边角边定理练习题
相似三角形的判定边角边定理

目前相似三角形的判定定理已经比较完善,但仍有一些细节 和边缘问题需要进一步研究和探讨,以完善几何学的理论体 系。
05
练习与思考题
基础练习题
01
总结词
理解边角边定理的基本应用
02 03
题目1
已知$triangle ABC$和$triangle ABD$中,AB=AB,AC=AD,且 $angle BAC = angle BAD$,求证:$triangle ABC cong triangle ABD$。
03
边角边定理的应用
证明两个三角形相似
总结词
边角边定理是证明两个三角形相似的重要定理之一,通过比较两个三角形的两边和夹角是否相等,可 以判断两个三角形是否相似。
详细描述
边角边定理指出,如果两个三角形的两边和夹角分别相等,则这两个三角形相似。具体来说,如果 $triangle ABC sim triangle A'B'C'$,且$AB = A'B'$,$AC = A'C'$,$angle B = angle B'$,则根据 边角边定理,可以推断出$triangle ABC$与$triangle A'B'C'$相似。
性质
边角边定理是相似三角形判定定理的 一种,它提供了判断两个三角形是否 相似的依据。
边角边定理的证明
证明方法一
通过三角形的性质和角的相等关系,利用三角形的 全等定理进行证明。
证明方法二
利用反证法,假设两个三角形不相似,然后通过一 系列推理和计算,得出矛盾,从而证明边角边定理 。
证明方法三
利用向量方法,通过向量的加法、数乘和向量的模 长等性质,证明两个三角形的向量相等,从而得出 两个三角形相似的结论。
中考数学直角三角形的边角关系综合练习题附答案

中考数学直角三角形的边角关系综合练习题附答案一、直角三角形的边角关系1.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm.(1)求∠CAO'的度数.(2)显示屏的顶部B'比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度?【答案】(1)∠CAO′=30°;(2)(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°.【解析】试题分析:(1)通过解直角三角形即可得到结果;(2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得BD=OBsin∠BOD=24×=12,由C、O′、B′三点共线可得结果;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°.试题解析:(1)∵O′C⊥OA于C,OA=OB=24cm,∴sin∠CAO′=,∴∠CAO′=30°;(2)过点B作BD⊥AO交AO的延长线于D,∵sin∠BOD=,∴BD=OBsin∠BOD,∵∠AOB=120°,∴∠BOD=60°,∴BD=OBsin∠BOD=24×=12,∵O′C⊥OA,∠CAO′=30°,∴∠AO′C=60°,∵∠AO′B′=120°,∴∠AO′B′+∠AO′C=180°,∴O′B′+O′C﹣BD=24+12﹣12=36﹣12,∴显示屏的顶部B′比原来升高了(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,理由:∵显示屏O′B与水平线的夹角仍保持120°,∴∠EO′F=120°,∴∠FO′A=∠CAO′=30°,∵∠AO′B′=120°,∴∠EO′B′=∠FO′A=30°,∴显示屏O′B′应绕点O′按顺时针方向旋转30°.考点:解直角三角形的应用;旋转的性质.2.如图,在平行四边形ABCD中,平分,交于点,平分,交于点,与交于点,连接,.(1)求证:四边形是菱形;(2)若,,,求的值.【答案】(1)证明见解析(2)【解析】试题分析:(1)根据AE平分∠BAD、BF平分∠ABC及平行四边形的性质可得AF=AB=BE,从而可知ABEF为平行四边形,又邻边相等,可知为菱形(2)由菱形的性质可知AP的长及∠PAF=60°,过点P作PH⊥AD于H,即可得到PH、DH 的长,从而可求tan∠ADP试题解析:(1)∵AE平分∠BAD BF平分∠ABC∴∠BAE=∠EAF ∠ABF=∠EBF∵AD//BC∴∠EAF=∠AEB ∠AFB=∠EBF∴∠BAE=∠AEB ∠AFB=∠ABF∴AB=BE AB=AF∴AF=AB=BE∵AD//BC∴ABEF为平行四边形又AB=BE∴ABEF为菱形(2)作PH⊥AD于H由∠ABC=60°而已(1)可知∠PAF=60°,PA=2,则有PH=,AH=1,∴DH=AD-AH=5∴tan∠ADP=考点:1、平行四边形;2、菱形;3、直角三角形;4、三角函数3.