高数习题答案- 12

合集下载

高等数学下册第十二章习题答案详解

高等数学下册第十二章习题答案详解

高等数学下册第十二章习题答案详解1.写出下列级数的一般项: (1)1111357++++;2242468x x +++⋅⋅⋅⋅;(3)35793579a a a a -+-+.解:(1)121n U n =-;(2)()2!!2n n xU n =;(3)()211121n n n a U n ++=-+; 2.求下列级数的和: (1) 23111555+++;(2) 11(1)(2)n n n n ∞=++∑;(3)1n ∞=∑.解:(1) 因为21115551115511511145n n n n S =+++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎣⎦=-⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎣⎦从而1lim 4n n S →∞=,即级数的和为14. (2)()()()()()()()111111211n u x n x n x n x n x n x n x n =+-+++⎛⎫-=⎪+-++++⎝⎭从而()()()()()()()()()()()()()()11111211212231111111211nS x x x x x x xx x n x nx n x n x x x n x n ⎛-+-=+++++++⎝⎫++-⎪+-++++⎭⎛⎫-=⎪++++⎝⎭因此()1lim 21nn S x x →∞=+,故级数的和为()121x x +(3)因为nU =-从而(11n S n =-+-+-++-+=-=所以lim 1n n S →∞=13.判定下列级数的敛散性:(1)1n ∞=∑;(2)1111166111116(54)(51)n n +++++⋅⋅⋅-+;(3)231232222(1)3333nn n --+-+-+;(4)1155n ++.解:(1) (11n S n =++++=从而lim n n S →∞=+∞,故级数发散.(2) 1111111115661111165451111551n S n n n ⎛⎫=-+-+-++- ⎪-+⎝⎭⎛⎫=- ⎪+⎝⎭从而1lim 5n n S →∞=,故原级数收敛,其和为15.(3)此级数为23q =-的等比级数,且|q |<1,故级数收敛.(4)∵n U =lim 10n n U →∞=≠,故级数发散. *4.利用柯西审敛原理判别下列级数的敛散性:(1)11(1)n n n +∞=-∑;(2)1cos 2n n nx ∞=∑; (3)()0111313233n n n n ∞=+-+++∑.解:(1)当P 为偶数时,()()()()122341111112311111231111112112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n pn n n +++++++++++----=++++++++-+--=++++⎛⎫⎛⎫-=----- ⎪ ⎪+-+-++++⎝⎭⎝⎭<+当P 为奇数时,()()()()1223411111123111112311111112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n n n +++++++++++----=++++++++-+-+=++++⎛⎫⎛⎫-=---- ⎪ ⎪+-++++⎝⎭⎝⎭<+因而,对于任何自然数P ,都有12111n n n p U U U n n++++++<<+, ∀ε>0,取11N ε⎡⎤=+⎢⎥⎣⎦,则当n >N 时,对任何自然数P 恒有12n n n p U U U ε++++++<成立,由柯西审敛原理知,级数()111n n n +∞=-∑收敛.(2)对于任意自然数P ,都有()()()1212121cos cos cos 12222111222111221121112212n n n pn n n pn n n p n p n p n U U U xn p x xn n ++++++++++++++++=+++≤+++⎛⎫- ⎪⎝⎭=-⎛⎫=- ⎪⎝⎭<于是, ∀ε>0(0<ε<1),∃N =21log ε⎡⎤⎢⎥⎣⎦,当n >N 时,对任意的自然数P 都有12n n n p U U U ε++++++<成立,由柯西审敛原理知,该级数收敛.(3)取P =n ,则()()()()()121111113113123133213223231131132161112n n n pU U U n n n n n n n n n n ++++++⎛⎫=+-+++-⎪++++++⋅+⋅+⋅+⎝⎭≥++++⋅+≥+>从而取0112ε=,则对任意的n ∈N ,都存在P =n 所得120n n n p U U U ε++++++>,由柯西审敛原理知,原级数发散.习题12-21.用比较判别法法判别下列级数的敛散性: (1)1114657(3)(5)n n ++++⋅⋅++; (2)22212131112131nn +++++++++++;(3)π1sin 3n n ∞=∑;(4)n ∞=; (5)11)1(0nn aa ∞=+>∑; (6)11(21)nn ∞=-∑.解:(1)∵ ()()21135n U nn n =<++而211n n ∞=∑收敛,由比较审敛法知1n n U ∞=∑收敛. (2)∵221111n n n U n n n n++=≥=++ 而11n n ∞=∑发散,由比较审敛法知,原级数发散.(3)∵ππsinsin 33lim lim ππ1π33n nn n n n→∞→∞=⋅=而1π3n n ∞=∑收敛,故1πsin 3n n ∞=∑也收敛.(4)∵321n U n=<=而3121n n∞=∑收敛,故1n ∞=收敛.(5)当a >1时,111n n nU a a =<+,而11n n a ∞=∑收敛,故111n n a∞=+∑也收敛. 当a =1时,11lim lim022n n n U →∞→∞==≠,级数发散.当0<a <1时,1lim lim 101n nn n U a →∞→∞==≠+,级数发散.综上所述,当a >1时,原级数收敛,当0<a ≤1时,原级数发散.(6)由021lim ln 2xx x →-=知121lim ln 211nx n→∞-=<而11n n ∞=∑发散,由比较审敛法知()1121n n ∞=-∑发散.2.用比值判别法判别下列级数的敛散性:(1)213n n n ∞=∑;(2)1!31n n n ∞=+∑; (3)232233331222322n n n +++++⋅⋅⋅⋅; (4) 12!n n n n n ∞=⋅∑. 解:(1) 23n n n U =,()2112311lim lim 133n n n n n nU n U n ++→∞→∞+=⋅=<,由比值审敛法知,级数收敛.(2) ()()111!311lim lim 31!31lim 131n n n n n nn n n U n U n n ++→∞→∞+→∞++=⋅++=⋅++=+∞所以原级数发散.(3) ()()11132lim lim 2313lim 21312n nn n n n n nn U n U n n n +++→∞→∞→∞⋅=⋅⋅+=+=> 所以原级数发散.(4) ()()1112!1lim lim 2!1lim 21122lim 1e 11n nn n nn n nnn n n U n n U n n n n n +++→∞→∞→∞→∞⋅+=⋅⋅+⎛⎫= ⎪+⎝⎭==<⎛⎫+ ⎪⎝⎭故原级数收敛.3.用根值判别法判别下列级数的敛散性:(1)1531nn n n ∞=⎛⎫⎪+⎝⎭∑; (2)()11ln(1)n n n ∞=+∑; (3)21131n n n n -∞=⎛⎫ ⎪-⎝⎭∑; (4)1nn n b a ∞=⎛⎫⎪⎝⎭∑,其中,,,()n n a a n a b a →→∞均为正数.解:(1)55lim1313n n n n →∞==>+,故原级数发散. (2) ()1lim01ln 1n n n →∞==<+,故原级数收敛.(3)121lim 1931nn n n n -→∞⎛⎫==<⎪-⎝⎭, 故原级数收敛.(4) lim limn n nb b a a →∞==, 当b <a 时,b a <1,原级数收敛;当b >a 时,b a >1,原级数发散;当b =a 时,ba=1,无法判定其敛散性.习题12-31.判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛?(1) 1+;(2)111(1)ln(1)n n n ∞-=-+∑;(3)2341111111153555333⋅-⋅+⋅-⋅+;(4)112(1)!n n n n ∞+=-⋅∑; (5)11ln (1)n n n n∞-=-⋅∑; (6)()11113∞--=-∑n n n n; *(6)1(1)111(1)23nnn n∞=-++++⋅∑. 解:(1)()11n n U-=-,级数1n n U ∞=∑>0n =,由莱布尼茨判别法级数收敛,又11121nn n Un∞∞===∑∑是P <1的P 级数,所以1nn U∞=∑发散,故原级数条件收敛. (2)()()111ln 1n n U n -=-+,()()1111ln 1n n n ∞---+∑为交错级数,且()()11ln ln 12n n >++,()1lim0ln 1n n →∞=+,由莱布尼茨判别法知原级数收敛,但由于()11ln 11n U n n =≥++ 所以,1nn U∞=∑发散,所以原级数条件收敛.(3)()11153n n nU -=-⋅,显然1111115353n n n n n n U ∞∞∞=====⋅∑∑∑,而113n n ∞=∑是收敛的等比级数,故1nn U∞=∑收敛,所以原级数绝对收敛.(4)由()121!+=-nn n u n2122=<==⨯⨯,由正项级数的根值判别法知,2!n n 收敛,则级数()1121!∞+=-∑nn n n 收敛,112(1)!n n n n ∞+=-⋅∑绝对收敛. (5)函数()ln =xf x x在[)e,+∞为单调递减函数,则当n 充分大时()ln 1ln 1+>+n n n n ,且ln lim 0→∞=n n n ,由莱布尼兹判别法知交错级数收敛,又ln 1>n n n ,而调和级数11∞=∑n n是发散的,则11ln (1)n n nn∞-=-⋅∑条件收敛. (6)111310333+-+---=-=>n n n n nn n n n u u ,则1+>n n u u ,又1lim 03-→∞=n n n,根据莱布尼兹判别法知()11113∞--=-∑n n n n 收敛,又由比较判别法知1131133-+=<+n n nn n n ,则级数()11113∞--=-∑n n n n 收敛,则级数()11113∞--=-∑n n n n绝对收敛. *(6)由于11111123n nn ⎛⎫⋅>++++ ⎪⎝⎭ 而11n n ∞=∑发散,由此较审敛法知级数 ()11111123nn nn ∞=⎛⎫-⋅++++ ⎪⎝⎭∑发散. 记1111123n U nn ⎛⎫=⋅++++ ⎪⎝⎭,则()()()()()()1222111111123111111112311111111231110n n U U n n n n n n n n n n n n n n +⎛⎫⎛⎫-=-++++- ⎪⎪+⎝⎭⎝⎭+⎛⎫=-++++ ⎪⎝⎭++⎛⎫⎛⎫-=++++ ⎪ ⎪⎝⎭+++⎝⎭>即1n n U U +> 又11111lim lim12311d n n n n U n n x n x→∞→∞⎛⎫=++++ ⎪⎝⎭=⎰ 由1111lim d lim 01t t t t x t x →+∞→+∞==⎰ 知lim 0n n U →∞=,由莱布尼茨判别法,原级数()11111123nn n n ∞=⎛⎫-⋅++++ ⎪⎝⎭∑收敛,而且是条件收敛. 2.