陕西人教版2019-2020学年七年级上学期数学期中考试试卷新版

合集下载

陕西省西安市高新二中2019-2020年七年级(上)月考数学试卷(10月份) 含解析

陕西省西安市高新二中2019-2020年七年级(上)月考数学试卷(10月份)  含解析

2019-2020学年七年级(上)月考数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.将如图所示的几何图形,绕直线l旋转一周得到的立体图形()A.B.C.D.2.﹣23的相反数是()A.﹣8 B.8 C.﹣6 D.63.在﹣,0,﹣|﹣5|,﹣0.6,2,,﹣10中负数的个数有()A.3 B.4 C.5 D.64.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元5.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+|c|等于()A.﹣1 B.0 C.1 D.26.在数轴上到原点距离等于3的数是()A.3 B.﹣3 C.3或﹣3 D.不知道7.已知|a|=3,|b|=4,且ab<0,则a﹣b的值为()A.1或7 B.1或﹣7 C.±1 D.±78.计算﹣(﹣1)+|﹣1|,其结果为()A.﹣2 B.2 C.0 D.﹣19.我国对“一带一路”沿线国家不断加大投资,目前已为有关国家创造了近1100000000美元税收,其中1100000000用科学记数法表示应为()A.0.11×108B.1.1×109C.1.1×1010D.11×10810.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x﹣2y+z 的值是()A.1 B.4 C.7 D.9二、填空题(共5小题,每小题3分,计15分)11.已知|a+1|+|b+3|=0,则a=,b=.12.已知x2=9,y3=8,则x﹣y的值是.13.已知a+c=﹣2019,b+(﹣d)=2020,则a+b+c+(﹣d)=.14.计算:1+(﹣2)+3+(﹣4)+…+2019+(﹣2020)=.15.若有理数a,b互为倒数,c,d互为相反数,则(c+d)2015+()2=.三、解答题(共8小题,计55分,解答题应写出过程)16.计算下列各式(1)|﹣6|﹣7+(﹣3).(2).(3)(﹣9)×(﹣5)﹣20÷4.(4)(﹣3)2×[].17.观察下列各式,回答问题1﹣=×,1﹣=×,1﹣=×….按上述规律填空:(1)1﹣=×.(2)计算:(1﹣)×(1﹣)×…×(1﹣)×(1﹣)=.18.在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来.﹣,0,﹣2.5,﹣3,1.19.已知:b是最小的正整数,且a、b满足(c﹣6)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a=﹣1 ,b= 1 ,c= 6(2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在A、B之间运动时,请化简式子:|x+1|﹣|x﹣1|﹣2|x+5|(请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒n(n>0)个单位长度的速度向左运动,同时,点B和点C分别以每秒2n个单位长度和5n个单位长度的速度向右运动,假设经过t秒钟过后,若点B与点C之间的距离表示为BC,点A 与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.20.阅读下列材料并解决有关问题:我们知道|x|=,现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别叫做|x+1|与|x﹣2|的零点值.)在有理数范围内,零点值x=﹣1和x=2可将全体有理数分成不重复且不遗漏的如下3种情况:(1)当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;(2)当﹣1≤x≤2时,原式=x+1﹣(x﹣2)=3;(3)当x>2时,原式=x+1+x﹣2=2x﹣1.综上所述,原式=.通过以上阅读,请你解决以下问题:(1)分别求出|x+2|和|x﹣4|的零点值;(2)化简代数式|x+2|+|x﹣4|;(3)求方程:|x+2|+|x﹣4|=6的整数解;(4)|x+2|+|x﹣4|是否有最小值?如果有,请直接写出最小值;如果没有,请说明理由.21.(++…+)(1+++…+)﹣(1+++…+)(++…+).22.一根长度为1米的木棍,第一次截去全长的,第二次截去余下的,第三次截去第二次截后余下的,……,第n次截去第(n﹣1)次截后余下的.若连续截取2019次,共截取多少米?23.已知a、b、c、d是有理数,|a﹣b|≤9,|c﹣d|≤16,且|a﹣b﹣c+d|=25,求|b﹣a|﹣|d﹣c|的值.参考答案与试题解析一.选择题(共10小题)1.【分析】根据面动成体以及圆台的特点,即可解答.【解答】解:绕直线l旋转一周,可以得到的圆台,故选:C.2.【分析】分析:数a的相反数是﹣a,即互为相反数两个数只差一个符号.注意:0的相反数是0本身.【解答】解:∵﹣23=﹣8﹣8的相反数是8∴﹣23的相反数是8.故选:B.3.【分析】负数就是小于0的数,依据定义即可求解.【解答】解:其中的负数有:﹣,﹣|﹣5|,﹣0.6,﹣10共4个.故选B.4.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C.5.【分析】先根据有理数的相关知识确定a、b、c的值,然后将它们代入a+b+|c|中求解.【解答】解:由题意知:a=1,b=﹣1,c=0;所以a+b+|c|=1﹣1+0=0.故选:B.6.【分析】先设出这个数为x,再根据数轴上各点到原点的距离进行解答即可.【解答】解:设这个数是x,则|x|=3,解得x=+5或﹣3.故选:C.7.【分析】由绝对值的性质可知a=±3,b=±4,由ab<0可知a、b异号,从而判断出a、b的值,最后代入计算即可.【解答】解:∵|a|=3,|b|=4,∴a=±3,b=±4.∵ab<0,∴当a=3时,b=﹣4;当a=﹣3时,b=4.当a=3,b=﹣4时,原式=3﹣(﹣4)=3+4=7;当a=﹣3,b=4时,原式=﹣3﹣4=﹣7.故选:D.8.【分析】根据有理数的加法和绝对值可以解答本题.【解答】解:﹣(﹣1)+|﹣1|=1+1=2,故选:B.9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1100000000用科学记数法表示应为1.1×109,故选:B.10.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再求出x、y、z的值,然后代入代数式计算即可得解.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“﹣8”是相对面,“y”与“﹣2”是相对面,“z”与“3”是相对面,∵相对面上所标的两个数互为相反数,∴x=8,y=2,z=﹣3,∴x﹣2y+z=8﹣2×2﹣3=1.故选:A.二.填空题(共5小题)11.【分析】由非负数的性质可知a=﹣1,b=﹣3.【解答】解:∵|a+1|+|b+3|=0,∴a+1=0,b+3=0.解得:a=﹣1,b=﹣3.故答案为:﹣1;﹣3.12.【分析】利用平方根、立方根定义求出x与y的值,即可求出x﹣y的值.【解答】解:∵x2=9,y3=8,∴x=±3,y=2,则x﹣y=1或﹣5,故答案为:1或﹣5.13.【分析】将a+c=﹣2019,b+(﹣d)=2020代入a+b+c+(﹣d)=a+c+b+(﹣d)计算可得.【解答】解:∵a+c=﹣2019,b+(﹣d)=2020,∴a+b+c+(﹣d)=a+c+b+(﹣d)=﹣2019+2020=1,故答案为:1.14.【分析】先把数字分组:(1﹣2)+(3﹣4)+(5﹣6)+…+(2017﹣2018)+(2019﹣2020),分组后得出规律每组都为﹣1,算出有多少个﹣1相加即可得出结果.【解答】解:1+(﹣2)+3+(﹣4)+…+2019+(﹣2020)=(1﹣2)+(3﹣4)+…+(2019﹣2020)=﹣1×1010=﹣1010,故答案为:﹣1010.15.【分析】根据有理数a,b互为倒数,c,d互为相反数,可以求得ab的值和c+d的值,从而可以得到(c+d)2015+()2的值.【解答】解:∵有理数a,b互为倒数,c,d互为相反数,∴ab=1,c+d=0,∴(c+d)2015+()2==0+1=1,故答案为:1.三.解答题(共1小题)16.【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式结合后,相加即可求出值;(3)原式先计算乘除运算,再计算加减运算即可求出值;(4)原式先计算括号中的运算,再计算乘法运算即可求出值.【解答】解:(1)原式=6﹣7﹣3=﹣4;(2)原式=﹣﹣﹣+=﹣;(3)原式=45﹣5=40;(4)原式=9×(﹣﹣)=﹣6﹣5=﹣11.17.观察下列各式,回答问题1﹣=×,1﹣=×,1﹣=×….按上述规律填空:(1)1﹣=×.(2)计算:(1﹣)×(1﹣)×…×(1﹣)×(1﹣)=.【考点】1G:有理数的混合运算.【专题】11:计算题;511:实数.【分析】(1)观察已知等式确定出所求即可;(2)原式根据题中的规律化简,计算即可得到结果.【解答】解:(1)1﹣=×;(2)原式=××××××…××××=×=.故答案为:(1);;(2)18.在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来.﹣,0,﹣2.5,﹣3,1.【考点】13:数轴;18:有理数大小比较.【分析】把各个数在数轴上画出表示出来,根据数轴上的数右边的数总是大于左边的数,即可把各个数按由大到小的顺序“<”连接起来.【解答】解:将各数用点在数轴上表示如下:其大小关系如下:﹣3<﹣2.5<﹣<0<1.19.已知:b是最小的正整数,且a、b满足(c﹣6)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a=﹣1 ,b= 1 ,c= 6(2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在A、B之间运动时,请化简式子:|x+1|﹣|x﹣1|﹣2|x+5|(请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒n(n>0)个单位长度的速度向左运动,同时,点B和点C分别以每秒2n个单位长度和5n个单位长度的速度向右运动,假设经过t秒钟过后,若点B与点C之间的距离表示为BC,点A 与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【考点】13:数轴;16:非负数的性质:绝对值;1F:非负数的性质:偶次方;8A:一元一次方程的应用.【分析】(1)根据最小的正整数是1,推出b=1,再利用非负数的性质求出a、c即可.(2)首先确定x的范围,再化简绝对值即可.(3)BC﹣AB的值不变.根据题意用n,t表示出BC、AB即可解决问题.【解答】解:(1)∵b是最小的正整数,∴b=1,∵(c﹣6)2+|a+b|=0,(c﹣6)2≥0,|a+b|≥0,∴c=6,a=﹣1,b=1,故答案为﹣1,1,6.(2)由题意﹣1<x<1,∴|x+1|﹣|x﹣1|﹣2|x+5|=x+1+x﹣1﹣2x﹣10=﹣10.(3)不变,由题意BC=5+5nt﹣2nt=5+3nt,AB=nt+2+2nt=2+3nt,∴BC﹣AB=(5+3nt)﹣(2+3nt)=3,∴BC﹣AB的值不变,BC﹣AB=3.20.阅读下列材料并解决有关问题:我们知道|x|=,现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别叫做|x+1|与|x﹣2|的零点值.)在有理数范围内,零点值x=﹣1和x=2可将全体有理数分成不重复且不遗漏的如下3种情况:(1)当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;(2)当﹣1≤x≤2时,原式=x+1﹣(x﹣2)=3;(3)当x>2时,原式=x+1+x﹣2=2x﹣1.综上所述,原式=.通过以上阅读,请你解决以下问题:(1)分别求出|x+2|和|x﹣4|的零点值;(2)化简代数式|x+2|+|x﹣4|;(3)求方程:|x+2|+|x﹣4|=6的整数解;(4)|x+2|+|x﹣4|是否有最小值?如果有,请直接写出最小值;如果没有,请说明理由.【考点】15:绝对值.【分析】(1)根据零点值的定义即可求解;(2)分三种情况讨论化简代数式|x+2|+|x﹣4|;直接去括号,再按照去绝对值的方法去绝对值就可以了.(3)根据(2),可得整数解;(4)把丨x+2丨+丨x﹣4丨理解为:在数轴上表示x到﹣2和4的距离之和,求出表示﹣2和4的两点之间的距离即可.【解答】解:(1)∵|x+2|和|x﹣4|的零点值,可令x+2=0和x﹣4=0,解得x=﹣2和x=4,∴﹣2,4分别为|x+2|和|x﹣4|的零点值.(2)当x<﹣2时,|x+2|+|x﹣4|=﹣2x+2;当﹣2≤x<4时,|x+2|+|x﹣4|=6;当x≥4时,|x+2|+|x﹣4|=2x﹣2;(3)∵|x+2|+|x﹣4|=6,∴﹣2≤x≤4,∴整数解为:﹣2,﹣1,0,1,2,3,4.(4)|x+2|+|x﹣4|有最小值,∵当x=﹣2时,|x+2|+|x﹣4|=6,当x=4时,|x+2|+|x﹣4|=6,∴|x+2|+|x﹣4|的最小值是6.21.(++…+)(1+++…+)﹣(1+++…+)(++…+).【考点】1G:有理数的混合运算.【专题】2A:规律型.【分析】设a=++…+,b=++…+然后代入原式化简计算.【解答】解:设a=++…+,b=++…+,则原式=a(1+b)﹣b(1+a)=a+ab﹣b﹣ab=a﹣b=.22.一根长度为1米的木棍,第一次截去全长的,第二次截去余下的,第三次截去第二次截后余下的,……,第n次截去第(n﹣1)次截后余下的.若连续截取2019次,共截取多少米?【考点】37:规律型:数字的变化类.【专题】2A:规律型;67:推理能力.【分析】根据前几次的截取后剩余木棍的长度可得出截完第n次后剩余全长的(n 为正整数),进而可得出截完第2019次后剩余全长的,再结合木棍的全长为1米即可求出结论.【解答】解:截完第一次后剩余全长的(1﹣)=,截完第二次后剩余全长的×(1﹣)=,截完第三次后剩余全长的×(1﹣)=,…,∴截完第n次后剩余全长的(n为正整数),∴截完第2019次后剩余全长的.∵1﹣=,∴连续截取2019次,共截取米.23.已知a、b、c、d是有理数,|a﹣b|≤9,|c﹣d|≤16,且|a﹣b﹣c+d|=25,求|b﹣a|﹣|d﹣c|的值.【考点】12:有理数;15:绝对值.【分析】根据|a﹣b|≤9,|c﹣d|≤16,且|a﹣b﹣c+d|=25,可知|a﹣b|=9,|c﹣d|=16,且a﹣b和c﹣d的符号是相反的,然后分两种情况讨论即可.【解答】解:∵|a﹣b|≤9,|c﹣d|≤16,且|a﹣b﹣c+d|=25,∴|a﹣b|=9,|c﹣d|=16,且a﹣b和c﹣d的符号是相反的,∴①a﹣b=9,c﹣d=﹣16,此时|b﹣a|﹣|d﹣c|=|﹣9|﹣|16|=9﹣16=﹣7,②a﹣b=﹣9,c﹣d=16,此时|b﹣a|﹣|d﹣c|=|9|﹣|﹣16|=9﹣16=﹣7,综上所述,|b﹣a|﹣|d﹣c|的值为﹣7.。

