高一必修一复合函数的单调性
高一数学 函数单调性讲解

高中数学必修一函数——单调性考纲解读: 了解单调函数及单调区间的意义,掌握判断函数单调性的方法;掌握增,减函数的意义,理解函数单调函数的性质。
能力解读:函数单调性的判断和函数单调性的应用。
利用函数单调性判断方法来判断函数的单调性,利用函数的单调性求解函数的最值问题。
掌握并熟悉抽象函数以及符合函数的单调性判断方法。
知识要点:1.函数单调性的定义, 2.证明函数单调性; 3.求函数的单调区间4.利用函数单调性解决一些问题; 5.抽象函数与函数单调性结合运用一、单调性的定义(1)设函数)(x f y =的定义域为A ,区间A I ⊆如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f <,那么就说)(x f y =在区间I 上是单调增函数,I 称为)(x f y =的单调增区间如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f >,那么就说)(x f y =在区间I 上是单调减函数,I 称为)(x f y =的单调减区间(2)设函数)(x f y =的定义域为A如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≤恒成立,那么称)(0x f 为)(x f y =的最大值;如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≥恒成立,那么称)(0x f 为)(x f y =的最小值。
二、函数单调性的证明重点:函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须 先求函数的定义域; (1)定义法求单调性函数单调性定义中的1x ,2x 有三个特征:一是任意性;二是大小,即)(2121x x x x <<;三是同属于一个单调区间,三者缺一不可;定义法判断单调性:如果用定义证明)(x f y =在某区间I 上的单调性,那么就要用严格的四个步骤,即①取值;②作差;③判号(关键化成因式的乘积);④下结论。
高一必修一复合函数的单调性市公开课获奖课件省名师示范课获奖课件

问:函数F(x)=f(x)+g(x)在D上是否仍为减函数?
为何?
是
(3)假如函数f(x)在区间D上是减函数, 函数g(x)在区间D上是增函数。 问:能否拟定函数F(x)=f(x)+g(x)旳单调性? 不能
反例:f(x)=x在R上是增函数,g(x)=-x在R上是减函数 此时 F(x)= f(x)+ g(x)=x-x=0为常函数,不具有单调性
f 2 x f t x在x 4, 0 上是单调递减的。
f 2 x的单调减区间是 4, 0。
例2.求函数y x2 4x 3的单调递减区间.
解: x2 4x 3 0,即x2 4x 3 0,
1 x 3,即函数的定义域为1,3.
令u x2 4x 3,故y u,
y u是定义域内是的单调递增函数.
例1.设y=f(x)旳单增区间是(2,6),求函数y=f(2-x)旳 单调区间。
解:令t x=2 x, 由已知得,f t 在t 2, 6 上是增函数。 而t x 2, 6, 2 x 2, 6 , x 4, 0. 又 t x=2 x在x 4, 0 上是单调递减的,
由复合函数单调性知:
同增异减
(三)求复合函数旳单调区间. 注意:求函数旳单调区间首先要求函数旳定义域.
又 f x是a,b上的增函数,
f g x2 f g x1 .
f g x 在m, n上是减函数.
复合函数: f g x
判断:一种函数旳函数值,作为另一种函数旳自变量。
定义域:
1、若已知 f x 旳定义域为[a,b],则复合函数 f g x
旳定义域由 a g x b 解出。
解: x2 4x 5 0
函数的定义域为Байду номын сангаас,1 5,。
高一数学必修一知识点总结归纳

高一数学必修一知识点总结归纳高一数学必修一知识点总结归纳「篇一」1、作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2、性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(—b/k,0)正比例函数的图像总是过原点。
3、k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
高一数学必修一知识点总结归纳「篇二」一:函数及其表示知识点详解文档包含函数的概念、映射、函数关系的判断原则、函数区间、函数的三要素、函数的定义域、求具体或抽象数值的函数值、求函数值域、函数的表示方法等1. 函数与映射的区别:2. 求函数定义域常见的用解析式表示的函数f(x)的.定义域可以归纳如下:①当f(x)为整式时,函数的定义域为R。
②当f(x)为分式时,函数的定义域为使分式分母不为零的实数集合。
③当f(x)为偶次根式时,函数的定义域是使被开方数不小于0的实数集合。
④当f(x)为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合。
⑤如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合,即求各部分有意义的实数集合的交集。
⑥复合函数的定义域是复合的各基本的函数定义域的交集。
⑦对于由实际问题的背景确定的函数,其定义域除上述外,还要受实际问题的制约。
高一数学必修一函数重点知识整理