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【答案】(1)证明见解析(2)4(3)20【解析】试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;(2)利用锐角三角函数,即勾股定理即可.试题解析:(1)∵∠ABC=∠ACB,∴AB=AC,∵AC为⊙O的直径,∴∠ANC=90°,∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,∵∠CAB=2∠BCP,∴∠BCP=∠CAN,∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,∵点D在⊙O上,∴直线CP是⊙O的切线;(2)如图,作BF⊥AC∵AB=AC,∠ANC=90°,∴CN=CB=,∵∠BCP=∠CAN,sin∠BCP=,∴sin∠CAN=,∴∴AC=5,∴AB=AC=5,设AF=x,则CF=5﹣x,在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,∴25﹣x2=2O﹣(5﹣x)2,∴x=3,∴BF2=25﹣32=16,∴BF=4,即点B到AC的距离为4.考点:切线的判定4.如图(1),在平面直角坐标系中,点A(0,﹣6),点B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=4,直角边CD在y轴上,且点C与点A重合.Rt△CDE沿y轴正方向平行移动,当点C运动到点O时停止运动.解答下列问题:(1)如图(2),当Rt△CDE运动到点D与点O重合时,设CE交AB于点M,求∠BME 的度数.(2)如图(3),在Rt△CDE的运动过程中,当CE经过点B时,求BC的长.(3)在Rt△CDE的运动过程中,设AC=h,△OAB与△CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.【答案】(1)∠BME=15°;(2BC=4;(3)h≤2时,S=﹣h2+4h+8,当h≥2时,S=18﹣3h.【解析】试题分析:(1)如图2,由对顶角的定义知,∠BME=∠CMA,要求∠BME的度数,需先求出∠CMA的度数.根据三角形外角的定理进行解答即可;(2)如图3,由已知可知∠OBC=∠DEC=30°,又OB=6,通过解直角△BOC就可求出BC的长度;(3)需要分类讨论:①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,S=S△EDC﹣S△EFM;②当h≥2时,如图3,S=S△OBC.试题解析:解:(1)如图2,∵在平面直角坐标系中,点A(0,﹣6),点B(6,0).∴OA=OB,∴∠OAB=45°,∵∠CDE=90°,CD=4,DE=4,∴∠OCE=60°,∴∠CMA=∠OCE﹣∠OAB=60°﹣45°=15°,∴∠BME=∠CMA=15°;如图3,∵∠CDE=90°,CD=4,DE=4,∴∠OBC=∠DEC=30°,∵OB=6,∴BC=4;(3)①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,∵CD=4,DE=4,AC=h,AN=NM,∴CN=4﹣FM,AN=MN=4+h﹣FM,∵△CMN∽△CED,∴,∴,解得FM=4﹣,∴S=S△EDC﹣S△EFM=×4×4﹣(44﹣h)×(4﹣)=﹣h2+4h+8,②如图3,当h≥2时,S=S△OBC=OC×OB=(6﹣h)×6=18﹣3h.考点:1、三角形的外角定理;2、相似;3、解直角三角形5.在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P 作PF∥BC,交对角线BD于点F.(1)如图1,将△PDF 沿对角线BD 翻折得到△QDF ,QF 交AD 于点E .求证:△DEF 是等腰三角形;(2)如图2,将△PDF 绕点D 逆时针方向旋转得到△P'DF',连接P'C ,F'B .设旋转角为α(0°<α<180°).①若0°<α<∠BDC ,即DF'在∠BDC 的内部时,求证:△DP'C ∽△DF'B . ②如图3,若点P 是CD 的中点,△DF'B 能否为直角三角形?如果能,试求出此时tan ∠DBF'的值,如果不能,请说明理由.【答案】(1)证明见解析;(2)①证明见解析;②12或33. 【解析】【分析】(1)根据翻折的性质以及平行线的性质可知∠DFQ=∠ADF ,所以△DEF 是等腰三角形;(2)①由于PF ∥BC ,所以△DPF ∽△DCB ,从而易证△DP′F′∽△DCB ;②由于△DF'B 是直角三角形,但不知道哪个的角是直角,故需要对该三角形的内角进行分类讨论.