人教版2019-2020学年七年级(上)期末数学试卷 含答案解析

 人教版2019-2020学年七年级(上)期末数学试卷 含答案解析

人教版2019-2020学年七年级(上)期末数学试卷含答案解析一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的.请根据正确选项的代号填涂答题卡对应位置.填涂正确记3分,不涂、错涂或多涂记0分.1.四个有理数﹣2,﹣1,0,5,其中最小的是()A.5 B.0 C.﹣1 D.﹣22.单项式﹣x3y2的系数与次数分别为()A.﹣1,5 B.﹣1,6 C.0,5 D.1,53.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.x=0 C.x+2y=3 D.x﹣1=4.已知﹣x3y n与3x m y2是同类项,则mn的值是()A.2 B.3 C.6 D.95.2017年12月6日西成高铁全线开通运营,西安至成都的运行时间由11个小时缩短为4小时.这条经关中、汉中平原及穿越秦岭、巴山山脉的高速铁路用部分高难度的桥梁、遂洞等方式缩短了路程,这样做的主要依据是()A.两点确定一条直线B.两点之间,线段最短C.直线比曲线短D.两条直线相交于一点6.如图,下列描述正确的是()A.射线OA的方向是北偏东方向B.射线OB的方向是北偏西65°C.射线OC的方向是东南方向D.射线OD的方向是西偏南15°7.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()A.ab>0 B.a+b>0 C.|a|﹣|b|<0 D.a﹣b<08.一个表面标有汉字的多面体的平面展开图如图所示,如果“你”在上面,“乐”在前面,则不正确的是()A.“年”在下面B.“祝”在后面C.“新”在左边D.“快”在左边9.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,请你推测32018的个位数字是()A.3 B.9 C.7 D.110.甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1,工作进度如右表:则完成这项工作共需()A.9天B.10天C.11天D.12天二、填空题(每小题3分,共18分)11.﹣1的倒数是.12.已知x=2是关于x的一元一次方程mx﹣2=0的解,则m的值为.13.已知a﹣b=﹣10,c+d=3,则(a+d)﹣(b﹣c)=.14.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=.15.一艘船从A地到B地顺流而行,然后又逆流而上到C地,共用了5.1h,已知该船在静水中的平均速度为7.5km/h,水流的速度是2.5km/h,若A、C两地的距离为12km,则A、B两地的距离为km.16.如果∠A和∠B互补,且∠A>∠B,给出下列四个式子:①90°﹣∠B;②∠A﹣90°;③(∠A+∠B)④(∠A﹣∠B)其中表示∠B余角的式子有.(填序号)三、解答题(本大题共72分)17.作图题:已知平面上点A,B,C,D.按下列要求画出图形:(1)作直线AB,射线CB;(2)取线段AB的中点E,连接DE并延长与射线CB交于点O;(3)连接AD并延长至点F,使得AD=DF.18.计算:(1)10﹣(﹣5)+(﹣9)+6﹣12018﹣6÷(﹣2)×(2)19.解方程:(1)2(3﹣x)=﹣4(x+5)(3)20.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.21.检修工乘汽车沿东西方向检修电路,规定向东为正,向西为负,某天检修工从A地出发,到收工时行程记录为(单位:千米)+8,﹣9,+4,﹣7,﹣2,﹣10,+11,﹣3,+7,﹣5;(1)收工时,检修工在A地的哪边?距A地多远?(2)若每千米耗油0.3升,从A地出发到收工时,共耗油多少升?22.“元旦”期间,某文具店购进100只两种型号的文具进行销售,其进价和售价如下表:(1)该店用1300元可以购进A,B两种型号的文具各多少只?(2)若把所购进A,B两种型号的文具全部销售完,利润率超过40%没有?请你说明理由.23.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.(1)试说明∠AOC与∠BOD的大小关系并说明理由?(2)求∠COE的度数.24.去年微信圈上曾传“手机尾号暴露你的年龄”.①看一下你手机号的最后一位;②把这个数字乘以2;③然后加上5;④再乘以50;⑤把得到的数目加上1767;⑥用这个数目减去你出生的那一年,现在你看到一个三位数的数字,第一位数字是你手机号的最后一位,接下来就是你的实际年龄!是不是很准!(温馨提示:结果若是两位数,则百位上的数字视为0,本规则适用于年龄在100岁以内的人.)现在,请同学们解决以下问题:(1)假若你有一个手机尾号是7,你出生于2004年,请用上述方法验证你年龄是否准确.(2)请你用所学的数学知识说明为什么“手机尾号暴露了你的年龄”;(3)若是今年(2018年),这样的算法还准吗?若不准,请你修改规则,使这条“手机尾号暴露你的年龄”在2018年仍然很准!并说明你的理由.25.已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+2|+(b﹣5)2=0,规定A、B两点之间的距离记作AB=|a﹣b|.(1)求A、B两点之间的距离AB;(2)设点P在A、B之间,且在数轴上对应的数为x,通过计算说明是否存在x的值使PA+PB=10;(3)设点P不在A、B之间,且在数轴上对应的数为x,此时是否又存在x的值使PA+PB =10呢?参考答案与试题解析一.选择题(共10小题)1.四个有理数﹣2,﹣1,0,5,其中最小的是()A.5 B.0 C.﹣1 D.﹣2【分析】将各数按照从小到大顺序排列,找出最小的数即可.【解答】解:根据题意得:﹣2<﹣1<0<5,则最小的数是﹣2,故选:D.2.单项式﹣x3y2的系数与次数分别为()A.﹣1,5 B.﹣1,6 C.0,5 D.1,5【分析】根据单项式系数及次数的定义来求解.【解答】解:根据单项式系数的定义,单项式﹣x3y的系数是﹣1,次数是5.故选:A.3.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.x=0 C.x+2y=3 D.x﹣1=【分析】根据一元一次方程的定义,可得答案.【解答】解:A、是一元二次方程,故A错误;B、是一元一次方程,故B正确;C、是二元一次方程,故C错误;D、是分式方程,故D错误;故选:B.4.已知﹣x3y n与3x m y2是同类项,则mn的值是()A.2 B.3 C.6 D.9【分析】直接利用所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,进而得出m,n的值,即可分析得出答案.【解答】解:∵﹣x3y n与3x m y2是同类项,∴m=3,n=2,则mn=6.故选:C.5.2017年12月6日西成高铁全线开通运营,西安至成都的运行时间由11个小时缩短为4小时.这条经关中、汉中平原及穿越秦岭、巴山山脉的高速铁路用部分高难度的桥梁、遂洞等方式缩短了路程,这样做的主要依据是()A.两点确定一条直线B.两点之间,线段最短C.直线比曲线短D.两条直线相交于一点【分析】根据线段的性质:两点之间,线段最短进行解答即可.【解答】解:2017年12月6日西成高铁全线开通运营,西安至成都的运行时间由11个小时缩短为4小时.这条经关中、汉中平原及穿越秦岭、巴山山脉的高速铁路用部分高难度的桥梁、遂洞等方式缩短了路程,这样做的主要依据是两点之间,线段最短,故选:B.6.如图,下列描述正确的是()A.射线OA的方向是北偏东方向B.射线OB的方向是北偏西65°C.射线OC的方向是东南方向D.射线OD的方向是西偏南15°【分析】直接利用方向角的概念分别分析得出答案.【解答】解:A、射线OA的方向是北偏东30°方向,故此选项错误;B、射线OB的方向是北偏西25°,故此选项错误;C、射线OC的方向是东南方向,正确;D、射线OD的方向是南偏西15°,故此选项错误;故选:C.7.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()A.ab>0 B.a+b>0 C.|a|﹣|b|<0 D.a﹣b<0【分析】根据图示,可得a<0<b,而且|a|>|b|,据此逐项判断即可.【解答】解:根据图示,可得a<0<b,而且|a|>|b|,∵a<0<b,∴ab<0,∴选项A不正确;∵a<0<b,而且|a|>|b|,∴a+b<0,∴选项B不正确,选项D正确;∵|a|>|b|,∴|a|﹣|b|>0,∴选项C不正确;故选:D.8.一个表面标有汉字的多面体的平面展开图如图所示,如果“你”在上面,“乐”在前面,则不正确的是()A.“年”在下面B.“祝”在后面C.“新”在左边D.“快”在左边【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图可知“你”和“年”相对,“乐”和“祝”相对,“新”和“快”相对,再根据已知“你”在上面,“乐”在前面,进行判断即可.【解答】解:根据题意可知,“你”在上面,则“年”在下面,“乐”在前面,则“祝”在后面,从而“新”在右边,“快”在左边.故不正确的是C.故选:C.9.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,请你推测32018的个位数字是()A.3 B.9 C.7 D.1【分析】观察不难发现,3n的个位数字分别为3、9、7、1,每4个数为一个循环组依次循环,用2018÷3,根据余数的情况确定答案即可.【解答】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,∴个位数字分别为3、9、7、1依次循环,∵2018÷4=504……2,∴32018的个位数字与循环组的第2个数的个位数字相同,是9,故选:B.10.甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1,工作进度如右表:则完成这项工作共需()A.9天B.10天C.11天D.12天【分析】此题是工程问题,把此工作分段进行分析,甲自己做了3天做了,则可知道甲自己做需要3÷=12天,再用方程求出各自做完需要的时间,利用工作量=工作时间×工作效率求剩余时间,而后即可求得总时间.【解答】解:设乙自己做需x天,甲自己做需3÷=12天,根据题意得,2(+)=﹣解得x=24则还需÷(+)=4天所以完成这项工作共需4+5=9天故选:A.二.填空题(共6小题)11.﹣1的倒数是﹣.【分析】直接利用倒数的定义分析得出答案.【解答】解:﹣1=﹣的倒数是:﹣.故答案为:﹣.12.已知x=2是关于x的一元一次方程mx﹣2=0的解,则m的值为 1 .【分析】根据一元一次方程的解得概念即可求出m的值.【解答】解:将x=2代入mx﹣2=02m﹣2=0m=1故答案为:113.已知a﹣b=﹣10,c+d=3,则(a+d)﹣(b﹣c)=﹣7 .【分析】将a﹣b=﹣10、c+d=3代入原式=a+d﹣b+c=a﹣b+c+d,计算可得.【解答】解:当a﹣b=﹣10、c+d=3时,原式=a+d﹣b+c=a﹣b+c+d=﹣10+3=﹣7,故答案为:﹣7.14.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=180°.【分析】因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故答案为:180°.15.一艘船从A地到B地顺流而行,然后又逆流而上到C地,共用了5.1h,已知该船在静水中的平均速度为7.5km/h,水流的速度是2.5km/h,若A、C两地的距离为12km,则A、B两地的距离为9或25 km.【分析】设A、B两地的距离为xkm,分C地在A、B两地之间、A地在B、C两地之间两种情况考虑,根据时间=路程÷速度即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设A、B两地的距离为xkm,当C地在A、B两地之间时(如图1所示),有+=5.1,解得:x=25;当A地在B、C两地之间时(如图2所示),有+=5.1,解得:x=9.故答案为:9或25.16.如果∠A和∠B互补,且∠A>∠B,给出下列四个式子:①90°﹣∠B;②∠A﹣90°;③(∠A+∠B)④(∠A﹣∠B)其中表示∠B余角的式子有①②④.(填序号)【分析】根据互为补角的两个角的和等于180°可得∠A+∠B=180°,再根据互为余角的两个角的和等于90°对各小题分析判断即可得解.【解答】解:∵∠A和∠B互补,∴∠A+∠B=180°,①∵∠B+(90°﹣∠B)=90°,∴90°﹣∠B是∠B的余角,②∵∠B+(∠A﹣90°)=∠B+∠A﹣90°=180°﹣90°=90°,∴∠A﹣90°是∠B的余角,③∵∠B+(∠A+∠B)=∠B+×180°=∠B+90°,∴(∠A+∠B)不是∠B的余角,④∵∠B+(∠A﹣∠B)=(∠A+∠B)=×180°=90°,∴(∠A﹣∠B)是∠B的余角,综上所述,表示∠B余角的式子有①②④.故答案为:①②④.三.解答题(共9小题)17.作图题:已知平面上点A,B,C,D.按下列要求画出图形:(1)作直线AB,射线CB;(2)取线段AB的中点E,连接DE并延长与射线CB交于点O;(3)连接AD并延长至点F,使得AD=DF.【分析】(1)根据直线是向两方无限延伸的,射线是向一方无限延伸的画图即可;(2)找出线段AB的中点E,画射线DE与射线CB交于点O;(3)画线段AD,然后从A向D延长使DF=AD.【解答】解:如图所示:.18.计算:(1)10﹣(﹣5)+(﹣9)+6(2)﹣12018﹣6÷(﹣2)×【分析】(1)将减法转化为加法,再计算即可得;(2)根据有理数混合运算顺序和运算法则计算可得.【解答】解:(1)原式=10+5﹣9+6=21﹣9=12;(2)原式=﹣1+3×=﹣1+1=019.解方程:(1)2(3﹣x)=﹣4(x+5)(2)【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:6﹣2x=﹣4x﹣20,移项合并得:2x=﹣26,解得:x=﹣13;(2)去分母得:9+3x﹣6=2x+4,移项合并得:x=1.20.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=4xy﹣2x2﹣5xy+y2+2x2+6xy=5xy+y2,当x=﹣2,y=1时,原式=﹣10+1=﹣9.21.检修工乘汽车沿东西方向检修电路,规定向东为正,向西为负,某天检修工从A地出发,到收工时行程记录为(单位:千米)+8,﹣9,+4,﹣7,﹣2,﹣10,+11,﹣3,+7,﹣5;(1)收工时,检修工在A地的哪边?距A地多远?(2)若每千米耗油0.3升,从A地出发到收工时,共耗油多少升?【分析】(1)根据表格中的数据,将各个数据相加看最后的结果,即可解答本题;(2)根据表格中的数据将它们的绝对值相加,然后乘以0.3即可解答本题.【解答】解:(1)(+8)+(﹣9)+(+4)+(﹣7)+(﹣2)+(﹣10)+(+11)+(﹣3)+(+7)+(﹣5)=8﹣9+4﹣7﹣2﹣10+11﹣3+7﹣5=8+4+11+7﹣9﹣7﹣2﹣10﹣3﹣5=30﹣36=﹣6(千米),答:收工时,检修工在A地的西边,距A地6千米;(2)|+8|+|﹣9|+|+4|+|﹣7|+|﹣2|+|﹣10|+|+11|+|﹣3|+|+7|+|﹣5|=8+9+4+7+2+10+11+3+7+5=66(千米)66×0.3=19.8(升)答:从A地出发到收工时,共耗油19.8升.22.“元旦”期间,某文具店购进100只两种型号的文具进行销售,其进价和售价如下表:(1)该店用1300元可以购进A,B两种型号的文具各多少只?(2)若把所购进A,B两种型号的文具全部销售完,利润率超过40%没有?请你说明理由.【分析】(1)设可以购进A种型号的文具x只,则可以购进B种型号的文具(100﹣x)只,根据总价=单价×数量结合A、B两种文具的进价及总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单价利润×数量即可求出销售完这批货物的总利润,用其除以进价×100%再与40%比较后,即可得出结论.【解答】解:(1)设可以购进A种型号的文具x只,则可以购进B种型号的文具(100﹣x)只,根据题意得:10x+15(100﹣x)=1300,解得:x=40,∴100﹣x=60.答:该店用1300元可以购进A种型号的文具40只,B种型号的文具60只.(2)(12﹣10)×40+(23﹣15)×60=560(元),∵560÷1300×100%≈43.08%>40%,∴若把所购进A,B两种型号的文具全部销售完,利润率超过40%.23.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.(1)试说明∠AOC与∠BOD的大小关系并说明理由?(2)求∠COE的度数.【分析】(1)先根据角平分线定义求出∠AOC、∠COB的度数,再求出∠BOD的度数即可求解;(2)求出∠BOE的度数,根据角的和差关系即可得出答案.【解答】解:(1)∵∠AOB=90°,OC平分∠AOB,∴∠AOC=∠COB=∠AOB=45°,∵∠COD=90°,∴∠BOD=45°,∴∠AOC=∠BOD;(2)∵∠BOD=3∠DOE,∴∠DOE=15°,∴∠BOE=30°,∴∠COE=∠COB+∠BOE=45°+30°=75°.24.去年(2017年)微信圈上曾传“手机尾号暴露你的年龄”.①看一下你手机号的最后一位;②把这个数字乘以2;③然后加上5;④再乘以50;⑤把得到的数目加上1767;⑥用这个数目减去你出生的那一年,现在你看到一个三位数的数字,第一位数字是你手机号的最后一位,接下来就是你的实际年龄!是不是很准!(温馨提示:结果若是两位数,则百位上的数字视为0,本规则适用于年龄在100岁以内的人.)现在,请同学们解决以下问题:(1)假若你有一个手机尾号是7,你出生于2004年,请用上述方法验证你年龄是否准确.(2)请你用所学的数学知识说明为什么“手机尾号暴露了你的年龄”;(3)若是今年(2018年),这样的算法还准吗?若不准,请你修改规则,使这条“手机尾号暴露你的年龄”在2018年仍然很准!并说明你的理由.【分析】(1)先根据题中所描述的6条规则,列出式子得到一个三位数,然后根据规则判断手机号的最后一位及年龄,再根据年份验证即可;(2)根据题意列出代数式,从数学式子进行解释即可;(3)根据(2)中的式子进行判断是否符合,然后根据年份为2018,修改规则即可.【解答】解:(1)根据题意得:(7×2+5)×50+1767﹣2004=713第一位数字7是你手机号的最后一位,接下来13就是你的实际年龄,2017﹣2004=13,准确;(2)设手机尾号为x,由题意得:(2x+5)×50+1767=100x+2017去年是2017年,此数减去你出生的那一年后,正好是你的年龄,而百位上的第一个数字是手机尾号;(3)设手机尾号为x,(2x+5)×50+1767=100x+2017今年是2018年,用2017年这个数减去你出生的那一年后,不符合,可以修改规则⑤为:“把得到的数目加上1768”(2x+5)×50+1767=100x+2018,这样在今年就仍然准了.25.已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+2|+(b﹣5)2=0,规定A、B两点之间的距离记作AB=|a﹣b|.(1)求A、B两点之间的距离AB;(2)设点P在A、B之间,且在数轴上对应的数为x,通过计算说明是否存在x的值使PA+PB=10;(3)设点P不在A、B之间,且在数轴上对应的数为x,此时是否又存在x的值使PA+PB =10呢?【分析】(1)利用非负数的性质求出a与b的值,确定出AB即可;(2)根据P在A、B之间确定出x的范围,进而求出PA+PB,判断即可;(3)根据P在A、B之间确定出x的范围,进而求出PA+PB,判断即可.【解答】解:(1)∵|a+2|+(b﹣5)2=0,∴a+2=0,b﹣5=0,解得:a=﹣2,b=5,则AB=|a﹣b|=|﹣2﹣5|=7;(2)若点P在A、B之间时,PA=|x﹣(﹣2)|=x+2,|PB|=|x﹣5|=5﹣x,∴PA+PB=x+2+5﹣x=7<10,∴点P在A、B之间不合题意,则不存在x的值使PA+PB=10;(3)若点P在AB的延长线上时,PA=|x﹣(﹣2)|=x+2,PB=|x﹣5|=x﹣5,由PA+PB=10,得到x+2+x﹣5=10,解得:x=6.5;若点P在AB的反向延长线上时,PA=|x﹣(﹣2)|=﹣2﹣x,PB=|x﹣5|=5﹣x,由PA+PB=10,得到﹣2﹣x+5﹣x=10,解得:x=﹣3.5,综上,存在使PA+PB=10的x值,分别为6.5或﹣3.5.。

最新2019-2020年度人教版七年级数学上学期期中复习考试模拟试题1及答案解析-经典试题

最新2019-2020年度人教版七年级数学上学期期中复习考试模拟试题1及答案解析-经典试题

第Ⅰ卷一、选择题:(本题共10小题,每小题3分,共30分)1.2016年9月15日22时04分,中国在酒泉卫星发射中心用长征二号FT2运载火箭将天宫二号空间实验室发射升空。

次日,天宫二号于成功实施了两次轨道控制,顺利进入运行轨道。

天宫二号空间实验室将开展的实验中,包括了空间科学物理领域重点项目——空间冷原子钟实验,有望实现3千万年误差一秒的超高精度,对卫星定位导航等生产生活及引力波探测等空间科学研究将产生重大影响。

空间冷原子钟可以将航天器自主守时精度提高两个数量级,大幅提高导航定位精度。

3000用科学记数法表示为()A.3 B. 0.3 C. 0.3D.2.下列算式中,运算结果为负数的是().A. (2)-- B. 3(2)- C.2- D. 2(2)-3.下列计算正确的是().A. 22232x y x y x y-= B. 277a a a+=C. 532y y-= D. 325a b ab+=4.已知1a b-=,则代数式223a b--的值是().A. 1-B. 1C. 5D.5-5.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.aB.C.D.6.若21(2)02x y-++=,则( )的值为()A.1-B.1C.D. 20167.人口自然增长率是指在一定时期内(通常为一年)人口增加数与该时期内平均人数之比。