高一数学必修一函数重点学问整理学习数学时要努力当课堂的仆人。
要认真思考老师提出的每一个问题,认真观看老师的每一个演示试验,大胆举手发表自己的看法,主动参与课堂商量。
下面是我为大家整理的有关高一数学必修一函数重点学问整理,期望对你们有关怀!高一数学必修一函数重点学问整理1. 函数的奇偶性(1)假设f(x)是偶函数,那么f(x)=f(-x) ;(2)假设f(x)是奇函数,0在其定义域内,那么 f(0)=0(可用于求参数);(3)推断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或 (f(x)≠0);(4)假设所给函数的解析式较为冗杂,应先化简,再推断其奇偶性; (5)奇函数在对称的单调区间内有违反的单调性;偶函数在对称的单调区间内有相反的单调性;2. 复合函数的有关问题(1)复合函数定义域求法:假设的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;假设f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);争辩函数的问题确定要留意定义域优先的原那么。
(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)假设函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,那么y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a0)恒成立,那么y=f(x)是周期为2a的周期函数;(2)假设y=f(x)是偶函数,其图像又关于直线x=a对称,那么f(x)是周期为2︱a︱的周期函数;(3)假设y=f(x)奇函数,其图像又关于直线x=a对称,那么f(x)是周期为4︱a︱的周期函数;(4)假设y=f(x)关于点(a,0),(b,0)对称,那么f(x)是周期为2 的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,那么函数y=f(x)是周期为2 的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,那么y=f(x)是周期为2 的周期函数;5.方程k=f(x)有解 k∈D(D为f(x)的值域);6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;7.(1) (a0,a≠1,b0,n∈R+);(2) l og a N= ( a0,a≠1,b0,b≠1);(3) l og a b的符号由口诀“同正异负”记忆;(4) a log a N= N ( a0,a≠1,N0 );8. 推断对应是否为映射时,抓住两点:(1)A中元素必需都有象且唯一;(2)B中元素不愿定都有原象,并且A中不同元素在B中可以有违反的象;9. 能娴熟地用定义证明函数的单调性,求反函数,推断函数的奇偶性。
高一数学科必修一知识考点

○1 任取 x1,x2∈D,且 x1 ○2 作差 f(x1)-f(x2); ○3 变形(通常是因式分解和配方); ○4 定号(即判断差 f(x1)-f(x2)的正负); ○5 下结论(指出函数 f(x)在给定的区间 D 上的单调性).(B)图象法(从图象上看升降) (C)复合函数的单调性 复合函数 f[g(x)]的单调性与构成它的函数 u=g(x),y=f(u)的单调性密切相关,其 规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间,不能把单调性相 同的区间和在一起写成其并集. 8.函数的奇偶性(整体性质)(1)偶函数 一般地,对于函数 f(x)的定义域内的任意一个 x,都有 f(-x)=f(x),那么 f(x)就叫 做偶函数.(2).奇函数 一般地,对于函数 f(x)的定义域内的任意一个 x,都有 f(-x)=—f(x),那么 f(x)就 叫做奇函数.(3)具有奇偶性的函数的图象的特征 偶函数的图象关于 y 轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性 的步骤: ○1 首先确定函数的定义域,并判断其是否关于原点对称; ○2 确定 f(-x)与 f(x)的关系; ○3 作出相应结论:若 f(-x)=f(x)或 f(-x)-f(x)=0,则 f(x)是偶函数;若 f(-x)=f(x)或 f(-x)+f(x)=0,则 f(x)是奇函数. (2)由 f(-x)±f(x)=0 或 f(x)/f(-x)=±1 来判定;(3)利用定理,或借助函数的图象 判定.
注意:函数的单调性是函数的局部性质;(2)图象的特点
如果函数 y=f(x)在某个区间是增函数或减函数,那么说函数 y=f(x)在这一区间上具 有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左 到右是下降的.
(3).函数单调区间与单调性的判定(A)定义法:(1)任取 x1,x2∈D,且 x1(2)作差 f(x1)-f(x2);或者做商(3)变形(通常是因式分解和配方);(4)定号(即判断差 f(x1)-f(x2) 的正负);
数学必修一单调性

