吸收塔设计
吸收塔设计技术标准

吸收塔设计技术标准
吸收塔是利用气体混合物在液体吸收剂中溶解度的不同,使易溶的组分溶于吸收剂中,并与其他组分分离的过程。
吸收塔的设计需要满足以下基本要求:
1. 塔内气体与液体应有足够的接触面积和接触时间。
2. 气液两相应具有强烈扰动,减少传质阻力,提高吸收效率。
3. 操作范围宽,运行稳定。
4. 设备阻力小,能耗低。
5. 具有足够的机械强度和耐腐蚀能力。
6. 结构简单、便于制造和检修。
此外,针对具体情况,还可能要求吸收塔具有抗腐蚀能力。
按吸收时气液作用方式吸收塔可分为表面式、膜式、喷淋式和鼓泡式等。
具体的设计技术标准会根据吸收塔的应用领域、用途、环境条件等因素而有所不同,建议查阅国家及行业相关标准或规范,也可以咨询设计院所获取具体信息。
吸收塔的设计型

题的提法不同。 一、设计型问题的提出 计算吸收剂用量、出口浓度及必需的塔高(填料层高度)。
吸收塔设计计算的提法是:在给定工艺条件及分离要求下,选择合理的设计参数,
2017/5/1
吸收过程的设计型计算
3/20
L ( X X 2 ) Y2 G 参见图29-1,以逆流操作为例。当 G , Y1 , Y2 , X 2 已知时,吸收塔一个端 Y
点(塔顶)B( X 2 , Y2 ) 一定,当液流量 L变化时,操作线的斜率 L / G 变化,则另 一端点A将沿 Y Y1 的水平线移动。吸收剂量 — 操作线斜率 L / G — A 点向左 移动—任一截面推动力 Y —为完成一定任务所需的 H —设备费用 。但同时 由于 L 而浓度 X 1 —溶剂再生要求高,再生费用 。反之, L — H 。 L量小而 X 1 高—再生费用 。可见 L(或 L / G )的选择也是一个经济优化问题。 另外, L (或 L / G )的减小,在技术上受到限制,即当 L / G 降低到操作线与 平衡线相交时, X 1与 Y1 呈平衡,这是理论上 X 1所能达到的最高浓度,此时由于过
G , Y2 L, X 2
含有溶质 的吸收液
X 2 X1 G (最小气液比) L m i n Y2 Y1
Y
G , Y1
惰气 气提
Y2
Y2
B
A
Y2
Y
C
X
L, X 1
Y1
解吸液
O X1
(b)
Y1 X2
O X1 X X2
吸收塔自动控制工艺设计

吸收塔自动控制工艺设计吸收塔自动控制工艺设计一、引言吸收塔是一种常见的化工设备,用于气体与液体之间的质量传递过程。
为了提高吸收效率和操作安全性,自动控制系统在吸收塔中的应用变得越来越重要。
本文将详细介绍吸收塔自动控制工艺设计。
二、工艺流程1. 原料气体进入吸收塔顶部,并与吸收剂接触。
2. 在吸收剂中发生物理或化学反应,将目标组分从气相转移到液相。
3. 液相流向底部,经过分离器分离出产物和废气。
4. 废气排出系统。
三、自动控制策略1. 控制目标:保持吸收剂浓度和温度在设定范围内,以及实现目标组分的高效传质。
2. 控制参数:- 吸收剂流量:根据进料气体流量和目标组分浓度确定合适的吸收剂流量。
- 吸收剂浓度:根据反应速率和传质效果要求,调节进料和排出流量来控制吸收剂浓度。
- 吸收塔压力:根据设备和操作要求,保持吸收塔内部压力稳定。
- 吸收剂温度:通过加热或冷却措施来维持吸收剂温度在适宜范围内。
- 废气排放浓度:根据环保要求,控制废气中目标组分的浓度。
四、自动控制系统1. 测量与传感器:- 气体流量计:用于测量进料气体流量。
- 液位计:用于监测吸收剂液位,以调节进料和排出流量。
- 温度传感器:用于测量吸收塔内部的温度变化。
- 压力传感器:用于监测吸收塔内部的压力变化。
2. 控制器:- 流量控制器:根据进料气体流量和目标组分浓度设定值,调节吸收剂流量控制阀的开度。
- 液位控制器:根据吸收剂液位设定值,通过调节进料和排出流量控制阀来维持液位平衡。
- 温度控制器:根据吸收剂温度设定值,控制加热或冷却设备的操作。