【详解】(1)由翻折可知:∠DFP=∠DFQ , ∵PF ∥BC , ∴∠DFP=∠ADF , ∴∠DFQ=∠ADF , ∴△DEF 是等腰三角形;(2)①若0°<α<∠BDC ,即DF'在∠BDC 的内部时, ∵∠P′DF′=∠PDF ,∴∠P′DF′﹣∠F′DC=∠PDF ﹣∠F′DC , ∴∠P′DC=∠F′DB ,由旋转的性质可知:△DP′F′≌△DPF , ∵PF ∥BC , ∴△DPF ∽△DCB , ∴△DP′F′∽△DCB ∴''DC DP DB DF , ∴△DP'C ∽△DF'B ;②当∠F′DB=90°时,如图所示,∵DF′=DF=12BD , ∴'12DF BD =, ∴tan ∠DBF′='12DF BD =;当∠DBF′=90°,此时DF′是斜边,即DF′>DB ,不符合题意; 当∠DF′B=90°时,如图所示,∵DF′=DF=12BD , ∴∠DBF′=30°,∴tan ∠DBF′=3.【点睛】本题考查了相似三角形的综合问题,涉及旋转的性质,锐角三角函数的定义,相似三角形的性质以及判定等知识,综合性较强,有一定的难度,熟练掌握相关的性质与定理、运用分类思想进行讨论是解题的关键.6.在等腰△ABC 中,∠B=90°,AM 是△ABC 的角平分线,过点M 作MN ⊥AC 于点N ,∠EMF=135°.将∠EMF 绕点M 旋转,使∠EMF 的两边交直线AB 于点E ,交直线AC 于点F ,请解答下列问题:(1)当∠EMF 绕点M 旋转到如图①的位置时,求证:BE+CF=BM ;(2)当∠EMF 绕点M 旋转到如图②,图③的位置时,请分别写出线段BE ,CF ,BM 之间的数量关系,不需要证明;(3)在(1)和(2)的条件下,tan ∠BEM=,AN=+1,则BM= ,CF= .【答案】(1)证明见解析(2)见解析(3)1,1+或1﹣【解析】【分析】(1)由等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,可得BM=MN,∠BMN=135°,又∠EMF=135°,可证明的△BME≌△NMF,可得BE=NF,NC=NM=BM进而得出结论;(2)①如图②时,同(1)可证△BME≌△NMF,可得BE﹣CF=BM,②如图③时,同(1)可证△BME≌△NMF,可得CF﹣BE=BM;(3) 在Rt△ABM和Rt△ANM中,,可得Rt△ABM≌Rt△ANM,后分别求出AB、 AC、 CN 、BM、 BE的长,结合(1)(2)的结论对图①②③进行讨论可得CF的长.【详解】(1)证明:∵△ABC是等腰直角三角形,∴∠BAC=∠C=45°,∵AM是∠BAC的平分线,MN⊥AC,∴BM=MN,在四边形ABMN中,∠,BMN=360°﹣90°﹣90°﹣45°=135°,∵∠ENF=135°,,∴∠BME=∠NMF,∴△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵CN=CF+NF,∴BE+CF=BM;(2)针对图2,同(1)的方法得,△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵NC=NF﹣CF,∴BE﹣CF=BM;针对图3,同(1)的方法得,△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵NC=CF﹣NF,∴CF﹣BE=BM;(3)在Rt△ABM和Rt△ANM中,,∴Rt△ABM≌Rt△ANM(HL),∴AB=AN=+1,在Rt△ABC中,AC=AB=+1,∴AC=AB=2+,∴CN=AC﹣AN=2+﹣(+1)=1,在Rt△CMN中,CM=CN=,∴BM=BC﹣CM=+1﹣=1,在Rt△BME中,tan∠BEM===,∴BE=,∴①由(1)知,如图1,BE+CF=BM,∴CF=BM﹣BE=1﹣②由(2)知,如图2,由tan∠BEM=,∴此种情况不成立;③由(2)知,如图3,CF﹣BE=BM,∴CF=BM+BE=1+,故答案为1,1+或1﹣.【点睛】本题考查三角函数与旋转与三角形全等的综合,难度较大,需综合运用所学知识求解.7.已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:(1)如图1,若k=1,则∠APE的度数为;(2)如图2,若31)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.(3)如图3,若k=3,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.【答案】(1)45°;(2)(1)中结论不成立,理由见解析;(3)(2)中结论成立,理由见解析.【解析】分析:(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;(2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE∽△ACD,再判断出∠EFB=90°,即可得出结论;(3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△ACD∽△HEA,再判断出∠EFB=90°,即可得出结论;详解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,∴BD=AF,BF=AD.