人口自然增长率是反映人口发展速度和制定人口计划的重要指标,用来表明人口自然增长的程度和趋势。

2015年,一些国家的人口自然增长率(%)如下表所示,人口自然增长趋势最慢的国家是()美国日本中国印度德国卡塔尔0.9 -0.0772 0.48 1.312 -0.2 4.93A.卡塔尔B.中国C.日本D.德国8.历史上,数学家欧拉最先把关于x的多项式用记号()f x来表示,把x等于某数a时的多项式的值用()f a来表示,例如1x=-时,多项式2()35f x x x=+-的值记为(1)f-,那么(1)f-等于().A. 1-B. 3-C.7-D. 9-考生须知1.本试卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷共2页,第Ⅱ卷共4页。

【人教版】七年级上学期数学《期中考试题》及答案解析

【人教版】七年级上学期数学《期中考试题》及答案解析

2020-2021学年度第一学期期中测试人教版七年级数学试题一.选择题(共12小题)1.以下是四位同学画的数轴,其中正确的是 ( ) A.B.C.D.2.下列各式:ab ,3x y-,3x,﹣xy 2,0.1,3π,x 2+2xy +y 2,其中单项式有( ) A. 5个B. 4个C. 3个D. 2个3.地球与太阳之间的距离约为149600000千米,用科学计数法表示是()千米 A. 1496×105 B. 149.6×106 C. 14.96×107 D. 1.496×108 4.邢台市某天的最高气温是17℃,最低气温是-2℃,那么当天的温差是( ). A . 19℃B. -19 ℃C. 15℃D. -15℃5.下列计算正确的是( ) A 2a +3b =5abB. 3a ﹣2a =1C. 3a 2b ﹣2ab 2=a 2bD. 2a 2+a 2=3a 2 6.下列各组数中,相等的是( ) A. ﹣1与(﹣2)+(﹣3) B. |﹣5|与﹣(﹣5) C.243与916D. (﹣2)2与﹣47.当m =-1时,代数式2m+3的值是( ) A. -1B. 0C. 1D. 28.下列多项式是五次多项式的是( ) A. x 3+y 2 B. x 2y 3+xy +4C. x 5y ﹣lD. x 5﹣y 6+19.若a 与b 互相反数,则2a b +-等于( ).A. -2B. 2C. -1D. 110.数轴上点A、B表示的数分别是a、3,它们之间的距离可以表示为()A. a+3B. a﹣3C. |a+3|D. |a﹣3|11.已知3x﹣y=5,则代数式6x﹣2y的值为()A. ﹣10B. ﹣4C. 4D. 1012.甲、乙两个商家对标价相同的同一件商品进行价格调整,甲的方案是:先提价8%,再降价8%;乙的方案是:先降价8%,再提价8%;则甲、乙两个商家对这件商品的最终定价()A. 甲比乙多B. 乙比甲多C. 甲、乙一样多D. 无法确定二.填空题(共6小题)13.如果收入1000元表示为+1000元,则-700元表示__________.14.单项式233x y的系数为______.15.把5×5×5写成乘方的形式__________16.5.14567精确到0.001位得到的近似数是_____.17.如果单项式6x m y和3x3y n是同类项,则n=_____.18.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50km/h,水流速度是akm/h,3h后甲船比乙船多航行_____km.三.解答题(共8小题)19.把下列各数填入相应集合的括号内.+8.5,﹣312,0.3,0,﹣3.4,12,﹣9,﹣1.2,20%,﹣2.(1)正数集合:{_____…};(2)整数集合:{_____…};(3)非正整数集合:{_____…};(4)负分数集合:{_____…}.20.计算:(1)(﹣0.1)﹣(﹣4.6)﹣(+8.9)+(+5.4)(2)(﹣2)2×3﹣|﹣16|÷421.在数轴上表示下列各数,并用“<”把它们连接起来.3,﹣|﹣5|,0,﹣72,﹣(﹣2).22.先化简,再求值:(x2y﹣xy2)﹣(xy2+x2y),其中x=12,y=﹣123.某一出租车一天下午以鼓楼为出发点,在东西方向上营运,向东为正,向西为负,行车路程依先后次序记录如下(单位:km):+9 -3 -5 +4 -8 +6 -3 -6 -4 +7(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼什么方向?(2)将最后一名乘客送到目的地,出租车一共行驶多少千米?(3)若每千米的价格为2.4元,司机一下午的营运额是多少元?24.为绿化校园,安排七年级三个班植树,其中,一班植树x棵,二班植树的棵数是一班的2倍少20棵,三班植树的棵数是二班的一半多15棵.(1)三个班共植树多少棵?(用含x的式子表示)(2)当x=30时,三个班中哪个班植树最多?25.对于有理数a、b,定义运算:a⊕b=a×b+|a|﹣b,符合有理数的运算法则和运算律.(1)计算(﹣2)⊕(﹣2)的值;(2)填空:3⊕(﹣2)(﹣2)⊕3(填“>”或“=”或“<”);(3)计算[(﹣5)⊕4]⊕(﹣2)的值;26.福建省教育厅日前发布文件,从2019年开始,体育成绩将按一定的原始分计入中考总分.某校为适应新的中考要求,决定为体育组添置一批体育器材.学校准备在网上订购一批某品牌足球和跳绳,在查阅天猫网店后发现足球每个定价150元,跳绳每条定价30元.现有A、B两家网店均提供包邮服务,并提出了各自的优惠方案.A网店:买一个足球送一条跳绳;B网店:足球和跳绳都按定价的90%付款.已知要购买足球40个,跳绳x条(x>40)(1)若在A网店购买,需付款元(用含x的代数式表示). 若在B网店购买,需付款元(用含x的代数式表示).(2)若x=100时,通过计算说明此时在哪家网店购买较为合算?(3)当x=100时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?答案与解析一.选择题(共12小题)1.以下是四位同学画的数轴,其中正确的是 ( ) A. B. C.D.【答案】B 【解析】 【分析】根据数轴的概念:规定了原点、正方向和单位长度的直线叫数轴,进行判断. 【详解】解:A 、没有原点,错误; B 、正确;C 、原点左边的数反了,错误;D 、单位长度不统一,错误. 故选B .【点睛】考查了数轴的概念,注意数轴的三要素缺一不可. 2.下列各式:ab ,3x y-,3x,﹣xy 2,0.1,3π,x 2+2xy +y 2,其中单项式有( ) A. 5个 B. 4个C. 3个D. 2个【答案】B 【解析】 【分析】直接利用单项式的定义分析得出答案. 详解】解:ab ,3x y-,3x,﹣xy 2,0.1,3π,x 2+2xy +y 2, 单项式有ab ,﹣xy 2,0.1,3π共4个. 故选:B .【点睛】本题考查单项式的定义,熟记定义是本题的解题关键,注意单独的一个数字或字母也是单项式. 3.地球与太阳之间的距离约为149600000千米,用科学计数法表示是()千米 A. 1496×105B. 149.6×106C. 14.96×107D. 1.496×108【答案】D 【解析】由科学记数法的定义可知,把一个数记为:10n a ⨯(其中110a ≤<,n 为整数且n 比原数的整数位数小1)的形式叫科学记数法,所以149600000化成科学记数法表示应为:81.49610⨯,所以A 、B 、C 均错,D 正确, 故选D.点睛:在把一个绝对值较大的数用科学记数法表示时,我们要注意两点:①a 必须满足:110a ≤<;②n比原来的数的整数位数少1(也可以通过小数点移位来确定n ).4.邢台市某天的最高气温是17℃,最低气温是-2℃,那么当天的温差是( ). A. 19℃ B. -19 ℃C. 15℃D. -15℃【答案】A 【解析】 【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解. 【详解】解:17-(-2) =17+2 =19℃. 故选A .【点睛】本题考查有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键. 5.下列计算正确的是( ) A. 2a +3b =5ab B. 3a ﹣2a =1 C. 3a 2b ﹣2ab 2=a 2b D. 2a 2+a 2=3a 2【答案】D 【解析】 【分析】根据合并同类项法则即可求出答案.【详解】解:A 原式无法合并,故选项A 错误; B 原式=a ,故选项B 错误;C 原式无法合并计算,故选项C 错误;D 原式=3a 2,故选项D 正确; 故选:D .【点睛】本题考查合并同类项的计算,掌握合并同类项的法则是本题的解题关键. 6.下列各组数中,相等的是( ) A. ﹣1与(﹣2)+(﹣3) B. |﹣5|与﹣(﹣5) C.243与916D. (﹣2)2与﹣4【答案】B 【解析】 【分析】根据有理数的减法法则,绝对值的性质,相反数的定义,有理数的乘方的定义对各选项进行计算,然后利用排除法求解.【详解】解:A 、(﹣2)+(﹣3)=﹣5,﹣1≠﹣5,故本选项错误; B 、|﹣5|=5,﹣(﹣5)=5,5=5,故本选项正确;C 、234=94,94≠916,故本选项错误;D 、(﹣2)2=4,4≠﹣4,故本选项错误. 故选:B .【点睛】本题考查有理数的运算,掌握运算法则是本题的解题关键. 7.当m =-1时,代数式2m+3的值是( ) A. -1 B. 0C. 1D. 2【答案】C 【解析】 【分析】将=1m -代入代数式即可求值;【详解】解:将=1m -代入232(1)31m +=⨯-+=; 故选C .【点睛】本题考查代数式求值;熟练掌握代入法求代数式的值是解题的关键.8.下列多项式是五次多项式的是( ) A. x 3+y 2 B. x 2y 3+xy +4C. x 5y ﹣lD. x 5﹣y 6+1【答案】B 【解析】 【分析】五次多项式,即其次数最高次项的次数为五次.也就是说,每一项都可以是五次,也可以低于五次,但不可以超过五次.【详解】解:A 、该多项式是三次二项式,故本选项错误. B 、该多项式是五次三项式,故本选项正确. C 、该多项式是六次二项式,故本选项错误. D 、该多项式是六次三项式,故本选项错误. 故选:B .【点睛】本题考查多项式的项与次数,熟记定义是本题的解题关键. 9.若a 与b 互为相反数,则2a b +-等于( ). A. -2 B. 2C. -1D. 1【答案】A 【解析】 【分析】利用相反数的定义求出a+b 的值,代入计算,即可求出值. 【详解】∵a 与b 互为相反数, ∴a+b=0, ∴2a b +-=0-2=-2. 故选A.【点睛】此题考查相反数,解题关键在于掌握其定义.10.数轴上点A 、B 表示的数分别是a 、3,它们之间的距离可以表示为( ) A. a +3 B. a ﹣3C. |a +3|D. |a ﹣3|【答案】D 【解析】 【分析】由距离的定义和绝对值的关系容易得出结果.【详解】∵点A.B表示的数分别是a、3,∴它们之间的距离=|a-3|故选:D.【点睛】此题考查绝对值,数轴,难度不大11.已知3x﹣y=5,则代数式6x﹣2y的值为()A. ﹣10B. ﹣4C. 4D. 10【答案】D【解析】【分析】原式变形后,将已知等式代入计算即可求出值.【详解】∵3x﹣y=5,∴原式=2(3x﹣y)=10,故选D.【点睛】本题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.12.甲、乙两个商家对标价相同的同一件商品进行价格调整,甲的方案是:先提价8%,再降价8%;乙的方案是:先降价8%,再提价8%;则甲、乙两个商家对这件商品的最终定价()A. 甲比乙多B. 乙比甲多C. 甲、乙一样多D. 无法确定【答案】C【解析】【分析】根据题意,把商品原价看作单位“1”,则甲的方案有关系式:现价=原价×(1+8%)×(1﹣8%),则现价是原价的99.36%;乙的方案有关系式:1×(1+8%)×(1﹣8%),则现价是原价的99.36%,从而求解.【详解】解:甲:把原来的价格看作单位“1”,1×(1+8%)×(1﹣8%)=1.08×92%=99.36%;乙:把原来的价格看作单位“1”,1×(1﹣8%)×(1+8%)=92%×1.08=99.36%;则甲、乙两个商家对这件商品的最终定价一样多.故选:C.【点睛】本题考查了列代数式,完成本题要注意前后提价与打折分率的单位“1”是不同的.二.填空题(共6小题)13.如果收入1000元表示为+1000元,则-700元表示__________.【答案】支出700元【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】“正”和“负”相对,所以如果收入1000元表示为+1000元,则-700元表示支出700元.故答案是:支出700元.【点睛】考查了正负数的意义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.14.单项式233x y的系数为______.【答案】1 3【解析】【分析】单项式的系数是指单项式中的数字因数.【详解】23231=33x yx y,所以单项式233x y的系数为13.故答案为1 3【点睛】此题考查的是单项式的系数的概念.15.把5×5×5写成乘方的形式__________【答案】35【解析】【分析】根据有理数乘方的定义解答.【详解】5×5×5=35. 故答案是:35. 【点睛】考查了有理数的乘方的定义,注意指数是底数的个数.16.5.14567精确到0.001位得到的近似数是_____.【答案】5.146.【解析】【分析】把万分位上的数字6进行四舍五入即可.【详解】解:5.14567≈5.146(精确到0.001).故答案为5.146.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.17.如果单项式6x m y和3x3y n是同类项,则n=_____.【答案】1.【解析】【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值.【详解】解:∵单项式6x m y和3x3y n是同类项,∴m=3,n=1.故答案为:1【点睛】本题考查同类项的定义,熟记定义是本题的解题关键.18.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50km/h,水流速度是akm/h,3h后甲船比乙船多航行_____km.【答案】6a.【解析】【分析】顺水速度=船速+水速,逆水速度=船速﹣水速.根据路程公式求出甲、乙航行的路程,从而得出答案.【详解】解:3h后甲船航行的路程为3×(50+a)=150+3a(km),3h后乙船航行的路程为3(50﹣a)=150﹣3a(km),则3h后甲船比乙船多航行150+3a﹣(150﹣3a)=6a(km),故答案为:6a.【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.三.解答题(共8小题)19.把下列各数填入相应集合的括号内.+8.5,﹣312,0.3,0,﹣3.4,12,﹣9,﹣1.2,20%,﹣2.(1)正数集合:{_____…};(2)整数集合:{_____…};(3)非正整数集合:{_____…};(4)负分数集合:{_____…}.【答案】(1)正数集合:{+8.5,0.3,12,20% …};(2)整数集合:{0,12,﹣9,﹣2…};(3)非正整数集合:{0,﹣9,﹣2…};(4)负分数集合:{﹣312,﹣3.4,﹣1.2…},【解析】【分析】根据有理数的分类,可得答案.【详解】解:(1)正数集合:{+8.5,0.3,12,20% …};(2)整数集合:{0,12,﹣9,﹣2…};(3)非正整数集合:{0,﹣9,﹣2…};(4)负分数集合:{﹣312,﹣3.4,﹣1.2…},【点睛】本题考查有理数的分类,熟记有理数的定义及其分类是本题的解题关键.20.计算:(1)(﹣0.1)﹣(﹣4.6)﹣(+8.9)+(+5.4)(2)(﹣2)2×3﹣|﹣16|÷4【答案】(1)1;(2)8.【解析】【分析】(1)根据加法交换律和结合律简便计算;(2)先算乘方,再算乘除,最后算加减;如果有绝对值,要先做绝对值内的运算.【详解】解:(1)原式=﹣0.1+4.6﹣8.9+5.4=﹣(0.1+8.9)+(4.6﹣5.4)=﹣9+10=1;(2)原式=4×3﹣16÷4=12﹣4=8.【点睛】本题考查有理数的混合运算,掌握运算法则正确计算是本题的解题关键. 21.在数轴上表示下列各数,并用“<”把它们连接起来.3,﹣|﹣5|,0,﹣72,﹣(﹣2).【答案】见详解;﹣|﹣5|<﹣72<0<﹣(﹣2)<3.【解析】【分析】首先分别在数轴上表示,再根据数轴上的数右边的总比左边的大可得答案.【详解】解:如图:根据数轴可得﹣|﹣5|<﹣72<0<﹣(﹣2)<3.【点睛】本题考查用数轴上的点表示有理数及数的大小比较,利用数轴数形结合思想解题是本题的解题关键.22.先化简,再求值:(x2y﹣xy2)﹣(xy2+x2y),其中x=12,y=﹣1【答案】﹣2xy2;﹣1.【解析】【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【详解】解:原式=x2y﹣xy2﹣xy2﹣x2y=﹣2xy2,当x =12,y =﹣1时, 原式=212(1)12-⨯⨯-=- . 【点睛】本题考查整式的化简求值,掌握去括号法则,正确计算是本题的解题关键.23.某一出租车一天下午以鼓楼为出发点,在东西方向上营运,向东为正,向西为负,行车路程依先后次序记录如下(单位:km ):(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼什么方向?(2)将最后一名乘客送到目的地,出租车一共行驶多少千米?(3)若每千米的价格为2.4元,司机一下午的营运额是多少元? 【答案】(1)出租车离鼓楼出发点3千米,在鼓楼西方;(2)55;(3)132.【解析】【分析】(1)根据有理数的加法运算,可得出租车离鼓楼出发点多远,在鼓楼什么方向;(2)将所有的行驶路程相加即可.(3)根据乘车收费:单价×里程,可得司机一下午的营业额.【详解】(1)9−3−5+4−8+6−3−6−4+7=−3,答:将最后一名乘客送到目的地,出租车离鼓楼出发点3千米,在鼓楼西方;(2) 9+|−3|+|−5|+4+|−8|+6+|−3|+|−6|+|−4|+7=55(千米).故租车一共行驶55千米(3) (9+|−3|+|−5|+4+|−8|+6+|−3|+|−6|+|−4|+7)×2.4=132(元),答:每千米的价格为2.4元,司机一下午的营业额是132元. 【点睛】此题考查正数和负数,解题关键在于掌握其性质和运算法则. 24.为绿化校园,安排七年级三个班植树,其中,一班植树x 棵,二班植树的棵数是一班的2倍少20棵,三班植树的棵数是二班的一半多15棵. (1)三个班共植树多少棵?(用含x 的式子表示) (2)当x =30时,三个班中哪个班植树最多? 【答案】(1) 4x ﹣15(棵);(2) 二班植树最多,理由见解析(1)根据一班植树x棵,二班植树的棵数比一班的2倍少20棵得出二班植树(2x﹣20)棵,三班植树的棵数比二班的一半多15棵,得出三班植树=12(2x﹣20)+15=(x+5)棵;(2)将x=30代入求出各班植树棵树即可.【详解】(1)一班植树x棵,二班植树的棵数为(2x﹣20)棵,三班植树的棵数为(x+5)棵;三个班共植树x+2x﹣20+x+5=4x﹣15(棵);(2)把x=30代入2x﹣20=40(棵);把x=30代入x+5=35(棵),∵30<35<40,∴二班植树最多.【点睛】考查了用字母列式表示数量关系及整式的化简和求值,分别表示出各班植树棵数是解题关键.25.对于有理数a、b,定义运算:a⊕b=a×b+|a|﹣b,符合有理数的运算法则和运算律.(1)计算(﹣2)⊕(﹣2)的值;(2)填空:3⊕(﹣2)(﹣2)⊕3(填“>”或“=”或“<”);(3)计算[(﹣5)⊕4]⊕(﹣2)的值;【答案】(1)8;(2)>(3)59.【解析】【分析】(1)根据题意,可得(﹣2)⊕(﹣2)=(﹣2)×(﹣2)+|﹣2|﹣(﹣2),再先算乘法,后算加减法,如果有绝对值,要先做绝对值内的运算;(2)先分别求出3⊕(﹣2)和(﹣2)⊕3,再比较大小即可解答本题;(3)先求出(﹣5)⊕4=﹣19,再求出(﹣19)⊕(﹣2)的值即可解答本题.【详解】解:(1)(﹣2)⊕(﹣2)=(﹣2)×(﹣2)+|﹣2|﹣(﹣2)=4+2+2=8;(2)∵3⊕(﹣2)=3×(﹣2)+|3|﹣(﹣2)=﹣6+3+2=(﹣2)×3+|﹣2|﹣3=﹣6+2﹣3=﹣7,﹣1>﹣7,∴3⊕(﹣2)>(﹣2)⊕3;(3)∵(﹣5)⊕4=(﹣5)×4+|﹣5|﹣4=﹣20+5﹣4=﹣19,∴[(﹣5)⊕4]⊕(﹣2)=(﹣19)⊕(﹣2)=(﹣19)×(﹣2)+|﹣19|﹣(﹣2)=38+19+2=59.【点睛】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.26.福建省教育厅日前发布文件,从2019年开始,体育成绩将按一定的原始分计入中考总分.某校为适应新的中考要求,决定为体育组添置一批体育器材.学校准备在网上订购一批某品牌足球和跳绳,在查阅天猫网店后发现足球每个定价150元,跳绳每条定价30元.现有A、B两家网店均提供包邮服务,并提出了各自的优惠方案.A网店:买一个足球送一条跳绳;B网店:足球和跳绳都按定价90%付款.已知要购买足球40个,跳绳x条(x>40)(1)若在A网店购买,需付款元(用含x的代数式表示).若在B网店购买,需付款元(用含x的代数式表示).(2)若x=100时,通过计算说明此时在哪家网店购买较为合算?(3)当x=100时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?【答案】(1)(4800+30x),(5400+27x);(2)见解析;(3) 在A网店购买40个足球配送40个跳绳,再在B网店购买60个跳绳,付款7620元.【解析】【分析】(1)先根据题意列出算式,再化简即可;(2)把x=100代入(1)中的代数式,求出结果,再比较即可;(3)比较划算的方方案是:在A 网店买40个足球和40个跳绳,在B 网店买60个跳绳,求出即可.【详解】解:(1)()540027x +. 若在A 网店购买,需付款150×40+30(x-40)=(30x+4800)元, 若在B 网店购买,需付款150×90%×40+30×90x=(27x+5400)元, 故答案为27x+5400,27x+5400;(2)当x=100时在A 网店购买需付款:4800304800301007800x +=+⨯=元;在B 网店购买需付款:5400275400271008100x +=+⨯=元. ∵348120030++⨯⨯ ∴当100x =时应选择在A 网店购买合算.(3)当100x =时在A 网店购买需付款:4800304800301007800x +=+⨯=元;在B 网店购买需付款:5400275400271008100x +=+⨯=元.在A 网店购买40个足球配送40个跳绳,再在B 网店购买60个跳绳合计需付款:150********%7620⨯+⨯⨯=元.∵762078008100<<∴省钱的购买方案是:在A 网店购买40个足球配送40个跳绳,再在B 网店购买60个跳绳,付款7620元.【点睛】本题考查列代数式和求代数式的值,能正确根据题意列出代数式是解题关键.。