如果级数23111111122!23!2!2nn ⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的和用前n 项的和代替,试估计其误差.()()()()()()()12121211111=1!22!211111!21!21111=11!222111=11!21211!2n n n n n n nn n n n n n n σ++++++⎛⎫⎛⎫++⎪⎪++⎝⎭⎝⎭⎛⎫⎛⎫++ ⎪ ⎪++⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎛⎫ ⎪+⎝⎭-=+<3.若2lim n n n u →∞存在,证明:级数1n n u ∞=∑收敛.221211lim =lim ,.1n n n n n n n u n u nnu ∞→∞→∞=∞=∑∑存在而收敛所以也收敛*4.证明:若21nn u∞=∑收敛,则1nn u n ∞=∑绝对收敛. 222211111110221,2.n n n n n n n n n n n n u u u n n nu u n n u un n∞∞∞===∞∞===≤+∑∑∑∑∑<而和都收敛,由比较审敛法得知收敛从而收敛,即绝对收敛习题12-41.求下列函数项级数的收敛域: (1)11x n n∞=∑;(2)()1111n xn n ∞+=-∑.2.求下列幂级数的收敛半径及收敛域: (1)2323nx x x nx +++++;(2)1!nnn n x n∞=∑; (3)21121n n x n ∞-=-∑;(4)21(1)2nn x n n∞=-⋅∑. 解:(1)因为11limlim 1n n n n a n a n ρ+→∞→∞+===,所以收敛半径11R ρ==收敛区间为(-1,1),而当x =±1时,级数变为()11nn n ∞=-∑,由lim(1)0nx nn →-≠知级数1(1)n n n ∞=-∑发散,所以级数的收敛域为(-1,1).(2)因为()()1111!11lim lim lim lim e 1!11nn n n n n n n n n a n n n a n n n n ρ-+-+→∞→∞→∞→∞⎡⎤+⎛⎫⎛⎫==⋅===+ ⎪⎢⎥ ⎪+⎝⎭+⎝⎭⎣⎦所以收敛半径1e R ρ==,收敛区间为(-e,e).当x =e 时,级数变为1e !∞=∑n n n n n,()()()()11111!11!11e e e e +++++++⎛⎫=== ⎪+⎝⎭+n n nnn n n nnn n n n u n n u n n n 11e =⎛⎫+ ⎪⎝⎭nn , 在→+∞n 的过程中,11+>n nu u ,又0>n u ,则e =x 时,常数项级数为单调递增函数,1e =u ,则lim 0→∞≠n n u ,由级数收敛的必要条件,级数的一般项不趋于零,则该级数必发散,同理在e =-x 时,()1e !∞=-∑nnn n n 变为交错级数,其中!lim e →∞n n n n n依旧不等于0,,则在e =-x 时也发散,则其收敛域为(),e e -.(3)级数缺少偶次幂项.根据比值审敛法求收敛半径.211212221lim lim 2121lim 21n n n n n nn U x n U n x n x n x ++-→∞→∞→∞-=⋅+-=⋅+= 所以当x 2<1即|x |<1时,级数收敛,x 2>1即|x |>1时,级数发散,故收敛半径R =1.当x =1时,级数变为1121n n ∞=-∑,当x =-1时,级数变为1121n n ∞=--∑,由1121lim 012n n n→∞-=>知,1121n n ∞=-∑发散,从而1121n n ∞=--∑也发散,故原级数的收敛域为(-1,1). (4)令t =x -1,则级数变为212nn t n n∞=⋅∑,因为()()2122lim lim 1211n n n n a n n a n n ρ+→∞→∞⋅===⋅++ 所以收敛半径为R =1.收敛区间为 -1<x -1<1 即0<x <2.当t =1时,级数3112n n ∞=∑收敛,当t =-1时,级数()31112nn n ∞=-⋅∑为交错级数,由莱布尼茨判别法知其收敛.所以,原级数收敛域为 0≤x ≤2,即[0,2] 3.利用幂级数的性质,求下列级数的和函数:(1)11n n nx∞-=∑;(2)2221n n x n ∞+=+∑. ()()()()1112111111111n n n n n n n n nx x x S x nx x x x x x ∞-=∞∞∞-==='''⎛⎫⎛⎫===== ⎪ ⎪-⎝⎭-⎝⎭∑∑∑∑解:()可求得函数在<时收敛,<(2)由2422221lim 23n n n x n x n x++→∞+=⋅+知,原级数当|x |<1时收敛,而当|x |=1时,原级数发散,故原级数的收敛域为(-1,1),记()2221002121n n n n x x S x x n n ++∞∞====++∑∑,易知级数21021n n x n +∞=+∑收敛域为(-1,1),记()211021n n x S x n +∞==+∑,则()212011nn S x x x ∞='==-∑, 故()1011d ln 21xx S x x x +'=-⎰ 即()()1111ln 021x S S x x+-=-,()100S =,所以()()()11ln 121x xS xS x x x x+==<-习题12-51.将下列函数展开成x 的幂级数,并求展开式成立的区间: (1)()()ln 2f x x =+; (2)()2cos f x x =; (3)()()()1ln 1f x x x =++; (4)()2x f =(5)()23f x xx =+;(6)()e e)12(x x f x -=-; 解:(1)()()ln ln 2ln 2ln 11222x x f x x ⎛⎫⎛⎫===++++ ⎪ ⎪⎝⎭⎝⎭由于()()0ln 111nnn x x n ∞==+-+∑,(-1<x ≤1)故()()11ln 11221n nn n x x n +∞+=⎛⎫=+- ⎪⎝⎭+∑,(-2≤x ≤2) 因此()()()11ln ln 22121n nn n x x n +∞+==++-+∑,(-2≤x ≤2)(2)()21cos 2cos 2xf x x +==由()()20cos 1!2nnn x x n ∞==-∑,(-∞<x <+∞)得()()()()()220042cos 211!!22n n n nn n n x x x n n ∞∞==⋅==--∑∑ 所以()()22011()cos cos 222114122!2n nn n f x x x x n ∞===+⋅=+-∑,(-∞<x <+∞) (3)f (x ) = (1+x )ln(1+x ) 由()()()1ln 111n nn x x n +∞==+-+∑,(-1≤x ≤1)所以()()()()()()()()()()()()()1120111111111111111111111111111n nn n n nn n n n n nn n n n n n n n n n x f x x n x x n n x x x n n n n x xn n x xn n +∞=++∞∞==++∞∞+==+∞+=-∞+==+-+=+--++=++--+++--=+⋅+-=++∑∑∑∑∑∑∑ (-1≤x ≤1)(4)()22f x x ==()()()21!!2111!!2n n n n x n ∞=-=+-∑ (-1≤x ≤1) 故()()()()221!!2111!!2n n n n x f x x n ∞=⎛⎫-+=- ⎪⎝⎭∑()()()()2211!!211!!2n n n n x x n ∞+=-=+-∑ (-1≤x ≤1)(5)()()()(220211131313313nn n n nn n x f x x x x x x ∞=+∞+==⋅+⎛⎫=⋅- ⎪⎝⎭=-<∑∑(6)由0e !nxn x n ∞==∑,x ∈(-∞,+∞)得()01e !n nxn x n ∞-=⋅-=∑,x ∈(-∞,+∞)所以()()()()()()0002101e e 2112!!1112!,!21x x n n n n n n n n n n f x x x n n x n x x n -∞∞==∞=+∞==-⎛⎫-=- ⎪⎝⎭=⋅⎡⎤--⎣⎦=∈-∞+∞+∑∑∑∑2.将()2132x x f x ++=展开成()4x +的幂级数.()()()()()()20100102101113212111114x+4141343333134713111114414224222212462241323nn nn n nn nn n nn n x x x x x x x x x x x x x x x x x x x x ∞=∞+=∞=∞+=∞+==-+++++⎛⎫⎛⎫==-=- ⎪ ⎪++-++⎝⎭⎝⎭-+=---+⎛+⎫⎛⎫==-=-< ⎪ ⎪++-++⎝⎭⎝⎭-+=--+=-++∑∑∑∑∑解:而<<<<<-从而()()()10110421146223nn n n n n n x x x ∞+=∞++=++⎛⎫=-+-- ⎪⎝⎭∑∑<<3.将函数()f x 1()x -的幂级数. 解:因为()()()()()211111111!2!!m nm m m m m m n x x x x x n ---+=++++++-<<所以()()[]()()()3221133333331121222222211111!2!!nf x x n x x x n ==+-⎛⎫⎛⎫⎛⎫⎛⎫----+ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=+++++---(-1<x -1<1)即()()()()()()()()()()()()()2323133131313251111111222!23!2!3152111022!nnn nn n f x x x x x n n x x n ∞=⋅⋅⋅⋅⋅⋅--+--=+++++----⋅⋅⋅⋅⋅⋅--=+-<<⋅∑4.利用函数的幂级数展开式,求下列各数的近似值: (1) ln3(误差不超过10.000); (2) cos2︒(误差不超过10.000).解:(1)35211ln 213521n x x x x x x n -+⎛⎫=+++++ ⎪--⎝⎭,x ∈(-1,1) 令131x x +=-,可得()11,12x =∈-, 故()35211111112ln3ln 212325222112n n -+⎡⎤+++++==⎢⎥⋅⋅⋅-⎣⎦- 又()()()()()()()()()()2123212121232521242122112222123222212112222123252111222212112211413221n n n n n n n n n n n r n n n n n n n n n n +++++++++-⎡⎤++=⎢⎥⋅⋅++⎣⎦⎡⎤⋅⋅++=+++⎢⎥⋅⋅+++⎣⎦⎛⎫<+++ ⎪⎝⎭+=⋅+-=+故5810.000123112r <≈⨯⨯61010.000033132r <≈⨯⨯. 因而取n =6则35111111ln32 1.098623252112⎛⎫=≈++++⎪⋅⋅⋅⎝⎭(2)()()2420ππππ909090cos 2cos 11902!4!!2nn n ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==-+-++-∵24π906102!-⎛⎫ ⎪⎝⎭≈⨯;48π90104!-⎛⎫⎪⎝⎭≈ 故2π90cos 2110.00060.99942!⎛⎫ ⎪⎝⎭≈-≈-≈ 5.将函数()d 0arctan x tF x t t=⎰展开成x 的幂级数. 解:由于()21arctan 121n nn t t n +∞==-+∑所以()()()()()20002212000arctan d d 121d 112121n xx nn n n xnnn n t t F t tx t n t x t n n ∞=+∞∞====-+==--++∑⎰⎰∑∑⎰(|x |≤1)6.