- 压力控制器:根据吸收塔压力设定值,调节进料和排出流量控制阀的开度。
- 废气排放控制器:根据废气中目标组分浓度设定值,调节废气排放系统的操作。
3. 执行器:- 流量控制阀:根据流量控制器的信号,调节吸收剂流量。
- 液位控制阀:根据液位控制器的信号,调节进料和排出流量。
- 加热或冷却设备:根据温度控制器的信号,进行加热或冷却操作。
吸收塔 设计计算

吸收塔设计计算吸收塔是工业生产中常用的设备,用于气体洗涤、脱硫、脱硝、除尘等工艺过程。
其设计计算是确保设备正常运行的重要步骤之一。
下文将从吸收塔的应用、结构分类、设计参数以及计算方法等方面探讨吸收塔的设计计算。
一、吸收塔的应用吸收塔是工业生产中常用的设备,广泛应用于化工、石化、钢铁、电力、印刷、制药等领域,用于将气体中的污染物分离除去。
具体应用包括:1、脱硫:吸收塔可用于烟气中的二氧化硫的脱除。
2、脱硝:吸收塔可用于烟气中的氮氧化物的脱除。
3、除尘:吸收塔可用于烟气中的粉尘颗粒的分离除去。
4、洗涤:吸收塔可用于气体中的酸气、碱气的洗涤处理。
二、吸收塔的结构分类根据结构形式可将吸收塔分为以下几种类型:1、板式吸收塔板式吸收塔是一种以板作为填料的吸收塔,分为横流型、纵流型和斜流型。
吸收塔内置有很多平行的垂直板,气体垂直流过板间空隙,与液体进行旋转接触混合,实现气体进液接触吸收的目的。
板式吸收塔简单易制,可耐受高浓度废气,且维护简单。
2、喷雾吸收塔喷雾吸收塔又称喷淋吸收塔,主要由塔体、喷头等组成。
塔体内装有填料液槽和底部雾化器。
气体经过填料液槽,液体被填料吸附,接触后管道中的液体被喷头雾化,形成雾滴与废气充分接触,从而达到吸附效果。
喷雾吸收塔结构简单,投资少,可以广泛应用。
3、吸附塔吸附塔是一种以吸附剂为填充物的吸收塔。
分为干法吸收和湿法吸收。
吸附塔可用于汽车尾气和工业废气的处理。
吸附塔结构简单,吸附盘式塔种类多样,能够高效地处理各类废气污染物。
三、吸收塔的设计参数1、气体流量气体流量是吸收塔的基本参数之一。
气体流量决定了吸收塔的尺寸和填料数量,它是吸收塔设计的起点。
2、液体流量液体流量是衡量吸收塔性能的重要指标之一。
液体流量要求经过塔体和填料液槽时能够喷淋到填料和气体中,从而实现吸收的目的。
3、气体温度气体温度是影响吸收塔工作效果的因素之一。
高温会导致液体蒸发速度减慢,吸收效果不佳,因此需要保持适宜的气体温度。
吸收塔的设计选型和计算

吸收塔的设计选型和计算吸收塔是一种常见的化工设备,主要用于气体或液体物质的吸收和分离。
设计选型和计算是吸收塔设计过程中的重要环节,本文将对吸收塔的设计选型和计算进行详细介绍。
一、吸收塔的设计选型吸收塔的设计选型是根据工艺要求和操作条件来确定的。
在进行设计选型时,需要考虑以下几个方面:1. 工艺要求:根据需要吸收的物质性质和组成、吸收效率要求等,确定吸收塔的设计参数。
例如,选择适当的填料材料、塔径、塔高等。
2. 流体性质:吸收塔的设计选型还需要考虑流体的性质,包括流体的流量、温度、压力等。
根据流体性质选择适当的吸收剂和溶质。
3. 塔内流体分布:吸收塔内流体的分布对吸收效果有很大影响。
设计时需要考虑塔顶和塔底的液相和气相分布,以及填料层的布置方式。
4. 塔型选择:吸收塔的塔型有很多种,常见的有板式塔、填料塔、喷淋塔等。
选择适当的塔型可以提高吸收效率和操作性能。
二、吸收塔的计算吸收塔的计算是为了确定塔的尺寸和操作参数,以满足设计要求。
吸收塔的计算主要包括以下几个方面:1. 塔径计算:根据流体的流量和操作要求,计算出吸收塔的塔径。
塔径的大小直接影响到液相和气相的接触效果和传质速率。
2. 塔高计算:根据吸收效率、塔径和填料性能等因素,计算出吸收塔的塔高。
塔高的大小决定了流体在塔内停留的时间,对传质效果有重要影响。
3. 填料计算:选择合适的填料材料,并根据填料的性能参数,计算填料层的高度和填料比表面积。