2019七年级数学上学期期中试题

2019七年级数学上学期期中试题

2019七年级数学上学期期中试题有很多的同学会觉得数学很难,所以大家要多多学习一下数学哦,下面小编就给大家整理一下七年级数学,希望大家来阅读哦有关七年级数学上期中试题一、选择题(每题3分,共10小题)1.-(-2)等于( )A.-2B.2C.D.22.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数,如果收入100元记作+100元,那么-80元表示( )A.支出20元B.收入20元C.支出80元D.收入80元3.已知a、b在数轴上的位置如图所示,那么下面结论正确的是( )A.a-b<0B.a+b>0C.ab<0D.>04.若数轴上表示-2和3的两点分别是点A和B,则点A和点B之间的距离是( )A.-5B.-1C.1D.55.计算(-)÷(-7)的结果为( )A.1B.-1C.D.-6.一次数学达标检测的成绩以80分为标准成绩,“奋斗”小组4名学生的成绩与标准成绩的差如下: -7分、-6分、+9分、+2分,他们的平均成绩为( )A.78分B.82分C.80.5分D.79.5分7.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,a, b, c三个数的和为( )A.-1B.0C.1D.不存在8.下列说法:①若|a|=a,则a=0;②若a,b互为相反数,且ab≠0,则=-1;③若a2=b2,则a=b;④若a<0, b<0,则|ab-a|=ab-a.其中正确的个数有( )A.1个B.2个C.3个D.4个9.等边△ABC在数轴上的位置如图所示,点A、C对应的数分别为0和-1,若△ABC绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2012次后,点B( )A.不对应任何数B.对应的数是2010C.对应的数是2011D.对应的数是201210.已知a,b,c为非零的实数,则+++的可能值的个数为( )A.4B.5C.6D.7二、填空题(每题3分,共6小题)11.某地某天的最高气温是6℃,最低气温是-4℃,则该地当天的温差为℃.12.若a-3=0,则a的相反数是 .13.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是 .14.若|x|+3=|x-3|,则x的取值范围是 .15.规定图形表示运算a-b+c,图形表示运算x+z-γ-w.则 += (直接写出答案) .16.已知a,b,c,d分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a-b|+|b-c|+|c-d|+|d-a|取得最大值时,这个四位数的最小值是 .三、解答题(共8小题)17.(12分)计算题(1)(-78) +(+5)+(+78) (2)(+23)+(-17)+(+6)+(-22)(3)[45-(-+)×36]÷5 (4)99×(-36)18.(6分)把下列各数填入它所属的集合内:5.2,0,,,+(-4),-2,-(-3),0.2555,-0.0300003(1)分数集合:{ }(2)非负整数集合: { }(3)有理数集合: { }19.(8分)在数轴上表示下列各数: 0,-1.6,,-6,+5,,并用“<”号连接.20.(8分)十一黄金周期间,花果山7天中每天旅游人数的变化情况如下表(正数表示比9月30日多的人数,负数表示比9月30日少的人数):日期 1日 2日 3日 4日 5日 6日 7日人数变化/万人 +0.5 +0.7 +0.8 -0.4 -0.6 +0.2 -0.1(1)请判断7天内游客人数量最多和最少的各是哪一天?它们相差多少万人?(2)如果9月30日旅游人数为2万人,平均每人消费300元,请问风景区在此7天内总收入为多少万元?21.(8分)如图,数轴上的三点A、B、C分别表示有理数a、b、C.(1)填空: a-b 0,a+c 0,b-c 0.(用<或>或=号填空)(2)化简: |a-b|-|a+c|+|b-c|22.(8分)已知|x|=3,|y|=7.(1)若x23.(10分)同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,(1) |5-(-2)|= .(2)同理|x+5|+|x-2|表示数轴上有理数x所对应的点到-5和2所对应的两点距离之和,请你求出所有符合条件的整数x,使得|x+5|+|x-2|=7.(3)由以上探索猜想对于任何有理数x,|x+6|+|x-3|是否有最小值?如果有,写出最小值;如果没有,说明理由.24.(12分)已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2 (单位长度),慢车长CD=4 (单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C 在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b-16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC 相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即PA+PC+PB+PD为定值).你认为学生P发现的这结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.七年级数学上期中考试试卷阅读一、选择题(本题共10个小题,每小题3分,共30分)1.下列计算正确的是( )A.=6B.-=-16C.-8-8=0D.-5-2=-32.室内温度是15℃,室外温度是-3℃,要计算“室外温度比室内温度低多少度?”可以列的计算式为( )A.15+(-3)B.15-(-3)C.-3+15D.-3-153.若a+3=0,则a的相反数是( )A.3B.C.-D.-34.下列说法中正确的是( )A.整数只包括正整数和负整数B.0既是正数也是负数C.没有最小的有理数D.-1是最大的负有理数5在代数式,,0,-5,x-y,中,单项式有( )A.2个B.3个C.4个D.5个6.一个多项式与-2x+1的和是3x-2,则这个多项式为( )A.-5x+3B.-+x-1C.-+5x-3D.-5x-137.枝江市2015年公共财政收入约为31.68亿元,对这个近似数而言,下列说法正确的是( )A.精确到亿位B.精确到百分位C.精确到百万位D.精确到千万位8.如图,A、B两点在数轴上表示的数分别是a,b,下列式子成立的是( )A.ab>0B.a+b<0C.(b-1)(a+1)>0D.(b-1)(a-1)>09.将正整数依次按如表规律排成4列,根据表中的排列规律,数2018应在( )第1列第2列第3列第4列第1行 1 2 3第2行 6 5 4第3行 7 8 9第4行 12 11 10A.第673行第1列;B.第672行第3列;C.第672行第2列;D.第673行第2列10.已知a,b,c为有理数,且a+b+c=0,a≥-b>lcl,则a,b,c三个数的符号是( )A.a>0,b<0,c<0B.a>0,b<0,c>0C.a<0,b>0,c≥0D.a>0,b<0,c≤0第二部分非选择题(共120分)二、填空题(每小题3分,共18分)11比较大小- 。

人教版数学七年级上学期《期中考试试卷》(含答案解析)

人教版数学七年级上学期《期中考试试卷》(含答案解析)
答案与解析
一、选择题(本大题共10个小题,每小题3分,共30分)
1.在 中,表示正分数的有()
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
根据正分数的定义即可求解.
【详解】在 中, 整数, 是负分数,
只有: 是正分数,共2个,
故选:B.
【点睛】本题考查了有理数的分类,熟练掌握有理数的分类方法是解本题的关键.
23.近期电影《少年 你》受到广大青少年的喜爱,某校七年级1班2班的几名同学请他们的家长在网上买票,家长了解到某电影院的活动,设购买电影票的张数为
购买张数
每张票的价格



家长沟通后决定两个班的同学在期中考试结束后去观看。两个班共有 人,期中 班人数多于 不足 人。经过估算,如果两个班都以班为单位购买,则一共应付 元。
15.已知|a|=5,|b|=3,且|a-b|=b-a,那么a+b=________.
16.已知等式 ,无论 取何值等式都成立,则 __________.
三、解答题(共8题,共72分)
17.
18. 化简:
化简求值: ,其中
19.解方程:
20.在军运会期间,七年级1班志愿者小组准备利用午休时间把校门口的自行车摆放整齐,小组长进行分工时(小组长也参与摆放)发现:如果每人摆放 辆自行车,则还剩 辆自行车需要最后再摆;如果每人摆放 辆自行车,则有一名同学少摆放 辆自行车。请问:这个志愿者小组有几名同学,校门口有几辆自行车需要摆放?
2.下列式子是单项式的是()
A. B. C. D.
【答案】A
【解析】
【分析】
直接利用单项式的定义分析得出答案.
【详解】A、1是整式,此选项符合题意;