求下列级数的和函数: (1) 2121n n x n ∞+=+∑;(2)10(1)!n n nx n ∞-=-∑(提示:应用e x 的幂级数展开式);解:(1)可求得原级数的收敛半径R =1,且当|x |=1时,原级数发散.记()21021n n x S x n +∞==+∑则()22011n n S x x x∞='==-∑ ()200111d d ln 121xxx S x x x x x +'==--⎰⎰,即()()11ln 021xS S x x+-=-,S (0)=0 所以()11ln 21xS x x+=-,(|x |<1)(2)由()11!lim lim 0!1n n n n n a n n a n +→∞→∞+==-知收敛域为(-∞,+∞).记()()11!1n n n S x x n ∞-==-∑则()()()111d e !!11nn xx n n x x S x x x x n n -∞∞=====--∑∑⎰,所以()()()e 1e x x S x x x '==+,(-∞<x <+∞)7.试用幂级数解法求下列微分方程的解:222(1)0;(2)0;(3)1;(4)(1);(5)(1)2.y x y y xy y y xy x x y x y x y x x y '''''-=++=''--=-=-'+=-+()()()()()()()()()1220120220120223405121,,11212021=210320435421nn n nn n n n n n n n nnn n n n nnn n n n n n y a x y na xy n n a xn n a x n n a x xa xn n a x a x a a a a a a n n a a ∞∞∞∞--+====∞∞+==∞∞+-==+-'''===-=++++-=++====++=∑∑∑∑∑∑∑∑解:()设则代入原方程得即比较同次幂系数,得一般地()()()()222001423456785801910111291134243042,3,210,,,0,3445783478,0,894589111234781112,12134589121303478414n n k k k n a a n n a a a a a a a a a a a a a a a a a a a a a a a a a a k k-+++==++===================-即所以有所以()()()14145121481221,2,1,2,4589441134347834781112145458945891213k k a a k k k x x x y C x x x C x +===+⎛⎫=++++⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⎝⎭⎛⎫+++++⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⎝⎭因此是方程的解()()()()()()()()()212120222220210211021100,1,2,10,1,2,2111122222n n n n n n n n n n n n nn n n n n n n k k y a x a n n xx a nxa x n n a n a x n n a n a n a a n n a a a k k k ∞=∞∞∞--===∞+=++-=-++=++++=⎡⎤⎣⎦++++===-=+⎛⎫⎛⎫⎛⎫=-=---= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭∑∑∑∑∑()设为该方程的解,代入该方程得即故即从而()()()()01212112242000021351111!2111112121213135211111!22!2!211313513521kk k k nnk k a k a a a a k k k k a a a y a x x x n a a x a x x k +-+⎛⎫- ⎪⎝⎭⎛⎫⎛⎫⎛⎫=-=---=- ⎪⎪ ⎪++-⋅⋅+⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫=+-+-++-++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎡-+++-+⎢⋅⋅⋅⋅⋅-⎣因而()()()()()()22222202135135212011221211111!22!2!2111131351352111313513521121!!n k k x n nn x x x x a n x a x x x k x x x a e a x k y C eC x n ++-+-⎤⎥⎦⎡⎤⎛⎫⎛⎫⎛⎫=+-+-++-+⎢⎥⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎡⎤+-+++-+⎢⎥+⎣⎦⎡⎤=+-+-+-+⎢⎥+⎣⎦-=+-故原方程的通解为11n n ∞-=∑()()()101110111120210001234567213,=,112120111111,,,,,,23243524611,,3571nn n n n n n n nn n n n nn n n y a a x y na x na xx a a x x a a a x a n a x a a a a a a a a a a a ∞∞-==∞∞-==∞++=-'=+⎛⎫-+-= ⎪⎝⎭-+--+-++=⎡⎤⎣⎦+++======⋅⋅⋅⋅==⋅⋅⋅∑∑∑∑∑()设方程的解为从而代入方程得即因而()()()()()()023521242000023521222001,352124621113!!5!!21!!24!!2!!111113!!5!!21!!22!!2!!2n n n n n a a n n a a a x x x y a x x x x n n x x x x x x a x a n n --+=⋅-⋅⋅⎡⎤⎡⎤+++=+++++++++++⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎡⎤⎛⎫⎛⎫⎛⎫=++++++++-++++++⎢⎥ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎣⎦因此()()()()()()()222321200032120212113!!21!!113!!21!!121!!x n x n x n x x a a a e x n x x a e x n x y Ce n ---⎤⎢⎥⎢⎥⎣⎦⎡⎤=-+++++++⎢⎥-⎣⎦⎡⎤=++-++++⎢⎥-⎣⎦=+-+-故方程的通解为()()()()()()01210210102321102311110,20,3=1,11041,0,,32234521123431n n n n nn n n n n n n n n n n n y a x x na xx a x n a n a x x a a a a a n a n a n a a a a n n n n n a a n n n n n y C ∞=∞∞-==∞+=+-=-=-++-=⎡⎤⎣⎦+==-+--=≥=-==-----==---=∑∑∑∑(4)令是该方程的解,代入该方程得即比较系数得以及故因而()()3412.31n n x x x n n ∞=-++-∑是方程的解()()()()10112011121101102231102315,=,2120,22,3111032,1,311nn n n n n n n n nnn n n n n n n n n n n n y a x y na x na x na xa a x x xna n a a x a a x xa a a a a n a n a n a a a a n a n ∞∞-==∞∞∞-===∞+=++'=+--=-++-+-=-⎡⎤⎣⎦-==-+=-++=≥==-=-=-+∑∑∑∑∑∑()设方程的解为则代入方程得即比较系数得从而()()()()()()()()()()()1344331234121242114641131141412411.31n n n n n n n n n n n n n a a a n n n n a n n n n n a n n n y C x x x x n n ----∞-=-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=--==--- ⎪⎪ ⎪⎪⎪++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=-=-≥++=-≥-=+-++--∑即因而原方程的通解为8. 试用幂级数解法求下列方程满足所所给定初始条件的解:2222(1)(2)2(1)20,(0)(1)1;(2),(0)0;(3)cos 0,(0),(0)0.x x y x y y y y dyx y y dx d xx t x a x dt '''-+-+====+='+===()()()()12122212121,,12121201.nn n n n n n n n n n n n n n n n n y a x y na xy n n a x xx n n a x x na x a x y x x ∞∞∞--===∞∞∞--==='''===---+-+==-+∑∑∑∑∑∑()设则代入原方程得比较同次项系数,由初始条件可得方程的解为()1001211125,,00,0..11220nn n n n n n n n n n n y a x y na x y a na x a x xy x x ∞∞-==∞∞-=='====⎛⎫-= ⎪⎝⎭=++∑∑∑∑(2)设则由得代入原方程得比较同次幂系数得方程的解为()()()()21220120123423456246230123232345(3),,10,00,,0232435465102!4!6!23243546nn n n n n n n n dx d x x a t na t n n a t dt dt x a x a a a a a t a t a t a t t t t a a t a t a t a a t a t a t ∞∞∞--======-'====+⋅+⋅+⋅+⋅+⎛⎫+++++-+-+= ⎪⎝⎭++++∑∑∑设则由初始条件所以代入原方程得即4602240012123420310421530264010213024502!2!2!4!203204302!5402!6502!4!,0,220322!434!a t a a a a a a t a t a t a t a a a a a a a aa a aa a a a a a a a a aa a a a a a ++⎛⎫⎛⎫⎛⎫++-+-+-++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+=⋅+=⋅+-=⋅+-=⋅+-+====-=-=-=⋅-+==⋅比较系数得又得到1350024246867824682!0549552!4!2!4!6,0,,656!878!1295512!4!6!8!a a a a a a a a a a a a a t x a t t t t -+==⋅-+--+-+==-===⋅⋅⎛⎫=-+-+- ⎪⎝⎭所以习题12-61.设()f x 是周期为π2的周期函数,它在(,ππ-⎤⎦上的表达式为ππ. 32,0,(),0x f x x x -<≤⎧⎪=⎨<≤⎪⎩试问()f x 的傅里叶级数在πx =-处收敛于何值?解:所给函数满足狄利克雷定理的条件,x =-π是它的间断点,在x =-π处,f (x )的傅里叶级数收敛于()()[]()33ππ11π22π222f f -+-+-=+=+ 2.写出函数ππ. 21,0,(),0x f x x x --<≤⎧⎪=⎨<≤⎪⎩的傅里叶级数的和函数.