填料的选择和布置对吸收效果有重要影响。
4. 液相和气相流速计算:根据液相和气相的流量和流速要求,计算出液相和气相的流速。
流速的大小会影响到液相和气相的接触程度和传质速率。
5. 塔内压降计算:根据流体的性质和操作要求,计算出吸收塔的压降。
压降的大小对塔的能耗和操作费用有影响。
吸收塔的设计选型和计算是一项复杂而关键的工作,需要综合考虑多个因素。
合理的设计选型和计算可以提高吸收塔的吸收效率和操作性能,降低能耗和成本。
吸收塔的设计

填料吸收塔设计任务书一:一、设计任务1、合成氨原料气量30000Nm3/h3、要求出塔净化气含CO20.5%(V%)二、操作条件1、吸收剂采用碳酸丙烯酯,可根据解吸操作情况决定其CO2含量或视为不含CO2。
2、气体进塔温度30℃,碳酸丙烯酯进塔温度30℃。
3、操作压强 1.6MPa三、设计内容1、设计方案的确定及流程说明2、填料吸收塔的塔径、填料层高度或塔高3、填料塔附属结构的选型与设计4、吸收塔工艺流程图5、填料吸收塔工艺条件图四、设计成果1、设计说明书一份2、设计图纸:吸收工艺流程图;3、吸收塔工艺条件图任务书二:小合成氨厂精炼再生气氨吸收塔的设计一、设计条件1、操作方式:连续操作2、生产能力:处理再生气量为1000Nm3/h3、操作温度:30℃4、操作压力:常压5、混合气组成:CO——89.9%, NH3——10.1%(体积分率)6、吸收剂:清水7、出塔尾气浓度:NH3≤0.04%(体积分率)8、出塔氨水浓度:含NH3量不大于2%(质量分率)二、设计要求1、流程布置与说明2、工艺过程的计算3、填料的选择4、填料塔工艺尺寸的确定5、输送机械功率的计算与选型6、附属装置的选择三、设计成果1、设计说明书一份2、设计图纸:吸收工艺流程图;3、吸收塔工艺条件图任务书三:水吸收变换气中CO2的填料塔设计(一)设计任务1、气体处理量:1300Nm3/h3、出塔气体中CO2含量:1%(体积)4、设备型式:填料吸收塔(二)操作条件1、水洗塔底压强:1.8MPa2、吸收温度: 30℃3、进塔水中含CO2:25ml/l4、水洗饱和度:70%(三)设计内容1、设计方案确定及流程说明2、填料塔的工艺计算及设计3、填料塔附属结构的选型4、填料吸收塔的工艺条件图。
填料吸收塔的设计

填料吸收塔的设计
填料吸收塔是一种常见的化工设备,用于将气体或气固混合物中的污染物吸收或分离。
以下是填料吸收塔的设计步骤:
1. 确定塔的尺寸和容积:根据处理气体的流量和所需分离效率,确定塔的高度和直径,计算塔的容积。
2. 确定填料类型和填充比等:填料的类型和填充比将影响到气体与液体之间的接触面积和阻力,这些参数的选择会影响到吸收效率和能耗。
3. 确定喷淋液体流量和浓度:根据塔的尺寸和填料类型等参数,计算出需要喷淋的液体流量和浓度,以达到最佳吸收效果。
4. 确定气流速度和液流速度:通过计算确定气体和液体在塔内的流速,以确保在塔内形成适宜的气液接触以及液体流淌和分布的均匀性。
5. 确定塔的操作条件:包括操作温度、压力以及液体喷淋位置和方式等,这些操作条件将直接影响到填料吸收塔的运行效果和寿命。
6. 进行塔的模拟和试验:采用模拟计算或实验试验的方式,验证设计参数的合理性和吸收效果,以及寻找优化的方案。
7. 选择适当的材料和安装方式:填料吸收塔通常使用不锈钢、
玻璃钢等材料制作,根据具体情况选择合适的材料和制造方式,并根据塔的尺寸和位置等确定合适的安装方案。
吸收塔设计(附图)