2019-2020学年七年级(上)交大附中期中数学试卷及解析

2019-2020学年交大附中七年级(上)期中数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣5的相反数是()A.﹣5B.﹣C.5D.2.(3分)2019年国庆,建国70周年阅兵式邀请了包括优秀共产党员、人民满意的公务员、时代楷模、最美人物、大国工匠、优秀农民工等近1500名各界的先进模范人物代表参加观礼,将1500用科学记数法表示为()A.1.5×102B.15×102C.1.5×103D.0.15×1043.(3分)下列各式中结果为负数的是()A.﹣(﹣3)B.|﹣3|C.(﹣3)2D.﹣324.(3分)下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b﹣3ba2=0D.5a2﹣4a2=15.(3分)实数a,b在数轴上的位置如图所示,以下说法正确的是()A.a+b>0B.|a﹣b|=a﹣bC.|b|>|a|D.(a+1)(b﹣1)>06.(3分)如果a、b互为相反数a≠0),x、y互为倒数,那么代数式的值是()A.0B.1C.﹣1D.27.(3分)如果|a+2|+(b﹣3)2=0,则a b的值是()A.﹣6B.6C.﹣8D.88.(3分)已知(m2﹣1)x2+(m﹣1)x+7=0是关于x的一元一次方程,则m的值为()A.±1B.﹣1C.1D.以上答案都不对9.(3分)下列结论正确的是()A.a一定比﹣a大B.不是单项式C.﹣3ab2和b2a是同类项D.x=3是方程﹣x+1=4的解10.(3分)小明和小勇一起玩猜数游戏,小明说:“你随便选定三个一位数,按下列步骤进行计算:①把第一个数乘以2;②加上2;③乘以5;④加上第二个数;⑤乘以10;⑥加上第三个数;只要你告诉我最后的得数,我就能知道你所选的三个一位数.”小勇表示不相信,但试了几次,小明都猜对了,请你利用所学过的数学知识来探索该“奥秘”并回答当“最后的得数”是567时,小勇最初选定的三个一位数分别是()A.5,6,7B.6,7,8C.4,6,7D.5,7,8二、填空题(每空2分,满分18分,将答案填在答题纸上)11.(2分)写出一个系数是2,且含有字母a,b的3次单项式(答案不唯一).12.(2分)“a,b两数和的5倍”这句话用代数式可以表示为.13.(2分)计算=.14.(2分)数轴上与原点距离为4个单位长度表示的数是.15.(4分)比较大小:;.16.(2分)若关于x的方程2x+a﹣6=0的解是x=2,则a的值等于.17.(2分)用“☆”定义一种新运算:对于任意有理数a,b,都有a☆b=ab+a2,则3☆(﹣2)=.18.(2分)一列方程如下排列:的解是x=2的解是x=3的解是x=4……根据观察所得到的规律,请你写出一个解是x=10的方程:.三、计算题:(本大题共4个小题,每小题8分,共16分).19.(8分)(1)25﹣9+(﹣12)﹣(﹣7);(2)20.(8分)(1)2(m2n+5mn3)﹣5(2mn3﹣m2n);(2)2x﹣2[x﹣(2x2﹣3x+2)]﹣3x2.四、解方程:(本大题共2个小题,每小题10分,共10分).21.(10分)(1)5(x﹣6)=﹣4x﹣3;(2).五、化简求值(本大题共2个小题,每小题6分,共12分).22.(6分)设A=x﹣4(x+y)+(x﹣y)(1)当x=﹣,y=1时,求A的值;(2)若使求得的A的值与(1)中的结果相同,则给出的x,y的值还可以是.23.(6分)已知a﹣b=2,ab=﹣1,求(4a﹣5b﹣ab)﹣(2a﹣3b+5ab)的值.六、探究题(本大题共4个小题,第24、第25小题3分,第26、27小题4分,共14分).24.(3分)你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答会告诉你方法.(1)阅读下列材料:问题:利用一元一次方程将化成分数.解:设=x.方程两边都乘以10,可得7.=10x.由=x和7.=10x,可得7.﹣0.即7=10x﹣x.(请你体会将方程两边都乘以10起到的作用)解得,即0.7=.填空:将0.写成分数形式为.(2)请你仿照上述方法把小数1.化成分数,要求写出利用一元一次方程进行解答的过程.25.(3分)在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.(1)仿照图1,在图2中补全562的“竖式”;(2)仿照图1,用“列竖式”的方法计算一个十位数字是a的两位数的平方,过程部分如图3所示,则这个两位数为(用含a的代数式表示).26.(4分)观察下面的等式:3﹣1=﹣|﹣1+2|+31﹣1=﹣|1+2|+3(﹣2)﹣1=﹣|4+2|+3回答下列问题:(1)填空:﹣1=﹣|6+2|+3;(2)已知2﹣1=﹣|x+2|+3,则x的值是;(3)设满足上面特征的等式最左边的数为y,则y的最大值是,此时的等式为.27.(4分)阅读下列材料:我们给出如下定义:数轴上给定两点A,B以及一条线段PQ,若线段AB的中点R在线段PQ上(点R 可以与点P或Q重合),则称点A与点B关于线段PQ径向对称.下图为点A与点B关于线段PQ径向对称的示意图.解答下列问题:如图1,在数轴上,点O为原点,点A表示的数为﹣1,点M表示的数为2.(1)①点B,C,D分别表示的数为﹣3,,3,在B,C,D三点中,与点A关于线段OM径向对称;②点E表示的数为x,若点A与点E关于线段OM径向对称,则x的取值范围是;(2)在数轴上,点H,K,L表示的数分别是﹣5,﹣4,﹣3,当点H以每秒1个单位长度的速度向正半轴方向移动时,线段KL同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为t(t>0)秒,问t为何值时,线段KL上至少存在一点与点H关于线段OM径向对称.参考答案与试题解析一、选择题:1.解:只有符号不同的两个数称为互为相反数,则﹣5的相反数为5,故选:C.2.解:1500=1.5×103.故选:C.3.解:A、﹣(﹣3)=3,是正数,故本选项不符合题意;B、|﹣3|=3是正数,故本选项不符合题意;C、(﹣3)2=9是正数,故本选项不符合题意;D、﹣32=﹣9是负数,故本选项符合题意.故选:D.4.解:A、3a和2b不是同类项,不能合并,A错误;B、2a3和3a2不是同类项,不能合并,B错误;C、3a2b﹣3ba2=0,C正确;D、5a2﹣4a2=a2,D错误,故选:C.5.解:由图,得a<﹣1<0<b<1.A、a+b<0,故A错误;B、|a﹣b|=b﹣a,故B错误;C、|a|>|b|,故C错误;D、(a+1)(b﹣1)>0,故D正确;故选:D.6.解:根据题意得:a+b=0,xy=1,=﹣1,则原式=0﹣1+1=0,故选:A.7.解:根据题意得:,解得:,则a b=(﹣2)3=﹣8.故选:C.8.解:由题意,得m2﹣1=0且m﹣1≠0,解得m=﹣1,故选:B.9.解:A、当a=0时,a=﹣a,故本选项不符合题意;B、是单项式,故本选项不符合题意;C、﹣3ab2和b2a是同类项,故本选项符合题意;D、x=﹣3是方程﹣x+1=4的解,x=3不是方程的解,故本选项不符合题意.故选:C.10.解:设三个数为a,b,c,则计算结果为100a+10b+c+100,奥妙为:答案减100后,百位是a(第1个数),十位为b(第2个数),个位是c(第3个数).∴小勇最初选定的三个一位数分别:4,6,7.故选:C.二、填空题(每空2分,满分18分,将答案填在答题纸上)11.解:单项式的系数已确定,字母a、b的次数可按照3=1+2=2+1的方式分配,故所求单项式为:2a2b 或2ab2.12.解:“a,b两数和的5倍”这句话用代数式可以表示为5(a+b).故答案为:5(a+b).13.解:,=×12+×12﹣×12,=3+2﹣6,=5﹣6,=﹣1.14.解:数轴上与原点距离为4个单位长度表示的数是±4.故答案为:±4.15.解:∵,∴;∵,,∴.故答案为:<;>16.解:把x=2代入方程得:4+a﹣6=0,解得:a=2.故答案为:2.17.解:根据题中的新定义得:原式=﹣6+9=3,故答案为:318.解:方程+=1的解为x=10.故答案为:+=1.三、计算题:(本大题共4个小题,每小题8分,共16分).19.解:(1)原式=25﹣9﹣12+7=11;(2)原式=×(﹣8)×=﹣2.20.解:(1)原式=2m2n+10mn3﹣10mn3+5m2n=7m2n;(2)原式=2x﹣2x+4x2﹣6x+4﹣3x2=x2﹣6x+4.四、解方程:(本大题共2个小题,每小题10分,共10分).21.解:(1)去括号得:5x﹣30=﹣4x﹣3,移项合并得:9x=27,解得:x=3;(2)去分母得:4x+2=6+1﹣10x,移项合并得:14x=5,解得:x=.五、化简求值(本大题共2个小题,每小题6分,共12分).22.解:(1)A=x﹣4(x+y)+(x﹣y)=x﹣4x﹣y+x﹣y=﹣2x﹣2y,当x=﹣,y=1时,原式=﹣2×(﹣)﹣2×1=﹣1;(2)﹣2x﹣2y=﹣2(x+y)=﹣1,则x+y=,若使求得的A的值与(1)中的结果相同,则给出的x,y的值还可以是:x=0,y=(答案不唯一).故答案为:x=0,y=(答案不唯一).23.解:(4a﹣5b﹣ab)﹣(2a﹣3b+5ab)=4a﹣5b﹣ab﹣2a+3b﹣5ab=2a﹣2b﹣6ab,=2(a﹣b)﹣6ab,当a﹣b=2,ab=﹣1时,原式=2×2﹣6×(﹣1)=10.六、探究题(本大题共4个小题,第24、第25小题3分,第26、27小题4分,共14分). 24.解:(1)设0.=x,则4+x=10x,∴x=.故答案是;(2)设0.=m,方程两边都乘以100,可得100×0.=100m.由0.=0.3232…,可知100×0.=32.3232…=32+0.即32+m=100m可解得m=,∴1.=1.25.解:(1)如图所示:(2)设这个两位数的个位数字为b,依题意有20a×b=a×100,解得b=5,故这个两位数为10a+5.故答案为:10a+5.26.解:(1)∵﹣|6+2|+3=﹣5,﹣4﹣1=﹣5,故答案为﹣4;(2)由所给式子可知,x+2=2,∴x=0,故答案为0;(3)∵y﹣1=﹣|2﹣y+2|+3,∴y=﹣|y﹣4|+4,当y≥4时,y=﹣y+8,∴y=4;当y<4时,式子恒成立,∴y=4时最大,此时4﹣1=﹣|﹣2+2|+3,故答案为4,4﹣1=﹣|﹣2+2|+3.27.解:(1)①根据径向对称的定义,点C,D与点A关于线段OM径向对称.②当点O是AE的中点时,x=1,当点M是AE的中点时x=5,∴满足条件的x的值为1≤x≤5.故答案为C,D,1≤x≤5.(2)若点H与点E关于线段OM径向对称,设点E表示的数为x,则x的取值范围是5﹣t≤x≤9﹣t,∴满足条件的t的值满足:5﹣t﹣(﹣3)≤3t≤9﹣t﹣(﹣4),解得2≤t≤.。

人教版七年级上学期期中考试数学试卷(含答案)

人教版七年级第一学期期中数学试卷及答案一、单选题(共10题,每小题4分,合计40分)1.(4分)的相反数是()A.6B.﹣6C.D.﹣【解答】解:的相反数是﹣,故选:D.2.(4分)如果和﹣x2y n是同类项,则m+n=()A.3B.2C.1D.﹣1【解答】解:∵和﹣x2y n是同类项,∴m=2,n=1,∴m+n=2+1=3.故选:A.3.(4分)如果m=n,那么下列等式不一定成立的是()A.m﹣3=n﹣3B.2m+3=3n+2C.5+m=5+n D.【解答】解:A.∵m=n,∴m﹣3=n﹣3,故本选项不符合题意;B.∵m=n,∴2m=2n,∴2m+3=2n+3,不能推出2m+3=3n+2,故本选项符合题意;C.∵m=n,∴5+m=5+n,故本选项不符合题意;D.∵m=n,∴=,故本选项不符合题意;故选:B.4.(4分)用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3B.2a+3C.2(a﹣3)D.2(a+3)【解答】解:a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.5.(4分)已知x=2是方程3x﹣5=2x+m的解,则m的值是()A.1B.﹣1C.3D.﹣3【解答】解:∵x=2是方程3x﹣5=2x+m的解,∴把x=2代入方程可得6﹣5=4+m,解得m=﹣3,故选:D.6.(4分)解一元一次方程(x+1)=1﹣x时,去分母正确的是()A.3(x+1)=1﹣2x B.2(x+1)=1﹣3xC.2(x+1)=6﹣3x D.3(x+1)=6﹣2x【解答】解:方程两边都乘以6,得:3(x+1)=6﹣2x,故选:D.7.(4分)多项式a2+a与多项式﹣a+1的差为()A.a2+1B.a2+2a+1C.a2﹣1D.a2+2a﹣1【解答】解:(a2+a)﹣(﹣a+1)=a2+a+a﹣1=a2+2a﹣1,故选:D.8.(4分)多项式x2﹣kxy﹣5y2+xy﹣6合并同类项后不含xy项,则k的值是()A.0B.1C.2D.﹣2【解答】解:∵项式x2﹣kxy﹣5y2+xy﹣6合并同类项后不含xy项,∴﹣k+1=0,∴k=2.故选:C.9.(4分)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.1【解答】解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.10.(4分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•a n.故选:C.二.填空题(共6题,每小题4分,合计24分)11.(4分)我市2020年常住人口约9080000人,该人口数用科学记数法可表示为9.08×106人.【解答】解:9080000人用科学记数法可表示为9.08×106人.故答案为:9.08×106.12.(4分)若a﹣b=1,则代数式2a﹣(2b﹣1)的值是3.【解答】解:整理代数式得,2a﹣2b+1=2(a﹣b)+1,∵a﹣b=1,∴原式=2+1=3.13.(4分)当x=1时,代数式x+2与代数式的值相等.【解答】解:∵代数式x+2与代数式的值相等,∴x+2=,2x+4=7﹣x,2x+x=7﹣4,3x=3,x=1,故答案为:1.14.(4分)若|x|=3,|y|=4,且xy>0,则x+y的值为7或﹣7.【解答】解:∵|x|=3,|y|=4,∴x=±3,y=±4,∵xy>0,∴x=3时,y=4,x+y=7,x=﹣3时,y=﹣4,x+y=﹣3+(﹣4)=﹣7,综上所述,x+y的值是7或﹣7.故答案为:7或﹣7.15.(4分)一台整式转化器原理如图,开始时输入关于x的整式M,当M=x+1时,第一次输出3x+1,继续下去,则第2次输出的结果是7x+1.【解答】解:第一次输入M=x+1得整式:(x+1+)×2+N=3x+1,整理得3x+2+N=3x+1,故2+N=1,解得N=﹣1,故运算原理为:(M+)×2﹣1,第二次输入M=3x+1,运算得(3x+1+)×2﹣1=7x+1.故答案为:7x+1.16.(4分)有理数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|a﹣c|+|b﹣c|的结果是﹣2a.【解答】解:根据图形,c<b<0<a,且|a|<|b|<|c|,∴a+b<0,a﹣c>0,b﹣c>0,∴原式=(﹣a﹣b)﹣(a﹣c)+(b﹣c),=﹣a﹣b﹣a+c+b﹣c,=﹣2a.故答案为:﹣2a.三.解答题(共9题,合计86分)17.(8分)计算:(1);(2).【解答】解:(1)=()×(﹣60)=﹣×60+×60﹣×60+×60=﹣20+15﹣12+10=﹣7;(2)=﹣1﹣×(﹣20)+4=﹣1+8+4=11.18.(8分)先化简再求值:3a2b﹣[2a2b﹣(2ab﹣a2b)﹣4a2]﹣ab,其中a=﹣3,b=﹣2.【解答】解:3a2b﹣[2a2b﹣(2ab﹣a2b)﹣4a2]﹣ab=3a2b﹣2a2b+(2ab﹣a2b)+4a2﹣ab=3a2b﹣2a2b+2ab﹣a2b+4a2﹣ab=ab+4a2当a=﹣3,b=﹣2时,原式=(﹣3)×(﹣2)+4×(﹣3)2=6+36=42.19.(8分)解方程:(1)y﹣3(20﹣2y)=10(2)(x﹣2)=1﹣(4﹣3x)【解答】解:(1)去括号得:y﹣60+6y=10,移项得:y+6y=10+60,合并同类项得:7y=70,系数化为1得:y=10,(2)方程两边同时乘以12得:3(x﹣2)=12﹣2(4﹣3x),去括号得:3x﹣6=12﹣8+6x,移项得:3x﹣6x=12﹣8+6,合并同类项得:﹣3x=10,系数化为1得:x=﹣.20.(8分)某一食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g)﹣5﹣20136袋数143453这批样品的平均质量比标准质量多还是少?多或少几克,若标准质量为450克,则抽样检测的总质量是多少?【解答】解:与标准质量的差值的和为﹣5×1+(﹣2)×4+0×3+1×4+3×5+6×3=24,其平均数为24÷20=1.2,即这批样品的平均质量比标准质量多,多1.2克.则抽样检测的总质量是(450+1.2)×20=9024(克).21.(8分)若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.【解答】解:(1)3*(﹣4),=4×3×(﹣4),=﹣48;(2)(﹣2)*(6*3),=(﹣2)*(4×6×3),=(﹣2)*(72),=4×(﹣2)×(72),=﹣576.22.(10分)已知:M+N=4x3+16xy2+8y3,N=3x3﹣4y3+16xy2.(1)求M;(2)若|x﹣2|+(y+1)2=0,计算M的值.(2)直接利用非负数的性质得出x,y的值,进而代入计算得出答案.【解答】解:(1)∵M+N=4x3+16xy2+8y3,N=3x3﹣4y3+16xy2,∴M=4x3+16xy2+8y3﹣(3x3﹣4y3+16xy2)=4x3+16xy2+8y3﹣3x3+4y3﹣16xy2=x3+12y3;(2)∵|x﹣2|+(y+1)2=0,∴x﹣2=0,y+1=0,解得:x=2,y=﹣1,∴M=23+12×(﹣1)=8﹣12=﹣4.23.(10分)阅读下面解题过程.利用运算律有时能进行简便计算.例1:98×12=(100﹣2)×12=1200﹣24=1176;例2:﹣16×233+17×233=(﹣16+17)×233=233;请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15);(2)999×118+999×(﹣)﹣999×18.【解答】解:(1)999×(﹣15)=(1000﹣1)×(﹣15)=1000×(﹣15)﹣1×(﹣15)=﹣15000+15=﹣14985;(2)999×118+999×(﹣)﹣999×18=999×[118+(﹣)+(﹣18)]=999×100=99900.24.(12分)有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作;第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8;继续依次操作下去.问(1)第一次操作后,增加的所有新数之和是多少?(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和是多少?(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和是多少?【解答】解:(1)第一次操作后增加的新数是6,﹣1,则6+(﹣1)=5.(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和为3+3+(﹣10)+9=5.(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和为5.25.(14分)如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.【解答】解:(1)点P运动至点C时,所需时间t=10÷2+10÷1+8÷2=19(秒),(2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则10÷2+x÷1=8÷1+(10﹣x)÷2,解得x=.故相遇点M所对应的数是.(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上,则:8﹣t=10﹣2t,解得:t=2.②动点Q在CB上,动点P在OB上,则:8﹣t=(t﹣5)×1,解得:t=6.5.③动点Q在BO上,动点P在OB上,则:2(t﹣8)=(t﹣5)×1,解得:t=11.④动点Q在OA上,动点P在BC上,则:10+2(t﹣15)=t﹣13+10,解得:t=17.综上所述:t的值为2、6.5、11或17.。

人教版七年级上学期期中考试数学试题(含答案)