解:f (x )满足狄利克雷定理的条件,根据狄利克雷定理,在连续点处级数收敛于f (x ),在间断点x =0,x =±π处,分别收敛于()()00122f f -++=-,()()2πππ122f f -++-=,()()2πππ122f f -+-+--=,综上所述和函数.()221π00π102π1π2x x x S x x x --<<⎧⎪<<⎪⎪=-=⎨⎪⎪-=±⎪⎩3. 写出下列以π2为周期的周期函数的傅里叶级数,其中()f x 在),ππ-⎡⎣上的表达式为: (1)π,0π4()π,π04x f x x ⎧≤<⎪=⎨⎪--≤<⎩ ;(2)()2()f x x πx π=-≤<;(3)ππ,π22ππ(),22ππ,π22x f x x x x ⎧--≤<-⎪⎪⎪=-≤<⎨⎪⎪≤<⎪⎩ ; (4)()ππcos ()2f x x x=-≤≤. 解:(1)函数f (x )满足狄利克雷定理的条件,x =n π,n ∈z 是其间断点,在间断占处f (x )的傅里叶级数收敛于()()ππ0044022f f +-⎛⎫+- ⎪+⎝⎭==,在x ≠n π,有()π0π-ππ011π1πcos d cos d cos d 0ππ4π4n a f x nx x nx x nx x -⎛⎫==-+= ⎪⎝⎭⎰⎰⎰()π0π-ππ011π1πsin d sin d sin d ππ4π40,2,4,6,,1,1,3,5,.n b f x nx x nx x nx x n n n-⎛⎫==-+ ⎪⎝⎭=⎧⎪=⎨=⎪⎩⎰⎰⎰于是f (x )的傅里叶级数展开式为()()11sin 2121n f x n x n ∞==--∑(x ≠n π)(2)函数f (x )在(-∞,+∞)上连续,故其傅里叶级数在(-∞,+∞)上收敛于f (x ),注意到f (x )为偶函数,从而f (x )cos nx 为偶函数,f (x )sin nx 为奇函数,于是()π-π1sin d 0πn b f x nx x ==⎰,2π20-π12πd π3a x x ==⎰, ()()ππ22-π0124cos d cos d 1ππnn a f x nx x x nx x n===-⋅⎰⎰ (n =1,2,…) 所以,f (x )的傅里叶级数展开式为:()()221π41cos 3nn f x nx n∞==+-⋅∑ (-∞<x <∞)(3)函数在x =(2n +1)π (n ∈z )处间断,在间断点处,级数收敛于0,当x ≠(2n +1)π时,由f (x )为奇函数,有a n =0,(n =0,1,2,…)()()()πππ2π002222πsin d sin d sin d ππ212π1sin 1,2,π2n nb f x nx x x nx x nx x n n n n ⎡⎤==+⎢⎥⎣⎦=--+=⎰⎰⎰ 所以()()12112π1sin sin π2n n n f x nx n n ∞+=⎡⎤=-⋅+⎢⎥⎣⎦∑ (x ≠(2n +1)π,n ∈z )(4)因为()cos2xf x =作为以2π为周期的函数时,处处连续,故其傅里叶级数收敛于f (x ),注意到f (x )为偶函数,有b n =0(n =1,2,…),()()ππ-π0π0π1212cos cos d cos cos d π2π2111cos cos d π2211sin sin 12211π224110,1,2,π41n n x xa nx x nx xn x n x x n x n x n n n n +==⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎛⎫+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥=+⎢⎥+-⎢⎥⎣⎦⎛⎫=-= ⎪-⎝⎭⎰⎰⎰所以f (x )的傅里叶级数展开式为:()()12124cos 1ππ41n n nxf x n ∞+==+--∑ x ∈[-π,π] 4. 将下列函数()f x 展开为傅里叶级数: (1)()πππ(2)4x xf x =-<<-;(2)()π2sin (0)f x xx =≤≤.解:(1) ()ππ0-ππ11ππcos d d ππ422x a f x nx x x -⎛⎫==-= ⎪⎝⎭⎰⎰ []()ππππ-π-πππ1π11cos d cos d x cos d π4242π1sin 001,2,4n x a nx x nx x nx xnx n n--⎛⎫=-=- ⎪⎝⎭=-==⎰⎰⎰()ππππ-π-π1π11sin d sin d xsin d π4242π11n n x b nx x nx x nx x n-⎛⎫=-=- ⎪⎝⎭=-⋅⎰⎰⎰故()()1πsin 14n n nxf x n∞==+-∑ (-π<x <π)(2)所给函数拓广为周期函数时处处连续, 因此其傅里叶级数在[0,2π]上收敛于f (x ),注意到f (x )为偶函数,有b n =0,()ππ0πππ011cos0d sin d ππ24sin d ππa f x x x x x x x --====⎰⎰⎰()()()()()()ππ0ππ02222cos d sin cos d ππ1sin 1sin 1d π211π10,1,3,5,4,2,4,6,π1n na f x nx x x nx xn x n x x n n n n -===+--⎡⎤⎣⎦-⎡⎤=+-⎣⎦-=⎧⎪-=⎨=⎪-⎩⎰⎰⎰所以()()2124cos2ππ41n nxf x n ∞=-=+-∑ (0≤x ≤2π) 5. 设()π1(0)f x x x =+≤≤,试分别将()f x 展开为正弦级数和余弦级数. 解:将f (x )作奇延拓,则有a n =0 (n =0,1,2,…)()()()()ππ0022sin d 1sin d ππ111π2πn nb f x nx x x nx x n==+--+=⋅⎰⎰从而()()()1111π2sin πnn f x nx n∞=--+=∑ (0<x <π)若将f (x )作偶延拓,则有b n =0 (n =1,2,…)()()ππ00222cos d 1cos d ππ0,2,4,64,1,3,5,πn a f x nx x x nx x n n n ==+=⎧⎪=-⎨=⎪⎩⎰⎰()()ππ0π012d 1d π2ππa f x x x x -==+=+⎰⎰从而()()()21cos 21π242π21n n xf x n ∞=-+=--∑ (0≤x ≤π) 6. 将()211()f x xx =+-≤≤展开成以2为周期的傅里叶级数,并由此求级数211n n∞=∑的和.解:f (x )在(-∞,+∞)内连续,其傅里叶级数处处收敛,由f (x )是偶函数,故b n =0,(n =1,2,…)()()1101d 22d 5a f x x x x -==+=⎰⎰()()()1112cos d 22cos d 0,2,4,64,1,3,5,πn a f x nx x x nx xn n n -==+=⎧⎪-=⎨=⎪⎩⎰⎰所以()()()221cos 21π542π21n n xf x n ∞=-=--∑,x ∈[-1,1]取x =0得,()2211π821n n ∞==-∑,故 ()()22222111111111π48212n n n n n n n n ∞∞∞∞=====+=+-∑∑∑∑ 所以211π6n n ∞==∑ 7. 将函数()12(0)f x x x =-≤≤展开成周期为4的余弦级数.解:将f (x )作偶延拓,作周期延拓后函数在(-∞,+∞)上连续,则有b n =0 (n =1,2,3,…)()()220201d 1d 02a f x x x x -==-=⎰⎰ ()()()222022221ππcos d 1cos d 2224[11]π0,2,4,6,8,1,3,5,πn nn x n xa f x x x xn n n n -==-=--=⎧⎪=⎨-=⎪⎩⎰⎰ 故()()()22121π81cos π221n n x f x n ∞=-=-⋅-∑(0≤x ≤2)8. 设11,02()122,2x x f x x x ⎧≤≤⎪=⎨⎪-<<⎩,()01cos π,2n n a a n x s x x ∞==-∞<∞+<+∑,其中πd 102()cos n a f x n x x =⎰,求()52s -.解:先对f (x )作偶延拓到[-1,1],再以2为周期延拓到(-∞,+∞)将f (x )展开成余弦级数而得到 s (x ),延拓后f (x )在52x =-处间断,所以515511122222221131224s f f f f +-+-⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-+-=-+-⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎛⎫=+= ⎪⎝⎭9.设函数()21(0)f x x x =≤<,而()1sin π,n n n x b s x x ∞==-∞<<+∞∑,其中()πd 1,2,3,102()sin n f x n x xb n ==⎰.求()12s-.解:先对f (x )作奇延拓到,[-1,1],再以2为周期延拓到(-∞,+∞),并将f (x )展开成正弦级数得到s (x ),延拓后f (x )在12x =-处连续,故. 211112224s f ⎛⎫⎛⎫⎛⎫-=--=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 10. 将下列各周期函数展开成为傅里叶级数,它们在一个周期内的表达式分别为: (1)()2111 22f x x x ⎛⎫=--≤< ⎪⎝⎭ ;(2) 3. 21,30,()1,0x x f x x +-≤≤⎧=⎨≤<⎩解:(1) f (x )在(-∞,+∞)上连续,故其傅里叶级数在每一点都收敛于f (x ),由于f (x )为偶函数,有b n =0 (n =1,2,3,…)()()112221002112d 41d 6a f x x x x -==-=⎰⎰, ()()()()112221021222cos2n πd 41cos2n πd 11,2,πn n a f x x x x x xn n -+==--==⎰⎰所以()()12211111cos 2π12πn n f x n x n +∞=-=+∑(-∞<x <+∞)(2) ()()303033011d 21d d 133a f x x x x x --⎡⎤==++=-⎢⎥⎣⎦⎰⎰⎰, ()()()()330330221πcos d 331π1π21cos d cos d 3333611,1,2,3,πn nn xa f x xn x n x x x x n n --==++⎡⎤=--=⎣⎦⎰⎰⎰()()()()33033011πsin d 331π1π21sin d sin d 333361,1,2,πn n n xb f x x n x n x x x x n n --+==++=-=⎰⎰⎰而函数f (x )在x =3(2k +1),k =0,±1,±2,…处间断,故()()()122116π6π11cos 1sin 2π3π3n n n n x n x f x n n ∞+=⎧⎫⎡⎤=-+--+-⎨⎬⎣⎦⎩⎭∑ (x≠3(2k +1),k =0,±1,±2,…)习题十二1. 填空题:(1)级数1211()1n n n ∞=+∑的敛散性是 发散(2)级数1()21nn n n ∞=-∑的敛散性是 收敛 (3)已知幂级数级数级数1(2)04nn n a x x x ∞=+==-∑在处收敛,在处发散,则幂级数1(3)nn n a x ∞=-∑的处收敛域为 (1,5](4) 设函数()1()f x x x ππ=+-<<的傅里叶级数的和函数为(),(5)S x S π则等于 1(5)设函数2()(0)f x x x π=≤≤的正弦函数1sin nn bnx ∞=∑的和函数(),(,2)()S x S x ππ∈=则当x 时, 2(2)x π--2. 选择题:(1) 正项级数1nn a∞=∑收敛的充分条件是( C )。