∵AC=BD,CD=AE,∴AF=AC.∵∠FAC=∠C=90°,∴△FAE≌△ACD,∴EF=AD=BF,∠FEA=∠ADC.∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EHD.∵AD∥BF,∴∠EFB=90°.∵EF=BF,∴∠FBE=45°, ∴∠APE=45°.(2)(1)中结论不成立,理由如下:如图2,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF ,∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形, ∴BD=AF ,BF=AD . ∵AC=3BD ,CD=3AE ,∴3AC CDBD AE ==. ∵BD=AF ,∴3AC CDAF AE==. ∵∠FAC=∠C=90°, ∴△FAE ∽△ACD ,∴3AC AD BFAF EF EF ===,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EMD . ∵AD ∥BF , ∴∠EFB=90°.在Rt △EFB 中,tan ∠FBE=3EF BF =, ∴∠FBE=30°, ∴∠APE=30°,(3)(2)中结论成立,如图3,作EH ∥CD ,DH ∥BE ,EH ,DH 相交于H ,连接AH ,∴∠APE=∠ADH ,∠HEC=∠C=90°,四边形EBDH 是平行四边形, ∴BE=DH ,EH=BD . ∵AC=3BD ,CD=3AE ,∴3AC CDBD AE==. ∵∠HEA=∠C=90°, ∴△ACD ∽△HEA ,∴3AD ACAH EH==,∠ADC=∠HAE . ∵∠CAD+∠ADC=90°, ∴∠HAE+∠CAD=90°, ∴∠HAD=90°.在Rt △DAH 中,tan ∠ADH=3AHAD=, ∴∠ADH=30°, ∴∠APE=30°.点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,构造全等三角形和相似三角形的判定和性质.8.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4cos 5AOC ∠=.设OP x =,CPF ∆的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域; (3)当OPE ∆是直角三角形时,求线段OP 的长.【答案】(1)证明见解析;(2)236030050(10)13x x y x x -+=<<;(3)8OP =【解析】 【分析】(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻找已知对应边的夹角,即POA QDO ∠=∠即可;(2)根据PFC ∆∽PAO ∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4cos 5AOC ∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去. 【详解】(1)联结OD ,∵OC OD =, ∴OCD ODC ∠=∠, ∵//CD AB , ∴OCD COA ∠=∠, ∴POA QDO ∠=∠. 在AOP ∆和ODQ ∆中,{OP DQPOA QDO OA DO=∠=∠=, ∴AOP ∆≌ODQ ∆, ∴AP OQ =;(2)作PH OA ⊥,交OA 于H , ∵4cos 5AOC ∠=, ∴4455OH OP x ==,35PH x =, ∴132AOP S AO PH x ∆=⋅=. ∵//CD AB , ∴PFC ∆∽PAO ∆, ∴2210()()AOPy CP x S OP x∆-==, ∴2360300x x y x-+=,当F 与点D 重合时,∵42cos 210165CD OC OCD =⋅∠=⨯⨯=, ∴101016x x =-,解得5013x =, ∴2360300x x y x-+=50(10)13x <<;(3)①当90OPE ∠=o 时,90OPA ∠=o , ∴4cos 1085OP OA AOC =⋅∠=⨯=; ②当90POE ∠=o 时,1010254cos cos 25OC CQ QCO AOC ====∠∠,∴252OP DQ CD CQ CD ==-=-2571622=-=, ∵501013OP <<, ∴72OP =(舍去); ③当90PEO ∠=o 时,∵//CD AB , ∴AOQ DQO ∠=∠, ∵AOP ∆≌ODQ ∆, ∴DQO APO ∠=∠, ∴AOQ APO ∠=∠,∴90AEO AOP ∠=∠=o ,此时弦CD 不存在,故这种情况不符合题意,舍去; 综上,线段OP 的长为8.9.