人教版七年级上学期期中数学试卷及答案一、选择题(每小题3分,共36分)1.﹣2022的绝对值是()A.B.﹣2022C.2022D.﹣2.检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数,在其下方标注了检测结果,其中质量最接近标准的是()A.﹣0.3B.+0.4C.﹣0.1D.﹣0.63.如图,表示互为相反数的两个点是()A.点A和点D B.点B和点C C.点A和点C D.点B和点D4.下列等式正确的是()A.|﹣9|=﹣9B.|﹣|=3C.﹣|﹣7|=7D.﹣(+2)=﹣25.在代数式m,﹣2,4ab2,,中,单项式有()A.3个B.4个C.5个D.6个6.低碳奥运,能源先行,2022冬奥会所有场馆在奥运历史上首次100%使用绿色电力,其中数据14000000000用科学记数法表示为()A.1.4×1010B.1.4×1012C.14×109D.0.14×10117.将多项式x3﹣4xy2+7y3+6x2y按字母y升幂排列的是()A.7y3+4xy2+6x2y+x3B.7y3﹣4xy2+6x2y+x3C.x3﹣6x2y+4xy2+7y3D.x3+6x2y﹣4xy2+7y38.一个点从数轴的原点开始,先向左移动2个单位长度,再向右移动7个单位长度()A.﹣9B.+9C.﹣5D.+59.若|a|=4,|b|=2,且|a+b|=﹣(a+b)()A.﹣2B.﹣6C.﹣2或﹣6D.2或610.《九章算术》中记载一问题:今有共买物,人出八,盈三,不足四.问人数、物价各几何?意思是:今有人合伙购物,每人出8钱;每人出7钱,又差4钱.问人数、物价各多少?设人数为x人()A.8x﹣3B.8x+3C.7x﹣4D.7(x+4)11.一个含有多个字母的整式,如果把其中任何两个字母互换位置,所得的结果与原式相同,x2+y2+z2是对称整式.x2﹣2y2+3z2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式;②一个多项式是对称整式,那么该多项式中各项的次数必相同;③单项式不可能是对称整式:④若某对称整式只含字母z,y,z,且其中有一项为x2y,则该多项式的项数至少为3.以上结论中错误的个数是()A.4B.3C.2D.112.如图是一个运算程序的示意图,若开始输入x的值为125,则第2022次输出的结果为()A.5B.25C.1D.125二、填空题(每小题3分,共18分)13.﹣1 ﹣0.5.(填“>”、“<”或“=”)14.如果零上2℃记作+2℃,那么零下5℃记作℃.15.用代数式表示:x减去y的平方的差.16.如果6x2﹣3x+5=11,那么代数式2x2﹣x+3的值是.17.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“1cm”和“9cm”分别对应数轴上的﹣5和x.18.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,是世界上最早的“幻方”.如图是仅可以看到部分数值的“九宫格”,则其中x﹣y的值为.三、解答题:(共计66分)19.(12分)计算.(1)25+(﹣18)+4+(﹣10);(2)(﹣3)﹣(﹣15)÷(﹣3);(3)(﹣+﹣)×(﹣12);(4)(﹣1)10×2+(﹣2)3÷4.20.(6分)规定一种运算:=ad﹣bc,例如,,请你按照这种运算的规定,计算.21.(6分)有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.22.(6分)若x,y互为相反数,a,b互为倒数,求()2022﹣(﹣ab)2022+c2的值.23.(8分)小明读一本共m页的书,第一天读了该书的,第二天读了剩下的.(1)用含m的代数式表示小明两天共读的页数;(2)当m=120时,求小明两天共读的页数.24.(8分)已知关于x的多项式mx4+(m﹣3)x3﹣(n+2)x2+4x﹣n不含二次项和三次项.(1)求出这个多项式;(2)求当x=2时代数式的值.25.(8分)当今,人们对健康意加重视,跑步成了人们进行体育锻炼的首要选择(即手机应用小程序)应运而生.小明苦爸给自己定了健身目标,每天跑步a千米.以目标路程为基准,不足的部分记为“﹣”,他记下了“十一”长假期间七天跑步的实际路程如下:日期1日2日3日4日5日6日7日略程(千米)+1.72+3.20﹣1.92﹣0.90﹣1.88+3.30+0.08(1)10月5日小明爸爸的跑步路程是千米;(用舍a的代数式表示)(2)小明爸爸给自己定的健身目标是每天跑5千米,若跑步一千米消耗的热量为60千卡,求小明爸爸这七天跑步一共清耗了多少热量?26.(12分)在数轴上点A表示a,点B表示b,且a、b满足|a+5|+|b﹣7|=0.(1)求a,b的值,并计算点A与点B之间的距离.(2)若动点P从A点出发,以每秒2个单位长度的速度沿数轴正方向匀速运动,运动几秒后(3)若动点P从A点出发,以每秒1个单位长度的速度沿数轴向右匀速运动,同时动点Q从B点出发,运动几秒后,P、Q两点间的距离为4个单位长度?参考答案与试题解析1.【解答】解:﹣2022的绝对值是2022.故选:C.2.【解答】解:|﹣0.3|=2.3,|+0.2|=0.4,|﹣2.6|=0.6,∵0.1<2.3<0.3<0.6,∴C选项的排球最接近标准质量.故选:C.3.【解答】解:2和﹣2互为相反数,故选:C.4.【解答】解:A.根据绝对值的定义,那么A错误.B.根据绝对值的定义,,故B不符合题意.C.根据绝对值的定义,那么C错误.D.根据相反数的定义,那么D正确.故选:D.5.【解答】解:代数式m,﹣22,,中,单项式有m,4ab4,共3个.故选:A.6.【解答】解:14000000000=1.4×1010.故选:A.7.【解答】解:将多项式x3﹣4xy6+7y3+7x2y按字母y升幂排列的是7y7﹣4xy2+3x2y+x3,故选:B.8.【解答】解:∵点从原点向左移动2个单位长度,∴该点移动到数轴上的﹣2处,∵再向右移动5个单位长度,∴﹣2+7=3,∴这个点最终所对应的数是5,故选:D.9.【解答】解:∵|a|=4,|b|=2,∴a=±7,b=±2,∵|a+b|=﹣(a+b),∴a+b≤0,∴当a=﹣7时,b=2或﹣2,∴a﹣b=﹣2﹣2=﹣6或a﹣b=﹣2﹣(﹣2)=﹣2,∴a﹣b的值为﹣3或﹣6.故选:C.10.【解答】解:根据题意得,物价为:8x﹣3或8x+4;故选:A.11.【解答】解:①假设两个对称整式分别为M和N(含相同的字母),由题意可知:任何两个字母互换位置,所得的结果与原式相同,则M+N的结果不变,故①不符合题意;②反例:x3+y3+z4+x+y+z为对称整式,x3与y互换后,所得的结果都不会是一个对称的整式;③反例:xyz为单项式,但也是对称整式;④对称整式只含字母x,y,z,且其中有一项为x2y,若x,y互换3y:y2x,则有一项为y2x;若z,x互换2y:z2y,则有一项为z2y;若y,z互换8y:x2z,则有一项为x2z;第三项中x,y,z的次数相同,同理:可以换不相同的字母,至少含有四项:xy2,x2y,x2z,yz5,则该多项式的项数至少为4.故④符合题意.所以以上结论中错误的是②③④,共3个.故选:B.12.【解答】解:第一次:当x=125,,第二次:当x=25,,第三次:当x=4,,第四次:当x=1,x+4=4,第五次:当x=5,,……根据前五次输出结果可知从第二次开始,第奇数次输出结果为1.∴第2022次输出的结果为4.故选:A.13.【解答】解:|﹣1|=1,|﹣3.5|=0.5,∵1>0.7,∴﹣1<﹣0.7,故答案为:<.14.【解答】解:∵零上2℃记作+2℃,∴零下3℃记作﹣5℃.故答案为:﹣5.15.【解答】解:y的平方即y2,则x减去y的平方的差就可以表示为:x﹣y2故答案为:x﹣y616.【解答】解:∵6x2﹣7x+5=11,∴6x7﹣3x=6,∴5(2x2﹣x)=4,即2x2﹣x=3,∴2x2﹣x+2=2+3=8.故答案为:5.17.【解答】解:∵刻度尺上“1cm”对应数轴上的﹣5,∴刻度尺上“3cm”对应数轴上的0,∴刻度尺上“9cm”对应数轴上的3,故答案为:3.18.【解答】解:这九个数的和为1+2+2+...+9=45,∵每一行、每一列的数之和均相对,∴每一行、每一列的数之和为15.∴下中为15﹣9﹣6=1,下右为15﹣8﹣7=6,左中为15﹣4﹣2=3,∴x﹣y=4﹣6=﹣3.故答案为:﹣3.19.【解答】解:(1)25+(﹣18)+4+(﹣10)=25﹣18+4﹣10=2;(2)(﹣3)﹣(﹣15)÷(﹣3)=﹣3﹣5=﹣8;(3)(﹣+﹣)×(﹣12)=×(﹣12)﹣×(﹣12)﹣=﹣9+8﹣4+10=3;(4)(﹣1)10×6+(﹣2)3÷8=1×2+(﹣5)÷4=2﹣7=0.20.【解答】解:∵=ad﹣bc,∴=(﹣1)2018×(﹣2)﹣4×1.25=5×(﹣9)﹣5=﹣5﹣5=﹣14.21.【解答】解:∵在数轴上原点右边的数大于0,左边的数小于0,b<a<8,∴|a﹣b|=a﹣b,|a+b|=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b.22.【解答】解:∵x,y互为相反数,a,c的绝对值等于2,∴x+y=0,ab=7,c2=4,∴()2022﹣(﹣ab)2022+c2=()2022﹣(﹣1)2022+4=6﹣1+4=7.23.【解答】解:(1)∵第一天读了该书的,∴小明第一天读了m页;∵第二天读了剩下的,∴小明第二天读了(4﹣m(页).∴小明两天共读的页数为:m+m(页).(2)当m=120时,m=×120=56(页).答:当m=120时,小明两天共读的页数为56 页.24.【解答】解:(1)∵关于x的多项式mx4+(m﹣3)x2﹣(n+2)x2+7x﹣n不含二次项和三次项,∴m﹣3=0,﹣(n+2)=0,∴m=3,n=﹣3,∴这个多项式为:3x4+4x+2;(2)当x=2时,7x4+4x+4=3×28+4×2+4=58.25.【解答】解:(1)由题意得:10月5日小明爸爸的跑步路程是(a﹣1.88)千米,故答案为:(a﹣6.88);(2)根据题意得:(5×7+2.72+3.20﹣1.92﹣6.90﹣1.88+3.30+5.08)×60=2316(千卡),答:小明爸爸这七天跑步一共消耗了2316千卡热量.26.【解答】解:(1)∵|a+5|+|b﹣7|=8,∴a=﹣5,b=7,∴A与点B之间的距离为6﹣(﹣5)=12;(2)∵A与点B之间的距离为12,∴12÷2=7(秒),答:运动6秒后,点P到达B点;(3)P、Q相遇前:(12﹣4)÷(3+3)=2(秒),P、Q相遇后:(12+7)÷(1+3)=6(秒),答:运动2秒或4秒后,P、Q两点间的距离为3个单位长度.。

人教版2019学年七年级上期中数学试卷含答案(共8套)