华南理工大学高数习题册答案汇总

华南理工大学高数习题册答案汇总

第七章 多元函数微分学作业1 多元函数1.填空题(1)已知函数22,y f x y x y x ⎛⎫+=- ⎪⎝⎭,则(),f x y =()()22211x y y -+; (2)49arcsin2222-+++=y x y x z 的定义域是(){}22,49x y x y ≤+≤; (3))]ln(ln[x y x z -=的定义域是(){}(){},,0,1,0,1x y x y x x y x x y x >>+⋃<<≤+;(4)函数⎪⎩⎪⎨⎧=≠=0,0,sin ),(x y x x xyy x f 的连续范围是 全平面 ;(5)函数2222y x z y x+=-在22y x =处间断.2.求下列极限(1)00x y →→;解:000016x t t y →→→→===-(2)22()lim (ex y x y x y -+→+∞→+∞+).解:3y x =22()2()lim (e lim (e 2x y x y x y x x y y x y x y xe ye -+-+--→+∞→+∞→+∞→+∞⎡⎤+=+-⎣⎦)) 由于1lim e lim lim 0tt t t t t t t e e-→+∞→+∞→+∞===,2222lim e lim lim lim 0tt t t t t t t t t t e e e -→+∞→+∞→+∞→+∞====,故22()2()lim (elim (e 20x y x y x yx x y y x y x y xe ye -+-+--→+∞→+∞→+∞→+∞⎡⎤+=+-=⎣⎦)) 3.讨论极限26300lim y x yx y x +→→是否存在.解:沿着曲线()()3,,0,0y kx x y =→,有336626262000lim lim 1x x y kx x y kx kx y x k x k →→=→==+++因k 而异,从而极限26300lim y x yx y x +→→不存在4.证明⎪⎩⎪⎨⎧=+≠++=0,00,2),(222222y x y x y x xyy x f 在点)0,0(分别对于每个自变量x 或y都连续,但作为二元函数在点)0,0(却不连续.解:由于(,0)0,(0,)0,f x f y ≡≡从而可知在点)0,0(分别对于每个自变量x 或y 都连续,但沿着曲线()(),,0,0y kx x y =→,有2222222000222lim lim 1x x y kx xy kx kx y x k x k →→=→==+++因k 而异, 从而极限()0lim ,x y f x y →→不存在,故作为二元函数在点)0,0(却不连续.作业2 偏导数1.填空题(1)设22),(y x y x y x f +-+=,则=)4,3(x f 25; (2)(3)设(),ln 2y f x y x x ⎛⎫=+⎪⎝⎭,则1x y f y==∂=∂12; (3)设2sin x u xz y =+,则42ux y z∂=∂∂∂ 0 ;(4)曲线22:44x y z y ⎧+=⎪Γ⎨⎪=⎩在点()2,4,5处的切线与Ox 轴正向的倾角是4π. 2.设2e xyu =, 证明 02=∂∂+∂∂yu y x u x. 证:因为222312,xxy yu ux e e x y y y∂∂-==∂∂ 所以222223221222220x x x xy y y y u u x x x x y xe ye e e x y y y y y ∂∂--+=+=+=∂∂3. 设xyz ln =,求22x z ∂∂,yx z∂∂∂2.解:ln ln x yz e⋅=,从而222ln ln ln ln ln ln ln 222ln ln ln ln ln ,,x y x y x y x z y z y y y y e e e y x x x x x x ⋅⋅⋅∂∂--⎛⎫=⋅=⋅+⋅= ⎪∂∂⎝⎭2ln ln ln ln ln ln ln 11ln ln 1x y x y x z y x y x e e y x y x y x y xy⋅⋅∂⋅+=⋅⋅+⋅⋅=∂∂4.设y x z u arctan =, 证明 0222222=∂∂+∂∂+∂∂zuy u x u . 解:因为()()2222222222211022,1uyz u yz x xyzz xy x y x x x y x y y ∂∂-⋅-=⋅⋅===∂+∂⎛⎫+++ ⎪⎝⎭()()2222222222221022,1u x xz u xz y xyzz yy x y y x x y x y y ∂--∂-⋅=⋅⋅==-=∂+∂⎛⎫+++ ⎪⎝⎭22arctan ,0,u x uz y x∂∂==∂∂ 所以()()2222222222222200u u u xyz xyzx y z x y x y ∂∂∂-++=++=∂∂∂++ 5.设函数()()2221sin ,0,0,x x y x f x y xx ⎧+≠⎪=⎨⎪=⎩.(1)试求(),f x y 的偏导函数; 解:当()()()3222221110,,42sin cos x x f x y x xyx x y xx x-≠=+++⋅()21,2sin y f x y x y x =,()()()322211,42sin cos x f x y x xy x y x x=+-+当()()()()222001sin 0,0,0,0,lim lim 00x x x x x y f x y f y x x f y x x→→+--≠===-()()()000,0,000,lim lim 0y y y f y y f y f y y y ∆→→+∆--===∆-∆,()()()322211,42sin cos x f x y x xy x y x x=+-+(2)考察偏导函数在()0,3点处是否连续.()()200331lim ,lim 2sin00,3y y x x y y f x y x y f x→→→→===,故(),y f x y 在()0,3点处连续, ()()()3222003311lim ,lim 42sin cos x x x y y f x y x xy x y x x →→→→⎡⎤=+-+⎢⎥⎣⎦不存在,从而(),x f x y 在()0,3点处不连续作业3 全微分及其应用1.填空题(1)),(y x f z =在点),(00y x 处偏导数存在是),(y x f z =在该点可微的必要 条件;(2)函数23z x y =在点()2,1-处,当0.02,0.01x y ∆=∆=-时有全增量z ∆=0.2040402004-,全微分d z =0.20-;(3)设),(y x f z =在点),(00y x 处的全增量为z ∆,全微分为dz ,则),(y x f 在点),(00y x 处的全增量与全微分的关系式是()z dz o dz ∆=+;(4)22yx x u +=在点)1,0(处的d u =dx ;(5)xy u cos )(ln =,则d u =cos cos (ln )ln ln sin ln x x y y xdx dy y y ⎡⎤-⋅+⎢⎥⎣⎦; (6)zyx u )(=,则d u =()ln zx z z x dx dy dz y x y y ⎛⎫-+⎪⎝⎭;(7)2221zy x u ++=,则d u = ()()3222212x y z -++ .2.证明:(),f x y =在点()0,0处连续,()0,0x f 与()0,0y f 存在,但在()0,0处不可微.证:由于(0,)0,(,0)0,f y f x ==从而(0,0)0,(0,0)0.y x f f ==但是limlimx x y y ∆→∆→∆→∆→=不存在,从而在()0,0处不可微.3.设函数()()222222221sin ,0,0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩试证:(1)函数(),f x y 在点()0,0处是可微的;证:因为 ()()()()22001sin0,00,00,0limlim 0,0,000x y x x x f x f x f f x x →→--====-- 又()()()()()22221sinlimlim0x x y y x y x y ∆→∆→∆→∆→∆+∆∆+∆==所以函数(),f x y 在点()0,0处是可微的(2)函数(),x f x y 在点()0,0处不连续.证:当()222222221210,,2sincos x x x y f x y x x y x y x y+≠=-+++ ()2222220000121lim ,lim 2sin cos x x x y y x f x y x x y x y x y ∆→∆→∆→∆→⎛⎫=- ⎪+++⎝⎭不存在, 故(),x f x y 在点()0,0处不连续作业4 多元复合函数的求导法则1.填空题(1)设2ln ,,32yz u v u v y x x===-,则 z x ∂=∂()()223222ln 3232y y y x x x y x ----; (2)设22,cos ,sin z x y xy x u v y u v =-==,则zv∂=∂()333sin cos sin 2sin sin 2cos u v v v v v v +--; (3)设()22,zu x y z x y =-=+,则u x ∂=∂()()222ln z x y x y x x y x y ⎡⎤+--+⎢⎥-⎣⎦;(4)设2sin z x y x ==,则dd zx =2x . 2.求下列函数的偏导数(1)设,,x y u f y z ⎛⎫=⎪⎝⎭其中f 具有一阶连续偏导数,求,u x ∂∂u y ∂∂和uz ∂∂; 解:111,f u f x y y ∂=⋅=∂121222222211,u x x u y yf f f f f f y y z y z z z z∂--∂--=⋅+⋅=+=⋅=∂∂ (2)设(),,,u f x y z =()(),,,z y t t y x ϕψ==,其中,,f ϕψ均可微,求u x ∂∂和uy∂∂. 解:因为1231212,,du f dx f dy f dz dz dy dt dt dy dx ϕϕψψ=++=+=+ 从而()1231212du f dx f dy f dy dy dx ϕϕψψ=++++⎡⎤⎣⎦()()1322231321f f dx f f f ϕψϕϕψ=+++++所以1322231321,u u f f f f f x yϕψϕϕψ∂∂=+=++∂∂ 3.验证下列各式(1)设()22yz f x y =-,其中()f u 可微,则211z z z x x y y y ∂∂+=∂∂; 证:因为222212,z xyf z y f x f y f f ''∂-∂==+∂∂ 所以222211121121z z z xyf y f zx x y y x x f y f f yf y ''⎛⎫∂∂∂-+=++== ⎪∂∂∂⎝⎭ (2)设()23y z xy x ϕ=+,其中ϕ可微,则220z zx xy y x y ∂∂-+=∂∂. 证:因为()()222,33z y z y y xy x xy x x y xϕϕ∂∂''=-+=+∂∂ 所以22z z x xy y x y ∂∂-+=∂∂()()2222233y y x y xy xy x xy y x x ϕϕ⎛⎫⎛⎫''-+-++ ⎪ ⎪⎝⎭⎝⎭()()22222033y y x y xy y x y xy y ϕϕ''=-+--+=4.设22,,y z xf x x ⎛⎫= ⎪⎝⎭其中函数f 具有二阶连续偏导数,求2z x y ∂∂∂. 解:因为221212222,z y y f x f f f xf f x x x ⎛⎫∂-=++⋅=+- ⎪∂⎝⎭所以22212212222222222z y y y y y y f xf f f xf f f x y y x x x x x x⎡⎤∂∂=+-=+⋅--⋅⎢⎥∂∂∂⎣⎦ 31222224y yf f x=-4.设)()(xy x x y u ψϕ+=其中函数ψϕ,具有二阶连续偏导数,试证:022222222=∂∂+∂∂∂+∂∂y u y y x u xy x u x . 证:因为222223432,u y y u y y y x x x x x x x ϕψψϕϕψ∂-∂'''''''=+-=++∂∂222322211,,u y y u u x y x x x y x y x xϕψϕϕψϕψ''''∂∂∂'''''''=---=+=+∂∂∂∂ 从而左边222234323222120y y y y y x xy y x x x x x x x x ϕψϕϕψϕϕψ''''⎛⎫⎛⎫⎛⎫''''''''''=+++---++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭作业5 隐函数求导法1.填空题(1)已知3330x y xy +-=,则d d y x =22x yx y--; (2)已知20x y z ++-=,则x y ∂=∂(3)已知xzz y =,则d z =2ln ln z dy yz zdxxy yz y--;(4)已知222cos cos cos 1x y z ++=,则d z =sin 2sin 2sin 2xdx ydyz+-;(5)已知(),z f xz z y =-,其中f 具有一阶连续偏导数,则d z =12121zf dx f dyxf f ---.2.设(),0,F y z xy yz ++=其中F 具有二阶连续偏导数,求22zx∂∂.解:212120,yF z z z F F y y x x x F yF -∂∂∂⎛⎫+⋅+=⇒= ⎪∂∂∂+⎝⎭ ()()[]()22122122122221212x x x F z F y yz F yF F F yF F z y y x x F yF F yF '⋅+++-+⎡⎤⎛⎫∂∂⎣⎦=-=- ⎪∂∂++⎝⎭()()()()()2222112111222212221231212y F F F yF F F yF y F F F F F yF F yF -+++⎡⎤-⎣⎦=+++3.求由方程组222222320z x yx y z ⎧=+⎪⎨++=⎪⎩所确定的()y x 及()z x 的导数d d y x 及d d z x .解:由已知()2222222602460dz xdx ydydz xdx ydy xdx dz xdx zdz xdx ydy zdz -=⎧=+⎧⎪⇒⎨⎨+-+=++=⎪⎩⎩()()22606,132623220xdx z dz dz x dy x xy dx z dx y yz xdx ydy z xdx ydy -++=⎧+⎪⇒⇒==-⎨+++++=⎪⎩4.设函数()z f u =,又方程()()d xy u u P t t ϕ=+⎰确定u 是,x y 的函数,其中()f u 与()u ϕ均可微;()(),P t u ϕ'连续,且()1u ϕ'≠. 试证:()()0z zP y P x x y∂∂+=∂∂. 证:因为()(),z u z uf u f u x x y y∂∂∂∂''=⋅=⋅∂∂∂∂, ()()()(),1P x u u uu P x x x x u ϕϕ∂∂∂'=⋅+='∂∂∂- ()()()(),1P y u u uu P y y y y u ϕϕ-∂∂∂'=⋅-='∂∂∂- ()()()()()()()()()()011P x P y z zP y P x P y f u P x f u x y u u ϕϕ-∂∂''+=+=''∂∂-- 5.设函数()f u 具有二阶连续偏导数,而()e sin xz f y =满足方程22222e xz z z x y∂∂+=∂∂,求()f u . 解:因为()()()()222sin ,sin sin x xx z z f u e y f u e y f u e y x x∂∂''''==+∂∂ ()()()()222cos ,cos (sin )x x x z z f u e y f u e y f u e y y y∂∂''''==+-∂∂()()222222()e ,()0x x z zf u e f u f u f u x y∂∂''''+==⇒-=∂∂ 特征方程为()2121210,1,1,u u r r r f u c e c e --===-=+作业6 方向导数与梯度1.填空题(1)在梯度向量的方向上,函数的变化率 最大 ; (2)函数在给定点的方向导数的最大值就是梯度的 模 ; (3)函数2249z x y =+在点()2,1的梯度为grad z ={16,18};(4)函数xyz u =在点)1,1,1(处沿方向}cos ,cos ,{cos γβα=l的方向导数是cos cos cos αβγ++,且函数u 在该点的梯度是{1,1,1};(5)函数e cos()xu yz =在点)0,0,0(处沿方向}2,1,2{-=l的方向导数是23; (6)函数)ln(22z y x u ++=在点)1,0,1(A 处沿A 指向点)2,2,3(-B 方向的方向导数是12. 2.求222z y x u -+=在点)0,0,(a A 及点)0,,0(a B 处的梯度间的夹角.解:{}2,2,2{2,0,0}AAgradux y z a =-={}2,2,2{0,2,0}B Bgradu x y z a =-=夹角余弦为cos 02A B A Bgradu gradu gradu gradu πϕϕ⋅==⇒=⋅3.求二元函数22z x xy y =-+在点()1,1-沿方向{}2,1l =的方向导数及梯度,并指出z 在该点沿那个方向减少得最快沿那个方向z 的值不变 解:(){}(){}1,11,12,23,3gradz x y y x --=--=-25l ⎧=⎨⎩,{3,3}5zl ∂=-⋅=-∂z 在该点沿梯度相反方向,即方向减少得最快;沿与梯度垂直的那个方向,即±方向z 的值不变 4.设x轴正向到l 得转角为α,求函数()22220,0,x y f x y x y +>=+=⎩在点()0,0处沿着方向l 的方向导数.解:{}cos ,sin ,cos l αααα===由于该函数在点()0,0处不可微,从而不能用公式,只能由定义得出沿着方向l 的方向导数:()()00,0,0lim x y f x y f fl ρρρ→→→→-∂===∂1cos sin sin 22ααα==作业7 偏导数的几何应用1.填空题(1)已知曲面224z x y =--上点P 的切平面平行于平面221x y z ++=,则点P的坐标是(1,1,2);(2)曲面e 23zz xy -+=在点()1,2,0处的切平面方程是24x y +=;(3)由曲线223212x y z ⎧+=⎨=⎩绕y轴旋转一周所得到的旋转曲面在点(M处的指向内侧的单位法向量为0,⎧⎪⎨⎪⎩; (4)曲面2222321x y z ++=在点()1,2,2-处的法线方程是122146x y y -+-==-; (5)已知曲线23,,x t y t z t ===上点P 的切线平行于平面24x y z ++=,则点P的坐标是()1,1,1--或111,,3927⎛⎫--⎪⎝⎭. 2.求曲线22sin ,sin cos ,cos x t y t t z t ===在对应于的点π4t =处的切线和法平面方程.解:切点为{}224111,,,2sin cos ,cos sin ,2cos sin {1,0,1}222T t t t t t tπ⎛⎫=--=- ⎪⎝⎭,从而切线为11110222,11012x z x y z y +-=⎧---⎪==⎨-=⎪⎩, 法平面为110,022x z x z ⎛⎫---=-= ⎪⎝⎭3.求两个圆柱面的交线22221:1x y x z ⎧+=⎪Γ⎨+=⎪⎩在点M 处的切线和法平面的方程.解:1{2,2,0}|//{1,1,0}M n x y =,2{2,0,2}|//{1,0,1}M n x z ={}{}1,1,01,0,1{1,1,1}T =⨯=--==,法平面为0x y z --+= 4.求曲面()22210ax by cz abc ++=≠在点()000,,x y z 处的切平面及法线的方程. 解:000000{2,2,2}//{,,}n ax by cz ax by cz =切平面为0001ax x by y cz z ++=,法线为000000x x y y z z ax by cz ---== 5.求函数22221x y z a b ⎛⎫=-+ ⎪⎝⎭在点M 处沿曲线22221x y a b +=在此点的外法线方向的方向导数.解:2222,,MM x y gradza b a b ⎧⎪⎧⎫=--=--⎨⎬⎨⎩⎭⎪⎪⎩⎭2222,M x y n a b a b ⎧⎫==⎨⎬⎩⎭⎪⎪⎩⎭指向外侧为此点的外法线方向,方向导数为(2a z n gradz n n∂=⋅=-∂6.证明:曲面y z xf x ⎛⎫=⎪⎝⎭在任意点处的切平面都通过原点,其中f 具有连续导数. 证:设切点为()000,,x y z ,则000000000000,,1,y y y y y n f f f z x f x x x x x ⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪''=--=⎨⎬⎪ ⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩⎭ 切平面为()()()000000000000y y y y f f x x f y y z z x x x x ⎡⎤⎛⎫⎛⎫⎛⎫''--+---=⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦令0x y z ===,得左边等于右边,从而原点在任意点处的切平面上,也即任意点处的切平面都通过原点。

