说说什么情况下选择什么方法。
二、研究封闭情形用围棋摆一个正方形,每边摆7个,一共需要多少围棋?1、议:7×4=28对不对?2、根据要求及图形,用自己的方法解决。
3、反馈各种解法,说说自己的方法的怎么避免重复计数的?4、议:(7-1)×4的理由是什么?三、练习1、完成P121做一做-1,3。
2、完成P121做一做-2,并讨论最多的情况。
3、画图完成第3题。
四、《封闭图形植树问题》教案2学习目标:1.探讨封闭曲线中的植树问题。
2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法。
3.在小组合作交流过程中,学会从不同角度思考问题。
学习过程:一、自主探究例3:张伯伯准备在圆形池塘周围栽树。
数学四年级下册《封闭图形中的植树问题》教案

数学四年级下册《封闭图形中的植树问题》教案数学四年级下册《封闭图形中的植树问题》教案教学目标:(一)利用信息技术平台,提供问题情境,让学生通过生活中的事例探索、掌握解决封闭图形中植树问题的方法。
(二)通过多媒体课件,渗透数形结合思想,引导学生在解决问题的分析、思考过程中,经历抽取出数学模型的过程。
(三)在解决问题中,培养学生的独立思考、合作探究的能力,体会数学在生活中的广泛应用教学重点、难点:教学重点:让学生掌握解决封闭图形植树问题的思想方法。
教学难点:探索发现封闭图形情况下棵树与间隔数之间的关系。
教学过程:(一)创设情景,引入问题1.问题一:(出示图片)正方形桂花树台一边也要摆花,量一下边长是9米,每一米摆一盆,请大家帮助算一算,要几盆花?反馈:谁来告诉大家要摆多少盆花?预设:生1:91+1=10盆;生2:91=9盆;生3:91-1=8盆师:这里都有91这是什么意思?+1就是求出了什么?不加的就是求出了什么?-1求出了什么?小结:同学们用以前学习的植树问题帮我解决了这个数学问题。
2.问题二:如果桂花树的正方形木台四周都要摆上10盆花,共要多少盆花?[通过展示校园中鲜花盛开的美丽景色,创设情境,引出生活中的数学问题,激发学生探究欲望。
]生1:40盆,生2:36盆,师:到底是36盆还是40盆,要知道哪个答案是对的,怎么办?(让学生互相争论)(听听学生的意见,如果学生说画最好,如果学生说其他,教师可以介入说:老师这儿有个建议。
)小结:看来有些同学认为用画一画的方法比较好是吧,那就请同学们用自己认为好的方法来验证到底是需要多少盆?(二)多元表征,感知模型1.出示学习建议:(1)你可以自己最喜欢的方法来说明你的答案是怎么来的(2)你也可以利用老师提供的材料(材料1),画一画,圈一圈。
并写出算式。
(花盆可以用符号表示)(3)先独立思考,再在小组中说一说你的方法。
[把学习的'主动权交给了学生,放手让学生想一想、画一画、说一说,激活学生已有的生活经验,既满足了学生的表现欲望,又培养了学生自主探索、小组合作学习的意识。
封闭图形中的植树问题

现在有三种不同形状的场地,分别是正三 角形,正五边形,正六边形,要给它们周围种上 树,每边种5棵,角上也要种,分别要种多少棵 树呢?
正三角形
棵 5 数 隔数
正五边形
数
正六边形
总棵数 总间隔数
每 边 的 每边的间 边
封 闭 每边的 每边的
图 形 棵 数 间隔数
边
数 总棵数
总间隔数
5 5 5
4 4 4 4
数
总棵数
总间隔数
12
12 20
5
5
20 24
总棵数
6
24
每边间隔数×边数=总棵数
= 总间隔数
每边间隔数
每边棵数-1
总棵数÷ 边数=
在数学中,经常利用 “ 的方法来解决问题。也就是
化繁为简 ”
把复杂的问题变成简单的问题来 解决。
我们发现的规律:
(封闭图形)总棵数=总间隔数
封闭图形
总棵数 = 总间隔数
也就是把复杂的问题变成简单的问题
来解决。 我们发现的规律: (封闭图形)总棵数=总间隔数
每边间隔数 ×边数=总棵数
每边棵数-1=每边间隔数 总棵数÷边数=每边间隔数
48÷4 + 1 = 13(人) (48+4)÷4 = 13(人)
答:每边各有13名学生。
在数学中,经常利用 “ 化繁为 简
我们发现的规律:
· · · · · ·
· · · · · ·
小组合作活动(二) 要求:
1. 每人选一种自己喜欢研究的图形,有多人喜欢同一种 图形的时候,服从小组长的安排。组内成员尽量照顾思 维稍微落后的同学。
2.用 自己喜欢 的一种简笔画 画树,不要涂色,不要 画复杂了。想好先画哪个位置的树再画,尽量美观。
封闭图形的植树问题-课件

两端都种:
棵数=间隔数 +1 两端都不种:
棵数 = 间隔数 - 1
只种一端:
棵数 = 间隔数
封闭图形的植树问题
学校要在正方形的草地边上种树,使每一边都有3棵树 ,可以怎样种?