目录
• 单调性的定义 • 单调性的判定 • 单调性的应用 • 单调性的性质 • 单调性的扩展知识
01
单调性的定义
函数单调性的定义
函数单调性是指函数在某个区间内的增减性。如果函数在某个区间内单调递增,那么对于该区间内的任意两个数$x_1$和$x_2$, 当$x_1 < x_2$时,都有$f(x_1) leq f(x_2)$;反之,如果函数在某个区间内单调递减,那么对于该区间内的任意两个数$x_1$和 $x_2$,当$x_1 < x_2$时,都有$f(x_1) geq f(x_2)$。
导数法
利用导数与函数单调性的关系,通过判断导数的正负来判断函数的单调 性。
03
图像法
通过观察函数的图像来判断函数的单调性。如果图像在某区间内从左到
右逐渐上升,则函数在该区间内单调递增;如果图像在某区间内从左到
右逐渐下降,则函数在该区间内单调递减。
单调性判定例题解析
0102Βιβλιοθήκη 0304例题1
判断函数f(x) = x^3在区间(-∞, +∞)上的单调性。
例子
对于函数 (f(x) = x^3),在 (x = 0) 处函数由递减变为递增,因此 (x = 0) 是该函数的极小值点。
单调性在实际问题中的应用
总结词
单调性在实际问题中有着广泛的应用,通过单调性可以分析各种实际问题的变化趋势,从而做出合理的决策。
详细描述
单调性可以用于分析各种实际问题,如经济问题、物理问题等。例如,在经济学中,通过分析需求函数和供给函数的 单调性,可以预测市场的价格变化趋势;在物理学中,通过分析受力函数的单调性,可以判断物体的运动状态。
单调函数在定义域内是单调的
必修一-人教版-函数的单调性

[
)
2
(
=
-
x
x
t
f
x
f
∈
)上是增函数,
,
(
在
6
2
)
(
t
t
f
∈
如何判断函数
证明:
如何应用函数
解:
己知a,b,c∈R,且a<0,6a+b<0.设f(x)=ax2+bx+c,试比较f(3)、与f(π)的大小.
即抛物线顶点横坐标<3,又开口向下,所以二次函数f(x)在 上递增.
而x≥3,∴f(x+1)-f(x)>0,
可知f(x)(x≥3)是递增函数,∵f(3)=23-2×3=2>1,
故有2n>2n+1.
例4:求函数 的值域;
解:易知函数是单调递增函数,又因为函数的定义域是x∈( -∞,5]; 所以当x=5时,y最大=10, 故函数的值域为( -∞,10];
例2
解:设
此时f(x)为减函数.
当a>0时, f(x1)<f(x2),此时f(x)为增函数.
题型二:图象法
例3:指出下列函数的单调区间:
(
)
1
1
2
-
=
x
y
例4:指出下列函数的单调区间:
(
)
3
2
2
2
+
+
-
=
x
x
y
题型三:利用已知函数单调性判断
例3:判断函数
在(1,+∞)上的单调性。
结论1:y=f(x)(f(x) 恒不为0),与 的单调性相反。
另解:若令 ,易知
复合函数的单调性--课件必修一