高数(理工类-第四版)上册复习练习题答案

高数(理工类-第四版)上册复习练习题答案

1处是否连续在, ,判定函数0 0101212)( 11=⎪⎪⎩⎪⎪⎨⎧=≠+-=x x x x f x x 110021(00)lim121xx xf →+-+==+解:f x xx()lim00212110011-=-+=-→-所以是的一个跳跃间断点x f x =0()2处都连续.及在之值,使,确定 , ,,20)(2412101)1()(1==⎪⎪⎩⎪⎪⎨⎧∞+<+≤≤+<≤-+=x x x f b a xc x x b ax x xe x f xx因在处连续 f x x f f f ()()()()=⇔-==+0000e b b b e ==∴=即,()2(20)(2)(20)(20)(2)22(20)3f x x f f f f f a b a e f =⇔-==+-==+=++==而在处连续 3232ea e a -+==令,3已知,, ,求.f x x x x x x f x ()ln()sin ()=-≤>⎧⎨⎪⎩⎪'101032 f f f f x x ()()()()0000000-=+===,在处连续'=-=-=-='=-==-→-→-→-+→+→+f f x f x x xx x f f x f x x x xx x x x x ()lim ()()lim ln()lim ()lim ()()lim sin001000100000300300002'=f ()00'=-≤->⎧⎨⎪⎪⎩⎪⎪f x x x x x x x x ()sin cos 310211023,,5.要使点(1,3)为曲线23bx ax y +=的拐点,则a ,b 的值为( )29,23)(=-=b a A 23,29)(-==b a B6,3)(=-=b a C 1,2)(==b a D5曲线3)1(-=x y 的拐点是( ))8,1)((-A )0,1)((B )1,0)((-C )1,2)((D222222arctan (),ln(1)2()2()11()2(1)().( )2x t d yy y x dx y t A B t C t D t=⎧==⎨=+⎩++-6 设确定了则. .. 答 C7设)(x f 在a x =处可导且b a f =')(,求极限h hx a f h a f x )2()(lim 0+--→。