填料吸收塔课程设计说明书专业应用化学班级0704班姓名李海涛班级序号 3目录一前言 (2)二设计任务 (2)三设计条件............................................................ (2)四设计方案 (2)1流程图及流程说明2填料塔的选择五工艺计算 (5)1物料衡算,确定塔顶,塔底的气、液流量和组成2泛点的计算3塔径的计算4 填料层高度的计算5 填料层压降的计算6 液体分布装置7分布点密度计算8 液体再分布装置9气体入塔分布六填料吸收塔的附属设备 (5)1填料支撑板2填料压板和床层限制版七设计一览表 (6)八课程设计总结 (6)九主要符号说明 (6)十参考文献 (9)十一附图.......................................................... . (13)前言塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。
根据塔内气液接触部件的形式,可以分为填料塔和板式塔。
板式塔属于逐级接触逆流操作,填料塔属于微分接触操作。
工业上对塔设备的主要要求:(1)生产能力大(2)分离效率高(3)操作弹性大(4)气体阻力小结构简单、设备取材面广等。
塔型的合理选择是做好塔设备设计的首要环节,选择时应考虑物料的性质、操作的条件、塔设备的性能以及塔设备的制造、安装、运转和维修等方面的因素。
板式塔的研究起步较早,具有结构简单、造价较低、适应性强、易于放大等特点。
填料塔由填料、塔内件及筒体构成。
填料分规整填料和散装填料两大类。
塔内件有不同形式的液体分布装置、填料固定装置或填料压紧装置、填料支承装置、液体收集再分布装置及气体分布装置等。
与板式塔相比,新型的填料塔性能具有如下特点:生产能力大、分离效率高、压力降小、操作弹性大、持液量小等优点。
水吸收NH3填料塔设计一设计任务1000m³∕h含NH3空气填料吸收塔的设计①1000m³∕h(标准状况下)含5%(体积比)氨气,其他组分视为惰性气体,气体进口温度为40℃,吸收后尾气中氨含量50μg/m³;②用清水吸收,清水进口温度为35℃;③操作压力为塔顶表压为0.2atm;④填料采用乱堆式拉西环二吸收工艺流程的确定采用常规逆流操作流程.流程如下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大庆师范学院《化工原理》课程设计说明书设计题目吸收塔设计学生姓名濮玲指导老师学院化学化工学院专业班级化工4班完成时间2010年12月18日目录第一节前言 (5)1.1 填料塔的主体结构与特点 (5)1.2 填料塔的设计任务及步骤 (5)1.3 填料塔设计条件及操作条件 (5)第二节填料塔主体设计方案的确定 (6)2.1 装置流程的确定 (6)2.2 吸收剂的选择 (6)2.3填料的类型与选择 (6)2.3.1 填料种类的选择 (6)2.3.2 填料规格的选择 (6)2.3.3 填料材质的选择 (7)2.4 基础物性数据 (7)2.4.1 液相物性数据 (7)2.4.2 气相物性数据 (7)2.4.3 气液相平衡数据 (8)2.4.4 物料横算 (8)第三节填料塔工艺尺寸的计算 (9)3.1 塔径的计算 (9)3.2 填料层高度的计算及分段 (10)3.2.1 传质单元数的计算 (10)3.2.3 填料层的分段 (12)3.3 填料层压降的计算 (12)第四节填料塔内件的类型及设计 (13)4.1 塔内件类型 (13)4.2 塔内件的设计 (13)4.2.1 液体分布器设计的基本要求: (13)4.2.2 液体分布器布液能力的计算 (13)注:141填料塔设计结果一览表 (14)2 填料塔设计数据一览 (14)3 参考文献 (16)4 后记及其他 (16)附件一:塔设备流程图 (16)附件二:塔设备设计图 (17)大庆师范学院本科学生化工原理课程设计任务书设计题目苯和氯苯的精馏塔塔设计系(院)、专业、年级化学化工学院、化学工程与工艺专业、08级化工四班学生姓名学号指导教师姓名下发日期任务起止日期:2010 年日6 月21 日至2010 年7 月20第一节前言1.1填料塔的主体结构与特点结构:图1-1 填料塔结构图填料塔不但结构简单,且流体通过填料层的压降较小,易于用耐腐蚀材料制造,所以她特别适用于处理量肖,有腐蚀性的物料及要求压降小的场合。