要求:想一想,用一个圆圈代表一棵树把它画下来, 再算一算一共种了几棵树?
做一做:
48名学生在操场上做游戏。大家围成一 个正方形,每边人数相等。四个顶点都 有人,每边各有几名学生?
48 ÷4 +1
=12+1
=13(名)
小朋友围成一圈做游戏。 一圈的总长是9米,每 两个人之间的距离是1 米,一共有几个小朋友?
1.在一个六边形的最外边插彩旗(每个角都要站),
每边插5面,一共要几面彩旗?列式错误的是( ③ )。
子天
是开
梅放
花;
,有
选的
择孩
在子
冬是
天荷
开花
放,
选
择
在
夏
我们,还在路上……
①7
②8
③9
4、学校环形跑道长200米,每隔10米种一棵树,一共
可种几棵树。列式正确的是(② )。
① 200÷10-1 ② 200÷10 ③ 200÷10 +1
算一算
在 一个5边形上摆花,如果每边摆7盆(每个顶点都 摆一盆),最外层一共可以摆放多少盆花?
方法一: 7×5-5=30(盆)
方法二: 6×5=30(盆)
① (5 – 1) X 6 ② 5 X 6 – 6 ③ 5 X 6
2.学校环形跑道长200米,每隔10米种一棵树,一共
可种( ① )棵树。
① 20
植树问题 例3(封闭图形)

三、巩固练习,提升认识
2. 一条项链长60cm,每隔5cm有一颗水晶。 这条项链上共有多少颗水晶?
60÷5=12(颗) 答:这条项链上共有12颗水晶。
3. 有一个边长是20厘米正方形棋盘,最外层每隔5厘米放 一枚棋子(四个角都要放),最外层可以放多少枚棋 子?里面也放上棋子,一共有多少枚棋子?
20÷5+1=5(枚) 5×4=20(枚) 每边都放了5枚棋子, 但是四个角重复了 20-4=5(枚) 最外层数量=周长-4 总共数量=面积
数学广角——植树问题
植树问题 例3(封闭图形)
一、创设情境,揭示课题
例3:张伯伯准备在圆形池塘周围 栽树。池塘的周长是120m, 如果每隔10m栽一棵,一共 要栽多少棵树?
二、交流辨析,探究新知
(二)交流汇报,统一认识
小结:把圆拉直成线段,就和一端种一段不种相同
结论:棵数=间隔数
二、交流辨析,探究新知
(一)回顾研究方法,布置研究内容
例3:张伯伯准备在圆形池塘周围 栽树。池塘的周长是120m, 如果每隔10m 栽一棵,一共 要栽多少棵树? 120÷10=12(棵) 答:一共要栽12棵树。
三、巩固练习,提升认识
1. 圆形滑冰场的一周全长是150m。 如果沿着这一圈每隔15m安装一灯, 一共需要装几盏灯? 150÷15=10(盏) 答:一共需要装10盏灯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《封闭图形的植树问题》教学设计及反思
陕县第五小学
卫青
2015年1月
《封闭图形的植树问题》教学设计及反思
一、定向导学:
1、谈话导入课题:
出示不封闭图形的三种情况,学生回顾反馈,概括以上三种情况都属于不封闭图形的植树问题,这节课我们要学习封闭图形的植树问题(板书课题)。
那什么样的图形是封闭图形呢?学生回答“首尾相接的图形是封闭图形”以及“圆形、长方形、正方形、五边形等等都是封闭图形”后给与肯定,同时提出问题:封闭图形的植树问题该怎样解决呢?它和不封闭图形的植树问题有什么联系吗?带着这两个问题,我们一起走进今天的探究之旅。
2、展示学习目标:
(1)探索封闭图形情况下棵树与间隔数之间的关系;
(2)能利用所学知识解决生活中的实际问题。
二、自主学习:
内容:课本108页例3
方法:看书----思考----回答
时间:4分钟
要求:认真自学例3,分别完成以下问题。
(一)画一画(第一组C2展示)
如果池塘周长是40m,请你在图上画一画,看一共能栽几棵树?