高等数学(上册)第12章(1)习题答案_吴赣昌_人民大学出版社_高数_

高等数学(上册)第12章(1)习题答案_吴赣昌_人民大学出版社_高数_

高等数学(上册)第12章(1)习题答案_吴赣昌_人民大学出版社_高数_第十二章微分方程内容概要§12.1微分方程的基本概念内容概要课后习题全解1.指出下列微分方程的阶数:知识点:微分方程阶的定义★(1)某(y)24yy3某y0;解:出现的未知函数y的最高阶导数的阶数为1,∴方程的阶数为1。

注:通常会有同学误解成未知函数y的幂或y的导数的幂。

例:(错解)方程的阶数为2。

((y))★(2)2某y2y某2y0;解:出现的未知函数y的最高阶导数的阶数为2,∴方程的阶数为2。

★(3)某y5y2某y0;解:出现的未知函数y的最高阶导数的阶数为3,∴方程的阶数为3。

★(4)(7某6y)d某(某y)dy0。

(n)思路:先化成形如F(某,y,y,,y解:化简得)0的形式,可根据题意选某或y作为因变量。

dy6y7某,出现的未知函数y的最高阶导数的阶数为1,∴方程的阶数为1。

d某某y2指出下列各题中的函数是否为所给微分方程的解:知识点:微分方程的解的定义思路:将所给函数及其相应阶导数代入方程验证方程是否成立。

★(1)某y2y,y5某2;2解:将y10某,y5某代入原方程得左边所以某10某25某22y右边,y5某2是所给微分方程的解。

y2y0,yC1co某C2in某;解:yC1in某C2co某,将y2C1co某2C2in某,yC1co某C2in某,代入原方程得:左边所以★(3)y2y2C1co某2C2in某2(C1co某C2in某)右边,yC1co某C2in某是所给微分方程的解。

y22yy20,yC1某C2某2;某某2解:将yC1某C2某,yC12C2某,y2C2,代入原方程得:2C14C2某2(C1某C2某2)22y左边=yy22C20右边2某某某某所以yC1某C2某2是所给微分方程的解。

y(12)y12y0yC1e1某C2e2某;1某解:将yC1eC2e2某,yC11e1某C22e2某,yC112e1某C222e2某,代入原方程得:左边y(12)y12y22C11e1某C22e2某(12)(C11e1某C22e2某)12(C1e1某C2e2某) 0所以右边,yC1e1某C2e2某是所给微分方程的解。

大一高数习题和答案

大一高数习题和答案

⼤⼀⾼数习题和答案⼀、选择题1、某质点作直线运动的运动学⽅程为223t t x +=(SI), 则该质点作 ( ) (A )匀加速直线运动,加速度沿x 正⽅向. (B) 匀加速直线运动,加速度沿x 负⽅向. (C) 匀减速直线运动,加速度沿x 正⽅向. (D) 匀减速直线运动,加速度沿x 负⽅向.2、物体在恒⼒F 作⽤下作直线运动,在时间1t ?内速率由v 增加到v 2,在时间2t ?内速率由v v 32增加到,设F 在1t ?内的冲量是1I ,在2t ?内的冲量是2I ,那么() (A)21I I > (B) 21I I <(C) 21I I = (D) 不能确定3、物体在恒⼒F 作⽤下作直线运动,在时间1t ?内速度由v 增加到2v ,在时间2t ?内速度由2v v 3增加到,设F 在1t ?内作的功是1W ,在2t ?内作的功是2W ,那么()(A ) 21W W > (B ) 21W W <(C ) 21W W = (D )不能确定4、关于电场强度定义式0q F E=,下列说法中哪个是正确的?() (A) 场强E的⼤⼩与试探电荷 0q 的⼤⼩成反⽐.(B) 对电场中某点,试探电荷的受⼒F与0q 的⽐值不因0q ⽽改变.(C) 试探电荷受⼒F 的⽅向就是场强E的⽅向.(D) 若场中某点不放试探电荷0q ,则F =0,从⽽E=0.5、对于⼀个⼒学系统,下述哪种情况下系统的机械能守恒?()(A)系统所受合外⼒为零. (B)系统有⾮保守内⼒做功.(C)⾮保守内⼒和系统所受外⼒都不做功. (D)系统所受各个外⼒做功之和不为零.6、速度为v 的⼦弹,打穿⼀块⽊板后速度为零,设⽊板对⼦弹的阻⼒是恒定的.那末,当⼦弹射⼊⽊板的深度等于其厚度的⼀半时,⼦弹的速度是()(A) v/2. (B) v/4 . (C) v/3. (D) v/2.7、质⼦在加速器中被加速,速度变为0.8c (c 为真空中的光速)时,其质量变为静⽌质量的⼏倍() (A)5/4倍 (B) 5/3 倍 (C)2倍 (D)没有正确答案8、边长为a 的正⽅形薄板静⽌于惯性系K 的XOY 平⾯内,且两边分别与X ,Y 轴平⾏。

高数练习册答案

高数练习册答案

第一章 函数与极限部分习题答案§1 映射与函数一、填空题:1、224>-<<-x x 或2、)01(1ln>>-=x x x y 3、奇函数 4、41 §2 数列的极限一、填空题:1、不存在 2、必要 3、1二、计算题:1、0 2、1 3、21§3 函数的极限一、填空题:1、 充要 2、1 3、1;不存在 二、计算题:1、 6 2、21 3、62- 4、(1):1;(2):-1;(3):不存在§4 无穷小和无穷大二、计算题:1、0 2、1 3、2§5 极限的运算法则一、计算题:1、-11 2、32 3、214、-15、236、17、528、1二、计算:a=2; b=-8 三、计算;a=1; b=-1§6 极限存在准则 两个重要极限一、填空题:1、0;1;1;0 2、1-e ;2e ;3e ;2e ;二、计算题:1、0; 2、2; 3、2; 4、2e ; 5、 3-e ; 6、6-e ;三、计算:1§7无穷小的比较一、 计算题:1、2; 2、32; 3、0; 4、1 二、 计算题;3=α§8函数的连续性与间断点一、 填空题:1、充要; 2、可去;二、不连续,跳跃间断点 三、跳跃间断点 四、41=a §9连续函数的运算与初等函数的连续性一、计算题;∞,21,31;二、1、2ln π2、1;3、0;4、1三、计算a=1; b=-1第一章自测题一、填空题:1、0≠x,1,-1; 2、0; 3、0; 4、2; 5、21三、计算题:1、2 x ; 2、1; 3、1; 4、3e ; 5、; 6、41; 7、1; 8、1四、计算;a=1; 23-=b§ 2.1 二、 )(a φ;三、 4311;33x ---;四、460;470x y x y --=++=;五、连续且可导。

§2.2 二、2,e e ππ--; 三、(1; (2);(3)1tan 221111(cos sin sec )x e x x x x-+;(4)22sin 2[(sin )(cos )]x f x f x -。

同济版高数下习题册答案

同济版高数下习题册答案
学霸联
同济第六版高数下习题册答案
第八章
一、设 f ( x, y)
2
多元函数的微分法及其应用
§1 多元函数概念
2 y , ( x, y)
2 2 2 2
x
x
2
2 y , 求:
4
2 f [ ( x, y), y ] .
2 2 4
答案: f ( ( x , y ), y )
(x
y )
y
x
4
2x y
2y
二、求下列函数的定义域: 1、 f ( x, y )
2
xy sin
1 x 0,
2
y
2
, ( x, y ) ( x, y )
( 0,0 ) ( 0,0 )
在整个 xoy 面上连续。
(0 ,0 ) 时,
(0,0 ) 时, f ( x, y )为初等函数,连续 。当 ( x, y ) 1 y
2
0
f ( 0,0 ) ,所以函数在( 0,0)也连续。所以函数
在整个 xoy 面上连续。 六、设 z x y 2 f ( x y) 且当 y=0 时 z 解: f(x)= x
x
3
,Fy
1
2 3
1
y
3
, Fz
1
2 3
1
z , z0 ) 0 a
2
3
在任一点
x0 , y 0 , z0
处的切平面方程为
1 2
x0
1
3
y0 3 ( y
y0)
z0 3 ( z
在在三个坐标轴上的截距分别为 证明曲面
x0 3 a 3 , y 0 3 a 3 , z0 3 a 3 , 在三个坐标轴上的截距的平方和为 0) 处的切平面都通过原点