人教版2019学年七年级期中数学试卷(一)一、选择题(本大题共10道小题,每小题3分,共30分)1.的相反数是()A.B.﹣C.3 D.﹣32.下列各对数中,相等的一对数是()A.﹣23与﹣32B.(﹣2)3与﹣23C.(﹣3)2与﹣32D.﹣(﹣2)与﹣|﹣2|3.下列运算正确的是()A.2x2﹣x2=2 B.2a2﹣a=a C.﹣a2﹣a2=﹣2a2D.2m2+3m3=5m54.多项式x3y2﹣5x2y+6xy﹣3的次数是()A.2 B.3 C.5 D.105.下列结论不正确的是()A.若a+c=b+c,则a=b B.若ac=bc,则a=bC.若,则a=b D.若ax=b(a≠0),则6.在数轴上,与表示数﹣1的点的距离是3的点表示的数是()A.2 B.﹣4 C.±3 D.2或﹣47.下列方程中,解为x=4的方程是()A. B.4x=1 C.x﹣1=4 D.8.己知a,b两数在数轴上对应的点如图所示,下列结论正确的是()A.a>b B.ab<0 C.b﹣a>0 D.a+b>09.一个多项式与x2﹣2x+1的和是3x﹣2,则这个多项式为()A.x2﹣5x+3 B.﹣x2+x﹣1 C.﹣x2+5x﹣3 D.x2﹣5x﹣1310.某企业2014年的生产总值为a万元,预计2015年的生产总值比去年增长20%,那么该企业这两年的生产总值之和是()A.20%a万元B.(20%+a)万元C.(1+20%)a万元D.万元二、填空题(本大题共8道小题,每空2分,共20分)11.若赢利2000元记作+2000元,则亏损800元记作元.12.比较大小:﹣﹣(填“>”或“<”)13.单项式﹣2xy3的系数是,次数是.14.用四舍五入法求0.12874精确到千分位的近似数为.15.若|m﹣3|+(n+2)2=0,则m+n的值为.16.若a、b互为相反数,c、d互为倒数,则+2cd=.17.若方程kx|k+1|+2=0是关于x的一元一次方程,则k=.18.有一组数,.请观察这组数的构成规律,用你发现的规律确定第6个数是,第n个数是.三.计算题(本大题共4道小题,每小题16分,共16分)19.(1)(﹣20)+(+3)﹣(﹣5)﹣(+7)(2)(3)(4).四.化简求值题(本大题共2道小题,每小题4分,共8分)20.3x2+1﹣2x﹣5﹣3x﹣x2.21.先化简,再求值:(9ab2﹣3)+a2b+3﹣2(ab2+1),其中a=﹣2,b=3.五.解方程(本大题共2道小题,每小题8分,共8分)22.解方程:(1)2(x﹣3)﹣5(3﹣x)=21(2)﹣=4.六.解答题(本大题共3道小题,每小题6分,共18分)23.有理数a,b在数轴上的对应点位置如图所示,(1)用“<”连接0,a,b,﹣1;(2)化简:|a|+|a+b|﹣2|b﹣a|.24.(1)已知代数式3x2﹣4x的值为6,求代数式6x2﹣8x﹣9的值;(2)已知,求代数式的值.25.已知﹣x1﹣m y2与是同类项,求(m﹣2n)2﹣5(m+n)﹣2(2n﹣m)2+m+n的值.七.附加题26.(2015秋•北京校级期中)填空题:(请将结果直接写在横线上)现定义运算“△”,对于两个有理数a,b,都有a△b=ab﹣(a+b),例如:(﹣2)△1=(﹣2)×1﹣(﹣2+1)=﹣2﹣(﹣1)=﹣1,则5△1=;(m﹣2)△1=;m△(n△1)=.27.(2015秋•北京校级期中)探究题:下图是某月的月历.(1)如图1,带阴影的方框中的9个数之和是;(2)如果将带阴影的方框移至图2的位置,则这9个数之和是;(3)如果将带阴影的方框移至9个数之和为198的位置,求这9个数中最小的数.28.(2015秋•北京校级期中)阅读理解题:如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个x=,第个格子中的数为;(2)判断:前n个格子中所填整数之和是否可能为2015?若能,求出n的值,若不能,请说明理由;(3)若取前3格子中的任意两个数,记作a、b,且a≥b,那么所有的|a﹣b|的和可以通过计算|9﹣★|+|9﹣☆|+|☆﹣★|得到.其结果为;若取前19格子中的任意两个数,记作s、t,且s≥t,求所有的|s﹣t|的和.人教版2019学年七年级数学试卷(二)一、选择题(本题共10个小题,每小题4分,共40分)1.﹣的相反数是()A.﹣B.C.﹣D.2.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为()A.0.21×108B.21×106C.2.1×107D.2.1×1063.下列关于单项式﹣的说法中,正确的是()A.系数是﹣,次数是2 B.系数是,次数是2C.系数是﹣3,次数是3 D.系数是﹣,次数是34.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到千分位)C.0.05(精确到百分位)D.0.0502(精确到0.0001)5.下面的计算正确的是()A.6a﹣5a=1 B.a+2a2=3a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b6.下列是一元一次方程的是()A.x﹣y=4﹣2x B.C.2x﹣5=3x﹣2 D.x(x﹣1)=27.下列各式:①﹣(﹣2);②﹣|﹣2|;③﹣22;④﹣(﹣2)2,计算结果为负数的个数有()A.4个B.3个C.2个D.1个8.下列各题去括号所得结果正确的是()A.x2﹣2(x﹣3)=x2﹣2x﹣3 B.x2﹣2(x﹣3)=x2﹣2x+3C.x2﹣2(x﹣3)=﹣x2﹣2x+6 D.x2﹣2(x﹣3)=x2﹣2x+69.已知(a+3)2+|b﹣2|=0,则a b的值是()A.﹣6 B.6 C.﹣9 D.910.为确保信息安全,信息需加密传输,发送方由明文→密文(加密);接收方由密文→明文(解密).已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d.例如:明文1,2,3,4对应的密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为()A.4,6,1,7 B.4,1,6,7 C.6,4,1,7 D.1,6,4,7二、填空题(本题共6个小题,每小题4分,共24分)11.如果“节约10%”记作+10%,那么“浪费6%”记作:.12.比较大小:(1)﹣﹣3;(2)5﹣|﹣5|13.若x=﹣2是方程2x+a=0的解,则a=.14.若a=b,则在①a﹣3=b﹣3;②3a=2b;③﹣4a=﹣3b;④3a﹣1=3b﹣1中,正确的有.(填序号)15.若m2+3n﹣1的值为5,则代数式2m2+6n+5的值为.16.用棋子摆出下列一组三角形,三角形每边有n枚棋子,每个三角形的棋子总数为s,如图按此规律推断,当三角形的边上有n枚棋子时,该三角形棋子总数s=(用含n的式子表示).三、解答题(本大题共86分)17.计算:(1)﹣3﹣(﹣4)+7(2)(3)(4).18.解方程:5x﹣5=8x+1.19.化简求值:3(x2﹣2xy)﹣(2x2﹣xy),其中x=2,y=3.20.邮递员骑车从邮局出发,先向南骑行2km到达A村,继续向南骑行3km到达B村,然后向北骑行9km到C村,最后回到邮局.(1)以邮局为原点,以向北方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)邮递员一共骑了多少千米?21.某一食品厂从生产的袋装食品中抽出样品6袋,检测每袋的质量是否符合标准,超过或22.若a、b互为相反数,c、d互为倒数,x的绝对值为2,且x<0,求的值.23.苏宁电器元旦促销,将某品牌彩电按原价提高40%,然后在广告上写“元旦大酬宾,八折优惠”,结果每台彩电仍获利240元,那么每台彩电原价是多少元?24.为了绿化校园,学校决定修建一块长方形草坪,长30米,宽20米,并在草坪上修建如图所示的十字路,小路宽为x米,用代数式表示:(1)修建小路面积为多少平方米?(2)草坪的面积是多少平方米?25.已知多项式3x2+my﹣8与多项式﹣nx2+2y+7的差中,不含有x、y,求n2+mn的值.26.已知有理数a、b、c在数轴上的对应点如图所示.(1)用“<”号把a,b,c连接起来;(2)化简:|a﹣b|+|b﹣c|﹣|c﹣a|.27.将连续的自然数1至1001按如图的方式排列成一个长方形阵列,用一个正方形框出9个数,要使这个正方形框出的9个数之和分别为:(1)2007;(2)2008、这是否可能?若可2019学年七年级数学试卷(三)一、选择题:在每小题的四个选项中,只有一项是符合题目要求的.(每小题3分,共30分.)1.﹣5的绝对值等于()A.﹣5 B. C.5 D.2.下列各式中,等号成立的是()A.|﹣a|=a B.﹣32=(﹣3)2C.﹣27=(﹣2)7D.﹣(﹣3)2=﹣(﹣2)33.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013km B.9.5×1012km C.95×1011km D.950×1010km4.若>0,则一定有()A.a>0且b>0 B.a<0且b<0C.a,b同正或同负D.不确定5.已知关于x的方程2x+m=5的解是x=﹣1,则m的值为()A.3 B.7 C.﹣7 D.﹣36.下列计算正确的是()A.3a+b=3ab B.3a﹣a=2C.2a3+3a2=5a5D.﹣a2b+2a2b=a2b7.若﹣1<m<0,则m、m2、的大小关系是()A.m<m2<B.m2<m<C.<m<m2D.m<<m28.下列说法正确的个数有()①若|a|=|b|,则a=b;②若a≠b,则a2≠b2;③若a>b,则a2>b2;④a2>a.A.0个B.1个C.2个D.3个9.当式子(2x﹣1)2+2取最小值时,x等于()A.2 B.﹣2 C.0.5 D.﹣0.510.数轴上点A,B,C,D对应的有理数都是整数,若点A对应有理数a,点D对应有理数d,且d﹣2a=10,则数轴上原点应是()A.A点 B.B点C.C点D.D点二、填空题:把答案填在题中横线上.(每题2分,共20分.)11.0的相反数为,的倒数为.12.数轴上与原点相距3个单位长度的点有个,它们表示的数各是.13.甲数x的与乙数y的的差可以表示为.14.单项式的系数是,次数是.15.m2﹣n4+3mn+2是次项式.16.m、n两数在数轴上的位置如图,请按从小到大的顺序排列m、n、﹣m、﹣n.17.已知:|x﹣2|+(y+3)2=0,则x2+y2=.18.若2a2m b4和﹣a6b n﹣2是同类项,则m=、n=.19.有理数a,b,c表示的点在数轴上的位置如图所示,则|a+c|﹣|c﹣b|﹣|b+a|=.20.观察下列一串单项式的特点:xy,﹣2x2y,4x3y,﹣8x4y,16x5y,…(1)按此规律写出第6个单项式;(2)试猜想第n个单项式为.三、计算题.(每小题30分,共30分.)21.(1)﹣6﹣7﹣8(2)(3)﹣3x2y+2x2y+3xy2﹣2xy2(4)x﹣3(1﹣2x+x2)+2(﹣2+3x+x2)(5)解方程x+12=4x﹣15(6)解方程:y﹣=2﹣.四、解答题:(本大题共4小题,每小题5分,共20分.)22.求3a2b﹣﹣ab的值,已知4|a﹣1|+8(b+3)2=0.23.已知﹣5x3y|a|﹣(a﹣4)x﹣6是关于x、y的七次三项式,求a2﹣2a+1的值.24.(4﹣n2)x2﹣(n﹣2)x﹣8=0是关于x的一元一次方程,(1)试求x值;(2)求关于y方程n+|y|=x的解.25.已知:有理数a、b满足ab>0,当时,|y﹣4|=2,3a3z﹣1b与7ba5能够合并,求y﹣2x+z的值.五、解答题26.(2007•湘潭)为庆祝“六•一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆n个“金鱼”需用火柴棒的根数为()A.2+6n B.8+6n C.4+4n D.8n27.(2015秋•西城区校级期中)如果a2+a﹣1=0,求a3+2a2+2的值.28.(2015秋•西城区校级期中)如图是一块在电脑屏幕上出现的长方形色块图,它是由6个不同颜色的正方形组成的,已知中间最小的正方形的边长是1cm,则这块长方形色块图的总面积是多少?人教版2019学年七年级期中数学试卷(四)一.精心选一选(共10个小题,每小题3分,共30分)1.﹣5的绝对值是()A.5 B.﹣5 C.D.﹣2.十八大报告指出:“建设生态文明,是关系人民福祉、关乎民族未来的长远大计”,这些年党和政府在生态文明的发展进程上持续推进,在“十一五”期间,中国减少二氧化碳排放1 460 000 000吨,赢得国际社会广泛赞誉.将1 460 000 000用科学记数法表示为()A.146×107B.1.46×107C.1.46×109D.1.46×10103.下列各式中运算正确的是()A.4m﹣m=3 B.a2b﹣ab2=0 C.2a3﹣3a3=a3D.xy﹣2xy=﹣xy4.已知代数式﹣5a m﹣1b6和是同类项,则m﹣n的值是()A.1 B.﹣1 C.﹣2 D.﹣35.下列各式中去括号正确的是()A..x2﹣(2x﹣y+2)=x2﹣2x﹣y+2 B.﹣(mn﹣1)+(m﹣n)=﹣mn﹣1+m﹣nC.ab﹣(﹣ab+5)=﹣5 D.x﹣(5x﹣3y)+(2x﹣y)=﹣2x+2y6.下列方程中,解为x=4的方程是()A.x﹣1=4 B.4x=1 C.4x﹣1=3x+3 D.=17.下列叙述中正确的是()A.若ac=bc,则a=b B.若=,则a=bC.若a2=b2,则a=b D.若﹣,则x=﹣28.有理数﹣32,(﹣3)2,|﹣33|,按从小到大的顺序排列是()A.<﹣32<(﹣3)2<|﹣33| B.|﹣33|<﹣32<<(﹣3)2C.﹣32<<(﹣3)2<|﹣33| D.<﹣32<|﹣33|<(﹣3)29.实数a、b在数轴上的位置如图所示,则化简|a﹣b|+a的结果为()A.﹣2a+b B.﹣b C.﹣2a﹣b D.b10.下面是按一定规律排列的一列数:第1个数:;第2个数:;第3个数:;…第n个数:﹣(1+)(1+)(1+)…(1+).那么,在第8个数、第9个数、第10个数、第11个数中,最大的数是()A.第8个数 B.第9个数 C.第10个数D.第11个数二.细心填一填(共10个小题,每小题2分,共20分)11.﹣2的倒数是.12.有理数3.645精确到百分位的近似数为.13.列式表示“a的3倍与b的相反数的和”:.14.已知2是关于x的方程2x﹣a=1的解,则a=.15.如果(a+2)2+|1﹣b|=0,那么(a+b)2015=.16.已知代数式x﹣2y的值是﹣2,则代数式3﹣x+2y的值是.17.若(k+3)x2+x﹣2k=0是关于x的一元一次方程,则k=,这个方程的解为.18.关于x的二次三项式的一次项系数为5,二次项系数是﹣3,常数项是﹣4.按照x的次数逐渐降低排列,这个二次三项式为.19.若x、y都是有理数,且使得四个两两不相等的数x+4、2x、2y﹣7、y能分成两组,每组的两个数是互为相反数,则x+y的值等于.20.有一列式子,按一定规律排列成﹣3a2,9a5,﹣27a10,81a17,﹣243a26,….(1)当a=1时,其中三个相邻数的和是63,则位于这三个数中间的数是;(2)上列式子中第n个式子为(n为正整数).三.用心算一算(共4个小题,每小题16分,共16分)21.(1)﹣9+11﹣21(2)﹣1+(﹣2)3+|﹣3|(3)(﹣3)3÷4×(﹣)(4)﹣×.四.认真解一解下列方程(共2个小题,每小题8分,共8分)22.解方程:(1)(2)﹣y+y=(﹣1)3﹣(﹣4)五.化简或求值(本题5分+5分+5分+5分=20分)23.化简:3x﹣2y+1+3y﹣2x﹣5.24.化简:5x2y﹣2xy﹣4(x2y﹣xy)25.已知,求代数式a2+6a﹣2(1+3a﹣a2)的值.26.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.六.解答下列问题(2分+2分+2分=6分)27.首届中国国际魔术邀请赛、魔术论坛2012年11月30日至12月2日在北京昌平区体育馆举办,刘谦的魔术表演风靡全世界.很多同学非常感兴趣,也学起了魔术.请看刘凯同学把任意有理数对(x,y)放进装有计算装置的魔术盒,会得到一个新的有理数x2+y﹣1.例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将有理数对(﹣4,﹣5)放入其中,得到的有理数是.若将正整数对放入其中,得到的值都为5,则满足条件的所有的正整数对(x,y)为.28.如果a2+a﹣1=0,求a3+2a2+2的值.29.国强同学喜欢用黑色棋子摆放在正多边形的边上来研究数的规律.请你观察下面表格…棋子个数3 6 9 ……棋子个数48 12 …Q正多边形第正多边形棋子个数38 15 24 MP=,Q=,M=.(2)下列数中既是三角形中的棋子数又是正方形中的棋子数的是.A.2013B.2014C.2015D.2016.人教版2019学年七年级期中数学试卷(五)一.选择题(每小题2分,计20分)1.下面说法中不正确的是()A.的常数项是1 B.a2+2ab+b2是二次三项式C.x+不是多项式D.单项式πr2h的系数是π2.下面每组中的两个数互为相反数的是()A.﹣和5 B.﹣2.5和2C.8和﹣(﹣8)D.和0.3333.两个非零有理数的和为零,则它们的商是()A.0 B.﹣1 C.+1 D.不能确定4.既是分数,又是正数的是()A.+5 B.﹣5C.0 D.85.下列比较大小正确的是()A.﹣5<﹣4 B.﹣(﹣21)<+(﹣21)C.D.6.在有理数中,下列说法正确的是()A.有最小的数,但没有最大的数B.有最小的正数;也有最大的负数C.有最大的数,也有最小的数D.既没有最大的数,也没有最小的数7.下列式子中正确的是()A.2m2﹣m=m B.﹣4x﹣4x=0 C.ab2﹣a2b=0 D.﹣3a﹣2a=﹣5a8.﹣12的绝对值是()A.12 B.﹣12 C.D.﹣9.校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从学校出发,向北走了50米,接着又向北走了70米,此时张明的位置在()A.在家 B.在学校C.在书店D.不在上述地方10.2005年末,我国外汇储备达到8 189亿美元,用科学记数法表示(保留3个有效数字)是()A.8.19×1011 B.8.18×1011 C.8.19×1012 D.8.18×1012二、填空题(每题2分,计20分)11.如果从大润发向正东走100m,记为+100m,那么小张、小李、小王分别从大润发出发,走了﹣250m、+160m、﹣310m,则小张在小李的(填“正东”或“正西”)方向上,小张和小王之间的距离是.12.若|x﹣1|+(y+2)2=0,则(x+y)2012=.13.3.05×106精确到位,有个有效数字.14.的倒数是;的相反数是.15.若a2b m+2与﹣0.5a n﹣1b4的和是单项式,则m﹣n=.16.去括号,合并同类项得:3b﹣2c﹣+c=.17.按规律填出线上的数:﹣2,4,﹣8,16,.18.单项式的系数是,次数是.19.﹣(﹣3)=(﹣2)3=.20.将一些半经相同的小圆按如图所示的规律摆放,第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…依此规律,第n个图形有个小圆(用n的代数式来表示).三、计算题(每小题30分,计30分)21.计算:(1)49×(﹣5)(2)3a+4b﹣5a﹣b(3)0﹣23÷(﹣4)3﹣(4)﹣14﹣(1﹣0.5)××(5)﹣(﹣3)2+÷8﹣(﹣2)99﹣299(6)×1.四、解答题(每题6分,计30分)22.现规定一种新的运算“*”:a*b=a b(a,b均不为0),如3*2=32=9.(1)计算:(2)计算:.23.先化解,再求值:﹣9y+6x2+3(y﹣x2),其中x=2,y=﹣1.24.3xy2﹣2(xy﹣x2y)+(3x2y﹣2xy2)其中x=﹣4 y=.25.观察下列各式:32﹣12=4×2,102﹣82=4×9,172﹣152=4×16…你发现了什么规律?(1)试用你发现的规律填空:352﹣332=4×,642﹣622=4×.(2)请你用含一个字母n(n≥1)的等式将上面各式呈现的规律表示出来,并用所学数学知识说明你所写式子的正确性.26.一种笔记本的单价是x元,圆珠笔的单价是y元.小红买这种笔记本4本,买圆珠笔3支;小强买这种笔记本3本,买圆珠笔2支.(1)买这些笔记本和圆珠笔,两人一共花费多少钱?(2)请结合生活实际选取适当的x,y值,计算两人的总花费.人教版2019学年七年级期中数学试卷(六)一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答卷上对应的方框涂黑.1.在﹣3,0,1,﹣2这四个数中,是负数的有()个.A.1 B.2 C.3 D.02.4的相反数是()A.4 B.﹣4 C.D.3.下列四组数中,相等一组是()A.+(+3)和+(﹣3)B.+(﹣5)和﹣5 C.﹣(+4)和﹣(﹣4)D.+(﹣1)和|﹣1|4.计算﹣a2+3a2的结果为()A.2a2B.﹣2a2C.4a2D.﹣4a25.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013km B.9.5×1012km C.95×1011km D.950×1010km6.下列各组代数式中,是同类项的是()A.5x2y与xy B.﹣5x2y与yx2C.5ax2与yx2D.83与x37.下列各方程中,不是一元一次方程的是()A.x﹣2=2x+1 B.y+5=7﹣y C.3x+=2 D.4﹣2y=y8.若|x+1|+(y﹣2)2=0,则x y的值是()A.﹣2 B.2 C.﹣1 D.19.下列方程中,变形正确的是()A.由3x﹣2=4,得3x=4﹣2 B.由2x+5=4x﹣1,得2x﹣4x=1﹣5C.由﹣x=2,得x=8 D.由x=﹣2,得x=﹣310.已知:x﹣2y=﹣3,则5(x﹣2y)2﹣3(x﹣2y)+40的值是()A.5 B.94 C.45 D.﹣411.如果规定“⊗”为一种新运算符号,且a⊗b=ab+a﹣b,其中a,b为有理数,则3⊗5的值()A.11 B.12 C.13 D.1412.由点组成的正方形,每条边上的点数n与总点数s的关系如图所示,则当n=60时,计算s的值为()A.220B.236 C.240 D.216二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答卷中对应的横线上.13.物体向右运动4m记作+4m,那么物体向左运动3m,应记作m.14.单项式﹣的系数是.15.﹣2.5的倒数是.16.若x=2是方程2x+m﹣1=5的解,则m=.17.|a|=5,|b|=3,且|a+b|=a+b,则ab=.18.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为.三、解答题(本大题2个小题,每小题6分.共12分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.19.画出一条数轴,在数轴上表示数,2,﹣(﹣3),﹣|﹣2|,0,并把这些数用“<”连接起来.20.若a,b互为相反数,c,d互为倒数,|m|=2,求a﹣(﹣b)﹣的值.四、解答题(本大题4个小题,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.21.计算题(1)﹣5+(+21)﹣(﹣79)﹣15(2)2(m﹣3n)﹣(﹣3m﹣2n)(3)﹣(﹣+)÷(4)﹣÷×(﹣1)2013.22.先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b﹣1),其中a=,b=1.23.已知:M=3x2+2x﹣1,N=﹣x2+3x﹣2,求M﹣2N.24.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和.五、解答题(本大题2个小题,共22分)25.某摩托车厂本周计划每日生产250辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的辆数记为正数,减少的记为负数,①本周六生产了多少辆摩托车?②本周总生产量与计划生产量相比,是增加了还是减少了?增加或减少了多少辆?③产量最多的一天比产量最少的一天多生产多少辆?26.观察下列等式:=1﹣,=﹣,=﹣;将以上三个等式两边分别相加得:++=1﹣+﹣+﹣=1﹣=;(1)猜想并写出:=.(2)直接写出下列各式的计算结果:①+++…+=;②+++…+=.(3)探究并计算式子:+++…+的值.人教版2019学年七年级期中数学试卷(七)一、选择题(每小题3分,共30分)1.﹣5的倒数是()A.B.﹣C.5 D.﹣52.随着交通网络的不断完善.旅游业持续升温,据统计,在今年“五一”期间,某风景区接待游客403000人,这个数据用科学记数法表示为()A.403×103B.40.3×104C.4.03×105D.0.403×1063.下列各式中运算正确的是()A.4m﹣m=3 B.a2b﹣ab2=0 C.2a3﹣3a3=a3D.xy﹣2xy=﹣xy4.下列式子的变形中,正确的是()A.由6+x=10得x=10+6 B.由3x+5=4x得3x﹣4x=﹣5C.由8x=4﹣3x得8x﹣3x=4 D.由2(x﹣1)=3得2x﹣1=35.已知代数式﹣5a m﹣1b6和是同类项,则m﹣n的值是()A.1 B.﹣1 C.﹣2 D.﹣36.已知x=1是关于x的方程2x+a=1的解,则a的值是()A.﹣1 B.1 C.0 D.37.下列关于多项式5ab2﹣2a2bc﹣1的说法中,正确的是()A.它是三次三项式B.它是四次两项式C.它的最高次项是﹣2a2bc D.它的常数项是18.有理数﹣32,(﹣3)2,|﹣33|,按从小到大的顺序排列是()A.<﹣32<(﹣3)2<|﹣33| B.|﹣33|<﹣32<<(﹣3)2C.﹣32<<(﹣3)2<|﹣33| D.<﹣32<|﹣33|<(﹣3)29.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④10.某商场把一个双肩背书包按进价提高50%标价,然后再按八折出售,这样商场每卖出一个书包就可赢利8元.设每个双肩背书包的进价是x元,根据题意列一元一次方程,正确的是()A.(1+50%)x•80%﹣x=8 B.50%x•80%﹣x=8C.(1+50%)x•80%=8 D.(1+50%)x﹣x=8二、填空题(11~16题每小题2分,17题、18题每小题2分,共20分)11.(2分)单项式的系数是;次数是.12.当x=时,x﹣1的值与3﹣2x的值互为相反数.13.用四舍五入法将1.893 5取近似数并精确到0.001,得到的值是.14.若|y﹣3|+(x+2)2=0,则x y的值为.15.已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则此多项式是.16.若m2+mn=﹣3,n2﹣3mn=18,则m2+4mn﹣n2的值为.17.对于有理数a,b,我们规定a⊗b=a×b+b.(1)(﹣3)⊗4=;(2)若有理数x满足(x﹣4)⊗3=6,则x的值为.18.用完全一样的火柴棍按如图所示的方法拼成“金鱼”形状的图形,则按照这样的方法拼成第4个图形需要火柴棍根,拼成第n个图形(n为正整数)需要火柴棍根(用含n的代数式表示).三、计算题(每小题16分,共16分)19.(﹣2)+(﹣1)﹣(﹣5)﹣|﹣3|(2)(3)(4).四、化简求值(每小题5分,共10分)20.化简:2(2a2+9b)+3(﹣5a2﹣4b)21.先化简,再求值:2(x2y﹣xy2﹣1)﹣(2x2y﹣xy2﹣y),其中x=2,y=﹣1.五、解方程(每小题12分,共12分)22.2(x﹣3)﹣(3x﹣1)=1(2).六、解答题(每小题题6分,共12分)23.列方程解应用题:新年联欢会要美化教室环境,有几个同学按需要做一些拉花.这几个同学如果每人做3个还剩1个未做,如果每人做4个则缺少2个做拉花的材料,求做拉花的同学的人数.24.(6分)已知代数式M=(a+b+1)x3+(2a﹣b)x2+(a+3b)x﹣5是关于x的二次多项式.(1)若关于y的方程3(a+b)y=ky﹣8的解是y=4,求k的值;(2)若当x=﹣1时,代数式M的值为﹣21,求代数式4a﹣b的值.人教版2019学年七年级期中数学试卷(八)一、选择题:(每小题2分,共28分)1.(2分)在数7,0,﹣(﹣3),π中,正数的个数是()A.1个B.2个C.3个D.4个2.下列说法中正确的是()A.0是最小的有理数B.0的相反数、绝对值、倒数都是0C.0不是正数也不是负数D.0不是整数也不是分数3.(2分)下列数轴画法正确的是()A.B.C.D.4.今年一月的某一天,武汉市最高温度为7℃,最低温度是﹣4℃,这天的最高温度比最低温度高()A.3℃B.7℃C.11℃ D.﹣ll℃5.一种面粉的质量标识为“25±0.20千克”,下列面粉中合格的是()A.25.30千克B.24.70千克C.25.51千克D.24.82千克6.把12+(+9)+(﹣6)写成省略加号的和的形式,正确的是()A.12﹣9﹣6 B.12+9﹣6 C.﹣12+9+6 D.12﹣9+67.(2分)整式﹣0.3x2y,,,,﹣中单项式的个数有()A.3个B.4个C.5个D.6个8.下列各组中的两个单项式中,是同类项的是()A.a2和﹣2a B.2m2n和3nm2C.﹣5ab和﹣5abc D.x3和239.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()元.A.4m+7n B.28mn C.7m+4n D.11mn10.(2分)下列各题中合并同类项结果正确的是()A.4xy﹣3xy=1 B.2b2c+3b2c=6b2cC.2a2+3a2=5a2D.2m2n﹣2mn2=011.(2分)下列等式中,成立的是()A.|+3|=±3 B.|﹣3|=﹣(﹣3)C.|±3|=±3 D.﹣|﹣3|=312.如果a=b,则下列等式不一定成立的是()A.a﹣c=b﹣c B.a+c=b+c C. D.ac=bc13.下列运算正确的是()A.﹣3(x﹣1)=﹣3x﹣1 B.﹣3(x﹣1)=﹣3x+1 C.﹣3(x﹣1)=﹣3x﹣3 D.﹣3(x﹣1)=﹣3x+314.1.0149精确到百分位的近似值是()A.1.0149 B.1.015 C.1.01 D.1.0二、填空题:(每空2分,共34分)15.(2分)如果向西走6米记作﹣6米,那么10米表示.16.(6分)|﹣2|=;3的相反数是;﹣2的倒数是.17.第六次人口普查显示,湛江市常住人口数约为6 990 000人,数据6 990 000用科学记数法表示为.18.在数轴上的点A、B位置如图所示,则线段AB的长度为.19.(4分)计算:﹣1﹣(﹣1)2=;|3﹣π|=.20.(2分)多项式3x﹣1+2x3+x2按x的降幂排列为.21.(2分)已知关于x多项式2x a﹣1﹣1是二次二项式,a=.22.单项式的系数是,次数是.23.若x+y=8,则用含x的代数式表示y为.24.(2分)若a2b m﹣2和a n+1b3是同类项,则m﹣n=.25.(2分)若3x n﹣5+2=0是一元一次方程,则n=.26.(2分)若x2+x﹣2=0,则x2+x+6=.27.(4分)观察下面的一列单项式:2x,﹣4x2,8x3,﹣16x4…根据规律,第6个单项式为.三、解答题:28.(16分)计算题:(1)(﹣12)+10+(﹣8)(2)﹣23÷(﹣2)2﹣(﹣3)2×(3)﹣12.5×(﹣)×(﹣8)×1(4)(﹣)×13+(﹣)×2﹣(﹣)×5(5)3x﹣2(x﹣y)(6)x2y﹣3xy2+2yx2﹣y2x.29.(6分)解下列方程:(1)9x﹣5x=24(2)6x﹣13=4x﹣7.30.(4分)方程x+2=5与方程ax﹣3=9的解相等,求a的值.31.(4分)已知a、b互为相反数,c、d互为倒数,求(a+b)2014+(﹣cd)2015的值.32.(5分)所给的数轴上表示下列四个数,并把这四个数按从小到大的顺序,用“<”号连接起来.﹣4,0,﹣1,2.5.33.(5分)先化简,再求值:2(x2﹣x+2)﹣(x2﹣2x﹣1),其中x=﹣2.34.(5分)若|y+3|+(x﹣2)2=0,求3x﹣y的值.35.(6分)某粮食仓库4天内进出库吨数记录如下:(“+”表示进库,“﹣”表示出库)(单位:吨):+5,﹣4,﹣2,+3,﹣6,+7.(1)经过这4天,粮食仓库里的粮食是增多了还是减少了?增多或减少了多少吨?(2)如果进仓库的粮食每吨运费为a元,出仓库的粮食每吨运费为1.5a元,那么这4天共要付运费多少元?(3)求出当a=100元时,这4天共要付运费多少元?36.(5分)数a、b、c在数轴上对应的位置如图所示,化简|b﹣a|+|b﹣c|﹣|c|.(一)一、选择题(本大题共10道小题,每小题3分,共30分)1.的相反数是()A.B.﹣C.3 D.﹣3【考点】相反数.【分析】根据只有符号不同的两个数互为相反数求解后选择即可.【解答】解:﹣的相反数是.故选:A.【点评】本题主要考查了互为相反数的定义,是基础题,熟记概念是解题的关键.2.下列各对数中,相等的一对数是()A.﹣23与﹣32B.(﹣2)3与﹣23C.(﹣3)2与﹣32D.﹣(﹣2)与﹣|﹣2| 【考点】有理数的乘方.【分析】根据有理数的乘方,即可解答.【解答】解:A、﹣23=﹣8,﹣32=9,﹣8≠9,故错误;B、(﹣2)3=﹣8,﹣23=﹣8,﹣8=﹣8,故正确;C、(﹣3)2=9,﹣32=﹣9,9≠﹣9,故错误;D、﹣(﹣2)=2,﹣|﹣2|=﹣2,﹣2≠2,故错误;故选:B.【点评】本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方法则.3.下列运算正确的是()A.2x2﹣x2=2 B.2a2﹣a=a C.﹣a2﹣a2=﹣2a2D.2m2+3m3=5m5【考点】合并同类项.【分析】依据合并同类项法则进行计算即可.【解答】解:A、2x2﹣x2=x2,故A错误;B、不是同类项,不能合并,故B错误;C、正确;D、不是同类项,不能合并,故D错误.故选:C.【点评】本题主要考查的是合并同类项,掌握合并同类项法则是解题的关键.4.多项式x3y2﹣5x2y+6xy﹣3的次数是()A.2 B.3 C.5 D.10【考点】多项式.【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,由此可以确定多项式的次数.【解答】解:多项式x3y2﹣5x2y+6xy﹣3的次数是5,故选C【点评】此题考查的是多项式问题,关键是根据多项式有关定义的理解分析.5.下列结论不正确的是()A.若a+c=b+c,则a=b B.若ac=bc,则a=bC.若,则a=b D.若ax=b(a≠0),则【考点】等式的性质.【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.【解答】解:A、a+c=b+c,两边同时减去c,则a=b,故选项正确;B、当c=0时,a=b不一定成立,故选项错误;C、=,两边同时乘以c,则a=b,故选项正确;D、若ax=b(a≠0),两边同时除以a得x=,故选项正确.故选B.【点评】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.6.在数轴上,与表示数﹣1的点的距离是3的点表示的数是()A.2 B.﹣4 C.±3 D.2或﹣4【考点】数轴.【分析】此题可借助数轴用数形结合的方法求解.在数轴上,与表示数﹣1的点的距离是3的点有两个,分别位于与表示数﹣1的点的左右两边.【解答】解:在数轴上,与表示数﹣1的点的距离是3的点表示的数有两个:﹣1﹣3=﹣4;﹣1+3=2.故选:D.【点评】本题考查的是数轴,注意此类题应有两种情况,再根据“左减右加”的规律计算.7.下列方程中,解为x=4的方程是()A. B.4x=1 C.x﹣1=4 D.【考点】方程的解.【分析】方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等.【解答】解:A、把x=4代入,左边=2,左边=右边,因而x=4是方程的解.B、把x=4代入,左边=16,左边≠右边;因而x=4不是方程的解;C、把x=4代入得到,左边=3,左边≠右边,因而x=4不是方程的解;D、把x=4,代入方程,左边=,左边≠右边,因而x=4不是方程的解;故选:A.【点评】本题考查了方程的解,把方程的解代入原方程进行检验是解题的关键8.己知a,b两数在数轴上对应的点如图所示,下列结论正确的是()A.a>b B.ab<0 C.b﹣a>0 D.a+b>0【考点】有理数大小比较;数轴;有理数的加法;有理数的减法;有理数的乘法.【分析】首先得到b<a<0,再结合有理数的运算法则进行判断.【解答】解:根据数轴,得b<a<0.A、正确;B、两个数相乘,同号得正,错误;C、较小的数减去较大的数,差是负数,错误;D、同号的两个数相加,取原来的符号,错误.故选A.【点评】根据数轴观察两个数的大小:右边的点表示的数,总比左边的大.本题用字母表示了数,表面上增加了难度,只要学生掌握了规律,很容易解答.9.一个多项式与x2﹣2x+1的和是3x﹣2,则这个多项式为()A.x2﹣5x+3 B.﹣x2+x﹣1 C.﹣x2+5x﹣3 D.x2﹣5x﹣13【考点】整式的加减.【专题】计算题.【分析】由题意可得被减式为3x﹣2,减式为x2﹣2x+1,根据差=被减式﹣减式可得出这个多项式.【解答】解:由题意得:这个多项式=3x﹣2﹣(x2﹣2x+1),=3x﹣2﹣x2+2x﹣1,=﹣x2+5x﹣3.故选C.【点评】本题考查整式的加减,难度不大,注意在合并同类项时要细心.10.某企业2014年的生产总值为a万元,预计2015年的生产总值比去年增长20%,那么该企业这两年的生产总值之和是()A.20%a万元B.(20%+a)万元C.(1+20%)a万元D.万元【考点】列代数式.【分析】根据题意可得,2015年的生产总值=(1+20%)×2014年的生产总值,在加14年即可求解.【解答】解:由题意得,2015年的生产总值=(1+20%)a,两年的生产总值之和是:a+(1+20%)故选D.【点评】本题考查了列代数式的知识,解决问题的关键是读懂题意,找到所求的量的等量关系.二、填空题(本大题共8道小题,每空2分,共20分)11.若赢利2000元记作+2000元,则亏损800元记作﹣800元.【考点】正数和负数.【分析】根据正数和负数表示相反意义的量,盈利记为正,可得亏损的表示方法.【解答】解:若赢利2000元记作+2000元,则亏损800元记作﹣800元,故答案为:﹣800.【点评】本题考查了正数和负数,相反意义的量用正数和负数表示.12.比较大小:﹣>﹣(填“>”或“<”)【考点】有理数大小比较.【分析】根据两负数比较大小的法则进行比较即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陕西人教版2019-2020学年七年级上学期数学期中考试试卷新版姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共20分)
1. (2分)2019的倒数是()
A .
B .
C .
D .
2. (2分)-11的绝对值是()
A . 11
B . -11
C .
D . -
3. (2分)据统计,2008年第一季度台州市国民生产总值约为41300000000元.数据41300000000用科学记数法可表示为()
A . 0.413×1011
B . 4.13×1011
C . 4.13×1010
D . 413×108
4. (2分)在数轴上,点A表示的数是–2,点B和点A的距离是3个单位,则点B表
示的数是()
A . 5
B . –5
C . 1
D . –5或1
5. (2分)把0.0975取近似数,保留两个有效数字的近似值是()
A . 0.10
B . 0.097
C . 0.09
D . 0.98
6. (2分)代数式,4xy,,a,2009,,中单项式的个数是()
A . 3
B . 4
C . 5
D . 6
7. (2分)下列计算结果正确的是()
A . · =
B . ÷ =
C . (a-b)2= -
D . 3 +2 =5
8. (2分)下列各题去括号正确的是()
A . (a-b)-(c-d)=a-b-c-d
B . -a-2(b-c)=-a-2b+2c
C . -(a-b)+c=-a-b+c
D . -2(a-b)-c=-2a+b-c
9. (2分)如果代数式x2﹣7x的值为﹣6,那么代数式x2﹣3x+5的值为()
A . 3
B . 23
C . 3或23
D . 不能确定
10. (2分)﹣3×(﹣2)=()
A .
B . 6
C . -6
D . -
二、填空题 (共6题;共7分)
11. (1分)比较大小:________ 4.(填“>”、“<”或“=”号)
12. (1分)一个数的平方等于,那么这个数为________.
13. (1分)已知 =3, =5,且xy<0,则x-y的值等于________.
14. (2分)的相反数是________;的次数是________.
15. (1分)若x=﹣1,则代数式x3﹣x2+4的值为________
16. (1分)化简:5(x-2y)-4(x-2y)=________。