图(略)
我发现:一共能栽()棵树。
(二)填一填。
(第二、三组B2展示)
1.周长为40m时,共有()个间隔,共能栽( )棵树,间隔数和栽数棵数()。
2.例3相当于植树问题中的()这种情况。
(三)说一说。
(第四组A2展示)
例3中120 ÷10=12(棵)的理由。
张伯伯准备在圆形池塘周围栽树。
池塘的周长是120m,如果每隔10m 栽一棵,一共要栽多少棵树?
总长÷间距=间隔=棵数
120÷10=12(棵)
答:一共要栽12棵树。
(每个环节学生自学汇报后,适时通过课件演示,进一步理解解题方法。
)
跟踪练习(每组C2展示,B2评价)
圆形滑冰场的一周全长是150 m。
如果沿着这一圈每隔15 m安装一盏灯,一共需要装几盏灯?
三、合作交流(小组内交流后,第5、6组B2展示)
想想议议:
封闭图形的植树问题和不封闭图形的植树问题中哪种情况是一致的?它们的规律是什么?
四、质疑探究:(分组对抗展示)
小区花园是一个长60 m,宽40 m的长方形。
现在要在花园四周栽树,四个角上都要栽,每相邻两棵间隔5 m。
一共要栽多少棵树?
巩固练习((每组C1展示,B1评价)
1、学校圆形操场的一周长是400米,如果沿着这一圈每隔20米安装一盏路灯,共需要安装几盏灯?
2、圆湖周围每隔5米栽一棵树,共栽了100棵,圆湖的周长是多少米?
3、爷爷在一块正方形地四周栽树,四个顶点都栽一棵,每边栽8棵。
四周一共栽了多少棵树?
五、小结检测:
1、交流分享:谈谈你这节课的收获都有哪些?
2、课堂检测:
(1)一个圆形花圃周长36米,每隔3米放一盆花,一共放了多少盆花?(2)一个椭圆形花坛的一圈每隔5米装一盏路灯,一共装了30盏,这个花坛周长是多少米?
(3)在一个周长是48米的池塘周围种树,每隔4米种一棵,共可以种多少棵?(4)体育课上同学们站成一个空心方阵做游戏,最外层每边站8名同学,算算最外层一共有多少名同学?
结束语:
同学们,数学知识和我们的生活密不可分,生活中时时有数学,事事有数学,希望每个同学都能做个有心人,真正做到学数学、爱数学、用数学!
教学反思:
学生在学习本课前已经接触了植树问题,会解决在一条线段中的植树问题(两端都栽、只栽一端或两端都不栽),了解了栽的棵数与间隔数的关系。
本课主要研究封闭图形上的植树问题,重点是让学生在头脑中建立解决此类问题的模型,如何让学生建立起封闭植树和线段植树的联系是教学的关键,因此我设计教学时,主要通过学生课前预习,课上采用多媒体课件及信息技术为学生提供大量的直观材料,激活学生的生活经验,动态反馈学生思维,沟通知识之间的联系,有效地突破教学重难点。
本节课在教学设计上给学生进行了复杂问题——简单化——发现规律——解决问题这一学法的指引。
自主学习环节拘于教师少说,重点之处没有特别强调,过渡稍快;时控把握的不够好,没有大胆彻底放手让学生去说去做。
针对以上问题,以后的教学我要更加关注学生已有的知识经验,大胆放手让学生独立尝试,让更多学生参与课堂评价,给孩子足够时间去思考,这样才能充分的展现学生个性化的解题策略,我只需在关键之处加以疏通点拨,这样才能真正做到以生为本,让不同的学生在数学学习上有不同的发展。