高等数学教程 课后答案(上海大学理学院数学系 著) 上海大学出版社

高等数学教程 课后答案(上海大学理学院数学系 著) 上海大学出版社

5. a = −π , b = 0 6. (1)当 a = 0, b ≠ 1 时,有无穷间断点 x = 0 ; (2)当 a ≠ 1, b = e 时,有无穷间断点 x = 1 . 习题 1-9 (A) 1.连续区间为: (−∞,−3), (−3,2), (2,+∞)
lim f ( x) =
x →0
1 2
8. a = b 9.
6 5
10. 第二类,第一类 三. 1. ϕ ( x) = 4. 4 7.
1 ln a 2
x +1 x −1
2. α = − 5.
e4
2004 1 ,β = 2005 2005
3. lim x n = 1 n →∞ 6. -50
8. 当 α ≤ 0 时, f ( x) 在 x = 0 处不连续;
1 2
(4)0; (8)
π2 . 8
总复习题一 一. 1. D 6. D 2. D 7. D 3. D 8. C 4. B 9. D 5. C 10. D
2 ⎧ ⎪x − x , x < 0 二.1. f (− x) = ⎨ 2 ⎪ ⎩x , x ≥ 0
2. arcsin(1 − x 2 ) , [− 2 , 2 ] 3. -1 4. 充分,必要 5. 充分,必要 6. 充分必要 7.
(3) p = 21000 (元) 习题 1-1 (B) 1. f ( x) 为偶函数.
2. f ( x) = x 2 − 2, f ( x − ) = x 2 + 3. f [ g ( x)] = ⎨ 4.
3 + 2x 2 1+ x2 ⎧1 − e − x , − 1 < x < 0 x ≤ −1 ⎩− 1 , ⎧0, x < 0 ⎩x , x ≥ 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所应满足的初始条件.
14
一阶微分方程
一般,未知函数含于变上限的积分中时,常可 通过对关系式两边求导而化为微分方程再找出
初始条件而解之.
解 将 得关 系 f(式 x)f( fx )2 x 0 2 x 2f 2 tf d (tx )l n2 2 两 f(边 x)求 导 ,
一阶微分方程
即 C (x)dxQ (x)eP (x)d xdx
C (x)Q (x)eP(x)dxdxC
设 yC(x)eP(x)d 是 x dyP(x)yQ(x)的 解 . dx
一阶线性非齐次微分方程的通解为
y e P (x )d x [Q (x )e P (x )d x d x C ]
x
x
一阶线性非 齐次方程
y

e
1dx x

sinx x
e

1 x
dx
dx
C
1 xsin xdxC1xcoxsC
22
一阶微分方程
例 如图所示,平行于y 轴的动直线被曲线 y = f (x)
与yx3(x0)截下的线段PQ之长数值上等于
阴影部分的面积, 求曲线 y = f (x).
当轮船的前进速度为v0时, 推进器停止工作, 已知船受水的阻力与船速的平方成正比 (比例系 数为mk,其中k > 0为常数,而m为船的质量).问经过
多少时间, 船的速度减为原速度的一半?
解 由题意
mdv mk2v dt
初始条件 v(0)v0
解得 1 kt C C 1 1 kt 1
dy P(x)dx, y
dyyP(x)dx,
ln|y|P (x)dxlnC 1,(C1为任意常数)
齐次方程的通解为 yCeP(x)dx (C eC1 )
17
一阶微分方程
2. 线性非齐次方程 dyP(x)yQ( x ) dx
线性齐次方程是线性非齐次方程的特殊情况.
得 dy ky(800 y),其中k > 0为比例常数.
dt
分离变量
dy kdt,
y(800y)
8
一阶微分方程
dy kdt, y(800y)
初始条件 y(0)1, y(12)3

11 1 dykdt,
80y 0 800y
两边积分,得 8 1[ 0ly 0 n ln 8(0 y)0 ]k tC 1,
病流行时及时采取措施是至关重要的.
10
一阶微分方程
例 有高为1米的半球形容器, 水从它的底部小孔 流出, 小孔横截面积为1平方厘米 (如图). 开始时 容器内盛满了水, 求水从小孔流出过程中容器里 水面的高度h(水面与孔口中心间的距离)随时间t 的变化规律.
解 由力学知识 得,水从孔口
流出的流量为
解 yl1nydy1xdx ln1ydlny1xdx
llnn y ln x lC nlnCx
lnyCx
通解为 y eCx
5
一阶微分方程
注 应用问题建立微分方程的方法: 方法大体有两种
第一种方法
直接利用物理定律或几何条件列出方程, 常见的物理定律有力学、热学、光学、电学 的定律;
负号两是端由积于分当 t 增加时M单调减少
dM dt,ln M tln C,即
M
代M 入t0M0,得M0 Ce0 C
MCet ,
通解
特解 MM0et 衰变规律
7
一阶微分方程
初始条件:
例 求游船上的传染病人数. y(0)1, y(12)3
一只游船上有800人, 一名游客患了某种传染病,
QdV0.62 S 2gh dt
流量系数 孔口截面面积 重力加速度
V (1 h 3 1 0 0 h 2 ),d V (2 0 0 h h 2 )d h11 3
一阶微分方程
(20 h 0h2)dh0.622gd ht,
可分离变量方程
d t (20h0 h 3)d h ,

(x3 y)2
x
f (x)dx
0

xydxx3y 0
y
y3x2 y 积分方程
即 yy3x2
一阶非齐次线性方程
O
y x3
Q
yf(x)
P
xx
23
一阶微分方程
0x 0
ydxx03
y
yy3x2 P(x)1, Q(x)3x2
y 0edx 3x2edxdxC
解 分离变量 1yy2dy1xx2dx
两端积分
1
y y2
dy

x 1 x2 dx
1ln1 ( y2)1ln1 ( x2) 1 ln C
2
2
2
ln 1 (y2)ln C (1x2)
1y2C(1x2)为方程的通解.
隐式通解
4
一阶微分方程
求 方 程 x y ylny 的 通 解 .
到其他地方,其速率与血液中的葡萄糖含量成正比.
试列出描述这一现象的微分方程, 并解之.
解 因为血液中的葡萄糖含量的变化率 d G 等于增 dt
加速率与减少速率之差,而增加速率为常数k, 减少
速率为G, 其中为正的比例常数,所dG以kG,
dt
25
一阶微分方程
dGkG,
dt
即 dGGk. 关于G的一阶线性非齐次方程
dt 由通解公式,得
G (t) e d t[k ed td t C ] k Cet .
设G(0)表示最初血液中葡萄糖含量,则可确
定出 于是
CG(0)k,
G (t) k[G (0) k]et.
26
一阶微分方程解初值问题y : e (y xx2P ( 0x 1)d )x 1y[Q 2(xx ) ye cP (ox )xd sx d x 0 C ]
12小时后有3人发病. 由于这种传染病没有早期症状,
故感染者不能被及时隔离. 直升机将在60至72小时
将疫苗运到,试估算疫苗运到时患此传染病的人数. 设传染病的传播速度与受感染的人数及未受感染的
人数之积成正比.
解 用 y ( t )表示发现首例病人后 t 小时时的感染人
数, 800y可(t分)表离示变t量刻微未分受方感程染的人数,由题意,
第二种方法
取小元素分析, 然后利用物理定律列出 方程(类似于定积分应用中的元素法).
6
一阶微分方程
例 衰变问题. 衰变速度与未衰变原子含量M成
正比,已M 知 t0M 0,求衰变过程中铀含量 M (t) 随时间 t 变化的规律.
解 衰变速度 d M , 由题设条件 分离变量 dt
ddM t M(0衰变系 ) dM 数 M dt
线性齐次方程的通解是 CeP(x)dx,
显然线性非齐次方程的解不会是如此, 但它们 之间应存在某种共性.
设想 非齐次方程 dyP(x)yQ(x)的解是
dx
yC( x) eP(x)dx
待定函数
18
一阶微分方程
对 yC(x)eP(x)dx求,导 得
dyP(x)yQ(x) dx
yC(x)eP(x)dxC ( x )eP(x)dx[P(x)]
对应齐次 方程通解
非齐次方程的一个特解
注 一阶线性方程解的结构及解非齐次方程 的常数变易法对高阶线性方程也适用.
21
一阶微分方程
y e P (x )d x [Q (x )e P (x )d x d x C ]
例 求方 y程 1ysix n的通 . 解 xx
解 P(x) 1 , Q(x)sinx,
通解
y1C80e800k0t
(Ce80C01).
由初始条件 y(0)1,得C79.再9由 y(1)23,
便可确定出 80k0 1 ln 797 0.0917. 6
12 2397
所以 y(t)1789e0 90.0091t7. 6 9
一阶微分方程
直升机将在60至72小时将疫苗运到,试估算疫苗运 到时患此传染病的人数.
y(t)1789e0 90.0091t7. 6
下面计算 t60,72小时时的感染者人数
y(60)
800 179e 90.091670618,8
y(72)1798e 900.0091772638.5
从上面数字可看出, 在72小时疫苗运到时, 感
染的人数将是60小时感染人数的2倍. 可见在传染
将y和y代入原方,得程dyP(x)yQ(x)
dx
C ( x ) e P ( x ) d x C ( x ) P ( x ) e P ( x ) d x
P(x)C(x)eP(x)dxQ( x )
从而C(x)满足方程 C (x)eP(x)dxQ (x)
19
0.62 2g t (40h 3 0 2h 5)C ,
0 .62 2g3 5 h|t010,0 C0.622g1 15 4 150, 所求规律为 t (7 15 0 130 h 3 3h 5).
4 .65 2 g
12
一阶微分方程
2019年北方交大期末考题(8分)
v
v0 v
v0
当v v0时, t 1 即得.
2
kv 0
13
一阶微分方程
1991年考研数学一, 3分
设 f(x )满足 f(x 关 )2 xf 系 t d t 式 ln 2 ,
则 f(x)( B ).
0 2
A.ex ln2; B.e2x l n2; C.ex ln2; D.e2x ln2 分析 有两种方法 其一,将所给选项代入关系式直接验算,(B)正确. 其二,对积分关系式两边求导化为微分方程, 并注 意到由所给关系式在特殊点可确定出微分方程
相关文档
最新文档