如图,在平面直角坐标系中,菱形ABCD 的边AB 在x 轴上,点B 坐标(﹣6,0),点C 在y 轴正半轴上,且cos B =35,动点P 从点C 出发,以每秒一个单位长度的速度向D 点移动(P 点到达D 点时停止运动),移动时间为t 秒,过点P 作平行于y 轴的直线l 与菱形的其它边交于点Q . (1)求点D 坐标;(2)求△OPQ 的面积S 关于t 的函数关系式,并求出S 的最大值; (3)在直线l 移动过程中,是否存在t 值,使S =320ABCD S 菱形?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)点D 的坐标为(10,8).(2)S 关于t 的函数关系式为S =24(04)220(410)33t t t t t ⎧⎪⎨-+<⎪⎩剟…,S 的最大值为503.(3)3或. 【解析】 【分析】(1)在Rt △BOC 中,求BC,OC,根据菱形性质再求D 的坐标;(2)分两种情况分析:①当0≤t ≤4时和②当4<t ≤10时,根据面积公式列出解析式,再求函数的最值;(3)分两种情况分析:当0≤t ≤4时,4t =12,;当4<t ≤10时,22201233t t -+= 【详解】解:(1)在Rt △BOC 中,∠BOC =90°,OB =6,cos B =35, 10cos OBBC B∴==8OC ∴==∵四边形ABCD 为菱形,CD ∥x 轴,∴点D 的坐标为(10,8).(2)∵AB =BC =10,点B 的坐标为(﹣6,0), ∴点A 的坐标为(4,0). 分两种情况考虑,如图1所示. ①当0≤t ≤4时,PQ =OC =8,OQ =t ,∴S =12PQ •OQ =4t , ∵4>0,∴当t =4时,S 取得最大值,最大值为16;②当4<t ≤10时,设直线AD 的解析式为y =kx +b (k ≠0), 将A (4,0),D (10,8)代入y =kx +b ,得:4k b 010k b 8+=⎧⎨+=⎩,解得:4k 316b 3⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线AD 的解析式为41633y x =-. 当x =t 时,41633y t =-, 41648(10)333PQ t t ⎛⎫∴=--=- ⎪⎝⎭21220233S PQ OP t t ∴=⋅=-+22202502(5),033333St t t =-+=--+-<Q ∴当t =5时,S 取得最大值,最大值为503. 综上所述:S 关于t 的函数关系式为S =24(04)220(410)33t t tt t ⎧⎪⎨-+<⎪⎩剟…,S 的最大值为503.(3)S 菱形ABCD =AB •OC =80. 当0≤t ≤4时,4t =12, 解得:t =3; 当4<t ≤10时,222033t t -+=12, 解得:t 1=5﹣7(舍去),t 2=5+ 7. 综上所述:在直线l 移动过程中,存在t 值,使S =320ABCD S 菱形,t 的值为3或5+7.【点睛】考核知识点:一次函数和二次函数的最值问题.数形结合,分类讨论是关键.10.现有一个“Z “型的工件(工件厚度忽略不计),如图所示,其中AB 为20cm ,BC 为60cm ,∠ABC =90,∠BCD =60°,求该工件如图摆放时的高度(即A 到CD 的距离).(结果精确到0.1m ,参考数据:≈1.73)【答案】工件如图摆放时的高度约为61.9cm . 【解析】 【分析】过点A 作AP ⊥CD 于点P ,交BC 于点Q ,由∠CQP =∠AQB 、∠CPQ =∠B =90°知∠A =∠C=60°,在△ABQ中求得分别求得AQ、BQ的长,结合BC知CQ的长,在△CPQ中可得PQ,根据AP=AQ+PQ得出答案.【详解】解:如图,过点A作AP⊥CD于点P,交BC于点Q,∵∠CQP=∠AQB,∠CPQ=∠B=90°,∴∠A=∠C=60°,在△ABQ中,∵AQ=(cm),BQ=AB tan A=20tan60°=20(cm),∴CQ =BC﹣BQ=60﹣20(cm),在△CPQ中,∵PQ=CQ sin C=(60﹣20)sin60°=30(﹣1)cm,∴AP=AQ+PQ=40+30(﹣1)≈61.9(cm),答:工件如图摆放时的高度约为61.9cm.【点睛】本题主要考查解直角三角形的应用,熟练掌握三角函数的定义求得相关线段的长度是解题的关键.11.如图,△ABC中,AC=BC=10,cosC=35,点P是AC边上一动点(不与点A、C重合),以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.(1)当⊙P与边BC相切时,求⊙P的半径.(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长.【答案】(1)409R=;(2)25880320xy x xx=-++;(3)50105-.