三、解答题: (共10题;共96分)
17. (10分)计算:
(1)(﹣3x2y2)2•2xy+(xy)5;
(2)(x+y)(x﹣y)﹣x(x+y)+2xy.
18. (15分)一辆客车从甲地开往乙地,车上原有(5a﹣2b)人,中途停车一次,有一些人下车,此时下车的人数比车上原有人数一半还多2人,同时又有一些上车,上车的人数比(7a﹣4b)少3人.
(1)用代数式表示中途下车的人数;
(2)用代数式表示中途下车、上车之后,车上现在共有多少人?
(3)当a=10,b=9时,求中途下车、上车之后,车上现在的人数?
19. (5分)有这样一道题:先化简,再求值:
,其中, .小明同学在抄题时,
把“ ”错抄成“ ”,但他计算的结果却是正确的.这是怎么回事呢?请同学们先正确解答该题,然后说明理由.
20. (5分)从某个整式减去多项式ab﹣2bc+3ac,一个同学误认为是加上此多项式,结果得到的答案是﹣2ab+bc+8ac.请你求出原题的正确答案.
21. (5分)设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x 的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m.n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,有1≤y≤3,所以说函
数y=﹣x+4是闭区间[1,3]上的“闭函数”.
(1)反比例函数y=是闭区间[1,2015]上的“闭函数”吗?请判断并说明理由;
(2)若二次函数y=x2﹣2x﹣k是闭区间[1,2]上的“闭函数”,求k的值;
(3)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的解析式(用含m,n的代数式表示).
22. (15分)某电动车厂平均每天计划生产200辆电动车,由于各种原因实际每天的生产量与计划量相比有出入.下表是某周的生产情况(超产为正,减产为负)
星期一二三四五六日
增减情况+5-2-4+13-10+16-9(1)产量最多的一天比产量最少的一天多生产多少辆?
(2)根据记录可知前五天共生产多少辆?
(3)该厂实行计件工资制,每辆车100元,超额完成则超额部分每辆车再奖励40元(以一周为单位结算),那么该厂工人这一周的工资总额是多少元?
23. (15分)甲,乙两人沿湖边环形道上匀速跑步,他们开启了微信运动﹣﹣微信上实时统计每天步数的软件.已知乙的步距比甲的步距少0.4m(步距是指每一步的距离),且每2分钟甲比乙多跑25步,两人各跑3周后到达同一地点,跑3圈前后的时刻和步数如下:出发时刻出发时微信运动中显示的步数结束时刻结束时微信运动中显示的步数
甲9:3021589:404158
乙a13089:404308
(1)求甲,乙的步距和环形道的周长;
(2)求表中a的值;
(3)若两人于9:40开始反向跑,问:此后,当微运动中显示的步数相差50步时,他们相遇了几次?
24. (10分)随着人们生活水平的提高,家用轿车越来越多地进入家庭.王先生家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km为标准,多于50km的记为“+”,不足50km的记为“-”,刚好50km的记为“0”.
第一天第二天第三天第四天第五天第六天第七天
路程(km)-8-11-140-16+41+15(1)王先生这七天中平均每天驾车行驶多少千米?
(2)若每行驶1km需用汽油0.1升,汽油价格为6.5元/升,则王先生家一个月(按30天计)的汽油费用是多少元?
25. (6分)如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形.
(1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个的等式,这个等式可以为________;
(2)请利用(1)中的等式解答下列问题:
①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
②若三个实数x,y,z满足2x×4y÷8z=32,x2+4y2+9z2=45,求2xy﹣3xz﹣6yz的值.
26. (10分)观察下面的等式,探究其中的规律:
(1)写出第八个等式,并说明其正确性;(2)猜想并写出与第个相对应的等式。

参考答案一、选择题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共6题;共7分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题: (共10题;共96分)
17-1、
17-2、
18-1、
18-2、
18-3、
19-1、
20-1、
22-1、
22-2、
22-3、
23-1、
23-2、
23-3、
24-1、
24-2、
25-1、
25-2、
26-1、
26-2、。

相关文档
最新文档