液体自塔顶经液体分布器喷洒于填料顶部,并在填料的表面呈膜状流下,气体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。
因气液两相组成沿塔高连续变化,所以填料塔属连续接触式的气液传质设备。
1.2填料塔的设计任务及步骤设计任务:用水吸收空气中混有的氨气。
设计步骤:(1)根据设计任务和工艺要求,确定设计方案;(2)针对物系及分离要求,选择适宜填料;(3)确定塔径、填料层高度等工艺尺寸(考虑喷淋密度);(4)计算塔高、及填料层的压降;(5)塔内件设计。
1.3填料塔设计条件及操作条件1. 气体混合物成分:空气和氨2. 空气中氨的含量: 6.0% (体积含量即为摩尔含量)3. 混合气体流量6000m3/h4. 操作温度293K5. 混合气体压力101.3KPa6. 回收率99 %7. 采用清水为吸收剂8. 填料类型:采用聚丙烯鲍尔环填料第二节精馏塔主体设计方案的确定2.1装置流程的确定本次设计采用逆流操作:气相自塔低进入由塔顶排出,液相自塔顶进入由塔底排出,即逆流操作。
逆流操作的特点是:传质平均推动力大,传质速率快,分离效率高,吸收剂利用率高。
工业生产中多采用逆流操作。
2.2 吸收剂的选择因为用水做吸收剂,故采用纯溶剂。
2-1 工业常用吸收剂2.3填料的类型与选择填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。
2.3.1 填料种类的选择本次采用散装填料。
散装填料根据结构特点不同,又可分为环形填料、鞍形填料、环鞍形填料及球形填料等。
鲍尔环是目前应用较广的填料之一,本次选用鲍尔环。
2.3.2 填料规格的选择工业塔常用的散装填料主要有Dn16\Dn25\Dn38\ Dn76等几种规格。
同类填料,尺寸越小,分离效率越高,但阻力增加,通量减小,填料费用也增加很多。
而大尺寸的填料应用于小直径塔中,又会产生液体分布不良及严重的壁流,使塔的分离效率降低。
因此,对塔径与填料尺寸的比值要有一规定。
常用填料的塔径与填料公称直径比值D/d 的推荐值列于。
表3-1填料种类 D/d 的推荐值 拉西环 D/d ≥20~30 鞍环 D/d ≥15 鲍尔环 D/d ≥10~15 阶梯环 D/d>8 环矩鞍D/d>82.3.3 填料材质的选择工业上,填料的材质分为陶瓷、金属和塑料三大类聚丙烯填料在低温(低于0度)时具有冷脆性,在低于0度的条件下使用要慎重,可选耐低温性能良好的聚氯乙烯填料。
综合以上:选择塑料鲍尔环散装填料 Dn502.4 基础物性数据2.4.1 液相物性数据对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。
由手册查得 20 ℃水的有关物性数据如下:1. 3998.2/l kg m ρ=2. 0.001.3.6/.l pa s kg m h μ==黏度:3. 表面张力为:272.6/940896/z dyn cm kg h σ== 4. 3320:0.725/CNH H kmol m kpa ︒=⋅ 5. 62320:7.3410/l CNH D m h -︒=⨯ 6. 22320:0.225//v CNH D cm s m h ︒==2.4.2 气相物性数据1. 混合气体的平均摩尔质量为0.0617.03040.942928.2818vm i i M y m =∑=⨯+⨯= (2-1)2. 混合气体的平均密度由3101.328.2818 1.17618.314293VM vm PM kg m RT ρ⨯===⨯(2-2) R=8.314 3/m KPa kmol K ⋅⋅3. 混合气体黏度可近似取为空气黏度。