【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,即可求解;(2)首先证明PD∥BE,则EB BFPD PF=,即:2024588x yxxxy-+--=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,解得:R=409;(2)在△ABC中,AC=BC=10,cosC=35,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH =ACsinC =8,同理可得:CH =6,HA =4,AB =45,则:tan ∠CAB =2, BP =228+(4)x -=2880x x -+,DA =25x ,则BD =45﹣25x , 如下图所示,PA =PD ,∴∠PAD =∠CAB =∠CBA =β,tanβ=2,则cosβ5,sinβ5, EB =BDcosβ=(525x )5=4﹣25x ,∴PD ∥BE ,∴EB BFPD PF=,即:2024588x y x xx -+--=,整理得:y 25xx 8x 803x 20-++(3)以EP 为直径作圆Q 如下图所示,两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,∵点Q是弧GD的中点,∴DG⊥EP,∵AG是圆P的直径,∴∠GDA=90°,∴EP∥BD,由(2)知,PD∥BC,∴四边形PDBE为平行四边形,∴AG=EP=BD,∴AB=DB+AD=AG+AD=5设圆的半径为r,在△ADG中,AD=2rcosβ5DG5AG=2r,5=52r51,则:DG550﹣5相交所得的公共弦的长为50﹣5【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.12.如图所示,小华在湖边看到湖中有一棵树AB,AB与水面AC垂直.此时,小华的眼睛所在位置D到湖面的距离DC为4米.她测得树梢B点的仰角为30°,测得树梢B点在水中的倒影B′点的俯角45°.求树高AB(结果保留根号)【答案】AB=(8+43)m . 【解析】【分析】设BE=x ,则BA=x+4,B′E=x+8,根据∠ADB′=45°,可知DE=B′E=x+8,再由tan30°=BE DE 即可得出x 的值,进而得到答案,【详解】如图:过点D 作DE ⊥AB 于点E ,设BE=x ,则BA=x+4,B′E=x+8,∵∠ADB′=45°,∴D E=B′E=x+8,∵∠BDE=30°,∴tan30°=38BE x DE x ==+ ,解得x=4+43 , ∴AB=BE+4=(8+43 )m .【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解答此题的关键。
全等三角形的判定3-角边角和角角边(asaaas)定理

例3、已知:点D在AB上,点E在AC上,
AB=AC,∠B=∠C。
求证: AD=AE
A
证明:在△ABE和△ACD中 ∠A=∠A(公共角) D
∵ AB=AC(已知) ∠B=∠C(已知) B
∴ △ABE≌△ACD(ASA) ∴AD=AE
E C
1、要使下列各对三角形全等,需要增加 什么条件?
∠ A=∠ D , ∠ B=∠ F, _________;
三角形全等的判定(3)--角边角 和角角边定理(ASA、AAS)
A E
B
FC
判定两个三角形全等有哪些方法? 边边边(SSS)
三边对应相等的两个三角形全等
边角边(SAS)
有两边和它们夹角对应相等的 两个三角形全等。
如图,小明不慎将一块 三角形模具打碎为两 块,他是否可以只带其 中的一块碎片到商店 去,就能配一块与原来 一样的三角形模具吗? 如果可以,带哪块去合 适? 你能说明其中理由吗?
∠ A=∠ D, A B =D E , _________;
练一练
3、如图,要测量河两岸相对的两点A,B 的距离,可以在AB的垂线BF上取两点 C,D,使BC=CD,再定出BF的垂线 DE,使A, C,E在一条直线上,这时 测得DE的长就是AB的长。为什么?
A
B CD F
E
练习2
如图,AB⊥BC, AD⊥DC, ∠1=∠2.求证AB=AD
D
∠1=∠2 (已知)
∠D=∠C(已知)
A
1 2
B
AB=AB(公共边)
∴△ABD≌△ABC (AAS)
C
∴AC=AD (全等三角形对应 边相等)
本节课我们学习了判定两个三角形 全等的两种方法:
边角边课件

1
AB = AB ( 公共边 ),
A2
B
∴ △ABC≌△ABD( SSS ).
∴ ∠1=∠2(全等三角形的对应角相等).
D
∴ AB是∠DAC的平分线(角平分线定义).
三角形全等的判定(“边角边”定理)
画出一个△A′B′C′,使A′B′=AB,A′C′=AC,∠A′=∠A .
把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?