2减函数:如果对于区间 I内某个的任意两个值 x1 , x2 ,
当x1 x2时,都有f ( x1 ) f ( x2 ), 那么就说y f ( x) 在区间I上是单调减函数。
函数的单调性是函数的局部性质。
二.常用函数的单调性
y kx b(k 0)
y
y kx b(k 0)
(4) 若两个函数在对应的区间上的单调性相同(即都是 增函数,或都是减函数),则复合后的函数y=f[g(x)] 为增函数;
(5) 若两个函数在对应的区间上的单调性相异(即一个是增 函数,而另一个是减函数),则复合后的函数y=f[g(x)] 为减函数。
复合函数的单调性可概括为一句话:“同增异减”。
五.有关函数单调性的常用结论
复合函数的单调性
已经学过的判断函数单调性的方法有哪些?
1.定义法
2.图像法
一.函数单调性的定义:
一般地,设函数 f ( x)的定义域为 A,区间I A.
1增函数:如果对于区间 I内的任意两个值 x1 , x2 ,
当x1 x2时,都有f ( x1 ) f ( x2 ), 那么就说y f ( x) 在区间I上是单调增函数。
对于复合函数 y f [ g ( x)] 的单调性,必须考虑 y f (u)与 u g ( x)的单调性,从而得出 y f [ g ( x)] 的单调性。
y f ( x)
u g ( x)
增函数
减函数 增函数 减函数
y f [ g ( x)]
增函数
增函数 减函数 减函数
增函数
复合函数的单调性
复合函数: 令 则 u=g(x) y=f(u)
y=f[g(x)]
内函数 外函数 原函数 以x为自变量 以u为自变量 以x为自变量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复合函数: f g x
判断:一个函数的函数值,作为另一个函数的自变量。 定义域: 1、若已知 f x 的定义域为[a,b],则复合函数 f g x 的定义域由 a g x b 解出。 2、若已知 f g x 的定义域为[a,b],则函数 f x 的定 义域即为 当x a, b时,函数g x 的值域。
又u x 2 1在 2,3 上是减函数。
2
y x 2 4 x 3在 2,3 上是减函数。
故函数y x 2 4 x 3的单调递减区间为 2,3。
(问:函数y x 2 4 x 3的单调递增区间是什么 ?)
小结:在求解函数单调区间时必须注意单调区间 是定义域的某个区间。
例2.求函数y x 4 x 3的单调递减区间 .
2
解: x 4 x 3 0,即x 4 x 3 0, 1,3. 1 x 3,即函数的定义域为
2 2
令u x2 4x 3,故y u,
y u是定义域内是的单调递 增函数 .
(3)如果函数f(x)在区间D上是减函数, 函数g(x)在区间D上是增函数。 问:能否确定函数F(x)=f(x)+g(x)的单调性?
不能
反例:f(x)=x在R上是增函数,g(x)=-x在R上是减函数 此时 F(x)= f(x)+ g(x)=x-x=0为常函数,不具有单调性
同加,单调性不变
Hale Waihona Puke f x 是 例2 如果 g x 是[m,n]上的减函数,且a g x b , g x 在[m,n]上也是减函数。 [a,b]上的增函数,求证 f
2、利用函数单调性求函数的值域或最值。 3、利用单调性求解不等式。(重在转化问题)
4、求函数单调区间的题型(包括求复合函数单调区间)
(二)掌握复合函数单调性的判断方法.
同增异减
(三)求复合函数的单调区间. 注意:求函数的单调区间首先要求函数的定义域.
练习 1:求y x 4 x 5函数的单调区间。
2
解: x2 4x 5 0
,1 5,。 函数的定义域为
令u x 4x 5, 则y u ,
2
y u在定义域内是增函数。 2 又u x 2 1在2,上是减函数,
例1.设y=f(x)的单增区间是(2,6),求函数y=f(2-x)的 单调区间。
解: 令t x =2 x, 由已知得,f t 在t 2, 6 上是增函数。 而t x 2, 6 , 2 x 2, 6 , x 4, 0 . 又 t x =2 x在x 4, 0 上是单调递减的, 由复合函数单调性知: f 2 x f t x 在x 4, 0 上是单调递减的。 f 2 x 的单调减区间是 4, 0 。
复合函数单调性
对于复合函数 y f [ g ( x)] 的单调性,必须考虑 y f (u)与 u g ( x)的单调性,从而得出 y f [ g ( x)] 的单调性。
y f ( x)
增函数 增函数 减函数 减函数
u g ( x)
增函数 减函数 增函数 减函数
y f [ g ( x)]
增函数 减函数 减函数 增函数
小结:同增异减。研究函数的单调性,首先考虑函数的定 义域,要注意函数的单调区间是函数定义域的某个区间。
注:
1、复合函数y=f[g(x)]的单调区 间必须是其定义域的子集 2、对于复合函数y=f[g(x)]的单 调性是由函数y=f(u)及u=g(x)的 单调性确定的且规律是“同增, 异减”
在 ,2上是增函数。
,1上是增函数。 y x 2 4 x 5在5,上是减函数,在
小结
(1)掌握复合函数单调性的判断方法.
同增异减
(2)求复合函数的单调区间.
注意:求函数的单调区间首先要求函数的定义域.
小结
(一)函数单调性解题应用.
1、已知单调性,求参数范围。(有时候需要讨论)
证:x1 , x2 m, n , 且x1 x2 ,
g ( x)是 m, n 上减函数,且a g x b a g ( x2 ) g ( x1 ) b. 又 f x 是 a, b 上的增函数,
f g x2 f g x1 . f g x 在 m, n 上是减函数.
[ f ( x1 ) f ( x2 )] [ g ( x1 ) g ( x2 )] [ f ( x1 ) f ( x2 )] [ g ( x1 ) g ( x2 )] 0,即F ( x1 ) F ( x2 )
所以函数F(x)=f(x)+g(x)在D上仍为增函数
(2)如果函数f(x)在区间D上是减函数, 函数g(x)在区间D上是减函数。 问:函数F(x)=f(x)+g(x)在D上是否仍为减函数? 为什么? 是
复合函数的单调性
思考
例1(1)如果函数f(x)在区间D上是增函数, 函数g(x)在区间D上是增函数。 问:函数F(x)=f(x)+g(x)在D上是否仍为增函数? 是 为什么?
x1 , x2 D, 且x1 x2 f ( x)在区间D上是增函数,g ( x)在区间D上是增函数 f ( x1 ) f ( x2 ), g ( x1 ) g ( x2 ) F ( x1 ) F ( x2 ) [ f ( x1 ) g ( x1 )] [ f ( x2 ) g ( x2 )]