查手册得20C ︒时,空气的黏度551.7310622810/v pa s kg m h μ--=⨯⋅=⨯⋅注:211/N kg m s =⋅ 12211/1/Pa N m kg s m ==⋅ 1Pa..s=1kg/m.s2.4.3 气液相平衡数据由手册查得,常压下,200C 时,NH 3在水中的亨利系数为 E=76.3kpa0320NH C 时,在水中的溶解度: H=0.725kmol/m相平衡常数:0.7532Em P== (2-3) 溶解度系数:3998.2/76.318.020.726/LSH EM kmol kpa m ρ==⨯=⋅ (2-4)2.4.4 物料横算1. 进塔气相摩尔比为1110.060.06383110.06y Y y ===-- (2-5) 2. 出他气相摩尔比为21(1)0.06383(10.99)0.0006383A Y Y ϕ=-=⨯-= (2-6) 3. 进塔惰性气体流量:6000273(10.6)234.59922.427320V kmolh =⨯-=+ (2-7) 因为该吸收过程为低浓度吸收,平衡关系为直线,最小液气比按下式计算。
即:12min 12/Y Y L V Y m X -⎛⎫= ⎪-⎝⎭ (2-8) 因为是纯溶剂吸收过程,进塔液相组成20X =所以 121min 20.063830.00063830.74560.063830.753Y Y L Y V X m--⎛⎫=== ⎪⎝⎭-选择操作液气比为min1.7 1.2676L L V V ⎛⎫== ⎪⎝⎭ (2-9) L=1.2676356×234.599=297.3860441kmol/h 因为V(Y 1-Y 2)=L(X 1-X 2) X 10498.0=第三节 填料塔工艺尺寸的计算填料塔工艺尺寸的计算包括塔径的计算、填料能高度的计算及分段3.1 塔径的计算1. 空塔气速的确定——泛点气速法对于散装填料,其泛点率的经验值u/u f =0.5~0.85贝恩(Bain )—霍根(Hougen )关联式 ,即:2213lg V F L L u a gρμερ⎡⎤⎛⎫⎛⎫⎢⎥⎪ ⎪⎝⎭⎝⎭⎣⎦=A-K 1418V L V L w w ρρ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ (3-1) 即:112480.23100 1.18363202.59 1.1836lg[()1]0.0942 1.759.810.917998.24734.4998.2Fu ⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以:2F u /9.81(100/0.9173)(1.1836/998.2)=0.246053756UF=3.974574742m/s其中:f u ——泛点气速,m/s;g ——重力加速度,9.81m/s 223t m /m α--填料总比表面积, 33m /m ε--填料层空隙率33V 998.2/1.1836kg /m l kg m ρρ==液相密度。
气相密度W L =5358.89572㎏/h W V =7056.6kg/hA=0.0942; K=1.75; 取u=0.7 F u=2.78220m/s0.7631D === (3-2)圆整塔径后 D=0.8m 1. 泛点速率校核:260003.31740.7850.83600u ==⨯⨯ m/s3.31740.83463.9746F u u == 则Fuu 在允许范围内 2. 根据填料规格校核:D/d=800/50=16根据表3-1符合 3. 液体喷淋密度的校核:(1) 填料塔的液体喷淋密度是指单位时间、单位塔截面上液体的喷淋量。
(2) 最小润湿速率是指在塔的截面上,单位长度的填料周边的最小液体体积流量。
对于直径不超过75mm 的散装填料,可取最小润湿速率()3min 0.08m /m h w L ⋅为。