尺规作图
C
E 作法:(1)画∠DA'E=∠A;
B′ D
(2)在射线A'D上截取A'B',使A'B'=AB,在射线A'E上截
取 A'C',使A'C'= AC;
(3)连接B'C '.
“边角边”判定方法
文字语言: 两边和它们的夹角分别相等的两个三角形全等 C
(简写成“边角边”或“SAS ”).
A
AB=CB(已知),
∠ABD= ∠CBD(已知), B
D
BD=BD(公共边),
∴ △ ABD ≌△ CBD ( SAS).
C
想一想: 现在例1的已知条件不改变,而问题改变成:
问:AD=CD吗?BD平分∠ADC吗?
由△ ABD ≌△ CBD可得:
AD=CD(全等三角形的对应边相等)
BD平分∠ADC(全等三角形的对应角相等,∠ADB=∠CDB)
复习引入
A
D
1.若△AOC≌△BOD,则有
对应边:AC=BD,AO= BO,CO= DO,
O
C
B
对应角有: ∠A=∠B,∠C=∠D,∠AOC=∠BOD .
2. 填空:已知:AC=AD,BC=BD, 求证:AB是∠DAC的平分线.
鲁教版九年级数学上册第二章:直角三角形的边角关系-巩固练习(包含答案)

鲁教版数学-九年级上册-第二章-直角三角形的边角关系-巩固练习一、单选题1.2sin60°的值等于()A. 1B.C.D.2.如图,C岛在A岛的北偏东45°方向,C岛在B岛的北偏西25°方向,则从C岛看A、B两岛的视角∠ACB的度数是()A. 70°B. 20°C. 35°D. 110°3.如图,市政府准备修建一座高AB为6m的过街天桥,已知∠ACB为天桥的坡面AC与地面BC的夹角,且sin∠ACB=,则坡面AC的长度为()A. 6mB. 8mC. 10mD. 12m4.已知α、β都是锐角,如果sinα=cosβ,那么α与β之间满足的关系是()A. α=βB. α+β=90°C. α﹣β=90°D. β﹣α=90°5.如图,四边形BDCE内接于以BC为直径的⊙A,已知:BC=10,cos∠BCD=,∠BCE=30°,则线段DE的长是()A. B. 7 C. 4+3 D. 3+46.如果∠a是等腰直角三角形的一个锐角,则tana的值是()A. B. C. 1 D.7.如图,为测量河两岸相对两电线杆A、B间的距离,在距A点16m的C处(AC⊥AB),测得∠ACB=52°,则A、B之间的距离应为()A. 16sin52°mB. 16cos52°mC. 16tan52°mD. m8.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC 的值为()A. B. C. D. 19.如图,马航370失联后,“海巡31”船匀速在印度洋搜救,当它行驶到A处时,发现它的北偏东30°方向有一灯塔B,海巡船继续向北航行4小时后到达C处,发现灯塔B在它的北偏东60°方向.若海巡船继续向北航行,那么要再过多少时间海巡船离灯塔B最近?()A. 1小时B. 2小时C. 小时D. 2小时二、填空题10.已知Rt△ABC中,∠C=90°,AC=3,∠B=37°,则BC的长为________(注:tan∠B=0.75,sin∠B=0.6,cos∠B=0.8)11.在Rt△ABC中,∠C=90°,∠B=37°,BC=32,则AC=________.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)12.将半径为12cm,弧长为12π的扇形围成圆锥(接缝忽略不计),那么圆锥的母线与圆锥高的夹角为________.13.若某斜面的坡度为,则该坡面的坡角为________度.14.一般地,当α,β为任意角时,cos(α+β)与cos(α﹣β)的值可以用下面的公式求得cos (α+β)=cosα•cosβ﹣sinα•sinβ;cos(α﹣β)=cosα•cosβ+sinα•sinβ.例如:cos90°=cos(30°+60°)=cos30°•cos60°﹣sin30°•sin60°= × ﹣× =0,类似地,可以求得cos15°的值是________(结果保留根号).15.如图,P是∠α的边OA上一点,且P点的坐标为(3,4),则sin(90°﹣α)=________.16.求值:sin60°﹣tan30°=17.因为sin 30°= 210°=- ,所以sin 210°=sin(180°+30°)=-sin 30°;因为sin 60°= ,sin240°=- ,所以sin 240°=sin(180°+60°)=-sin 60°;由此猜想、推理知:一般地,当α为锐角时,有sin(180°+α)=-sin α;由此可知sin 225°=________.三、解答题18.如图,射线OA放置在由小正方形组成的网络中,现请你分别在图①、图②中添画(工具只能用直尺)射线OB,使tan∠AOB的值分别为1、.19.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)四、综合题20.如图,在△ABC中,AD是BC边上的高,AB=5,AD=4,BC=3+4 。
边角边定理练习题

据“SAS”,所以
H
EH=FH
探究2:
已知:AC∥DF,AE=BD,AC=DF.探究BC与EF的位置关系?