()32min min 0.081008/w t U L m m h α==⨯=⋅ (3-3)225358.895710.6858min 0.75998.20.7850.8L L w U D ρ===>=⨯⨯⨯⨯ (3-4)经过以上校验,填料塔直径设计为D=800mm 合理。
3.2 填料层高度的计算及分段*110.049850.75320.03755Y mX ==⨯= (3-5)*220Y mX == (3-6)3.2.1 传质单元数的计算用对数平均推动力法求传质单元数12OG MY Y N Y -=∆ (3-7) ()**1122*11*22()lnMY Y Y Y Y Y YY Y---∆=-- (3-8)=0.063830.00063830.037550.02627ln0.0006383--=0.0068953.2.2 质单元高度的计算气相总传质单元高度采用修正的恩田关联式计算:()0.750.10.0520.2221exp 1.45/t c l L t LL V t w l t l L U U Ug ασαρσαασαμρ-⎧⎫⎛⎫⎛⎫⎛⎫⎪⎪=--⎨⎬ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎪⎩⎭(3-9)即:αw/αt =0.37404748液体质量通量为:L u =WL/0.785×0.8×0.8=10666.5918kg/(㎡•h ) 气体质量通量为: V u =60000×1.1761/0.64=14045.78025kg/(㎡•h) 气膜吸收系数由下式计算: ()10.730.237()/Vt V G v v V t vU D k D RTαμραμ⋅⎛⎫=⋅⎪⎝⎭(3-10)=0.237(14045.78025÷100.6228×10-5)0.7(0.06228÷0.081÷1.1761)0.3(100×0.081÷8.314÷293) =0.152159029kmol/(㎡h kpa) 液膜吸收数据由下式计算:2113230.0095L L L L w l L L L U g K D μμαμρρ-⎛⎫⎛⎫⎛⎫⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (3-11)=0.566130072m/h 因为 1.45ψ=1.1G G W K K ααϕ==0.15215×0.3740×1.451.1×100 (3-12)=8.565021kmol/(m3 h kpa)0.4L L W K K ααϕ= =0.56613×100×0.37404×1.450.4 (3-13) =24.56912/h 因为:Fuu =0.8346所以需要用以下式进行校正:1.4'19.50.5G G F u k k u αα⎡⎤⎛⎫⎢⎥⋅=+-⋅ ⎪⎢⎥⎝⎭⎣⎦(3-14)=[1+9.5(0.69999-0.5)1.4] 8.56502=17.113580 kmol/(m3 h kpa)2.2'1 2.60.5l L F u k k u αα⎡⎤⎛⎫⎢⎥⋅=+-⋅ ⎪⎢⎥⎝⎭⎣⎦(3-15)=[1+ 2.6 (0.6999-0.5)2.2] 24.569123=26.42106/h111G G L K K HK ααα=+ (3-16)=1÷(1÷17.1358+1÷0.725÷26.4210)=9.038478 kmol/(m3 h kpa)OG Y G V V H K K P αα==ΩΩ(3-17)=234.599÷9.03847÷101.3÷0.785÷0.64 =0.491182 mOG OG Z H N = (3-18) =0.491182×9.160434=4.501360m,得'Z =1.4×4.501=6.30m3.2.3 填料层的分段对于鲍尔环散装填料的分段高度推荐值为h/D=5~10。