变式训练:
已知:点E是AB 中点, 点D是AC中点, AC=AB,
则△ABD与△ACE全等吗 ?
拓展练习:
已知:正方形ABCD, 点E、F分别是AB、BC 的中点。
问: △ADE与△BAF全 等吗?
即∠A=∠D
练习1.教材119页练习 ○ (补充)2.图3,已知:AD∥BC,AD = CB.
求证:△ADC≌△CBA ○ (补充)3.如图4,已知AB=AC, AD=AE,
∠1=∠2,求证:△ABD≌ACE
三、机动练习
1EC⊥如A图C,,AA、B=B、CEC,三A点D在=C一B条. 直线上,EE DA⊥AC,
A
D
B
C
练变习式1练. 习:
如图,已知AD//BC ,
ADA=E=BCCF, △ABC ≌ △CDA
EA
D
F
B
C
小明做了一个如图所示的风筝,其中 ∠EDH=∠FDH, ED=FD ,将上述条件 标注在图中,小明不用测量就能知道 EH=FH吗?与同桌进行交流。
D
E
F △EDH≌△FDH 根
A
D
求证:△AFD≌B△ECE=BDF
E
分析:证三角形全等的三个条件
边 AD = CB (已知)
B
F C
角
∠A=∠ C
两直线平行,
AD // BC
内错角相等
AF = CE ?
边
AE = CF
证明:
准备条 件
∵AD//BC
∴ ∠A=∠C (两直线平行,内错角相等)
2021年人教版八年级数学上三角形全等的判定(2)边角边同步练习课时作业含答案解析
2021年三角形全等的判定(2)边角边一.选择题(共2小题)1.如图,已知AB=AE,AC=AD,再需要哪两个角对应相等,就可以应用SAS判定△ABC≌△AED.()A.∠A=∠A B.∠C=∠D C.∠B=∠E D.∠BAC=∠EAD 2.如图,已知AB=AC,AD=AE,∠BAC=∠DAE.下列结论不正确的是()A.∠BAD=∠CAE B.△ABD≌△ACE C.AB=BC D.BD=CE二.解答题(共4小题)3.如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,MB=NC.求证:DM=DN.4.如图所示,AD是△ABC的中线,在AD及其延长线上截取DE=DF,连接CE、BF,试判断△BDF与△CDE全等吗?BF与CE有何位置关系?并说明原因.5.已知,如图△ABC中,AM是BC边上的中线,求证:AM<12(AB+AC).6.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.2021年三角形全等的判定(2)边角边参考答案与试题解析一.选择题(共2小题)1.如图,已知AB =AE ,AC =AD ,再需要哪两个角对应相等,就可以应用SAS 判定△ABC≌△AED .( )A .∠A =∠AB .∠C =∠D C .∠B =∠E D .∠BAC =∠EAD【分析】观察图形,找着已知条件在图形上的位置,然后结合全等的判定方法可得.【解答】解:有AB =AE ,AC =AD ,必须加它们的夹角,所以是∠BAC =∠EAD ,D 是正确的;A 、B 、C 都不能应用SAS 判定△ABC ≌△AED .故选:D .【点评】若有两边一角对应相等时,角必须是两边的夹角,要结合图形做题,由位置定方法.2.如图,已知AB =AC ,AD =AE ,∠BAC =∠DAE .下列结论不正确的是( )A .∠BAD =∠CAEB .△ABD ≌△ACEC .AB =BCD .BD =CE【分析】先证明△BAD ≌△CAE ,根据全等三角形的性质,一一判断即可.【解答】证明:∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,故A 正确,在△BAD 和△ACE 中,{BA =CA ∠BAD =∠CAE AD =AE,∴△BAD ≌△CAE ,故B 正确,∴BD =EC ,故D 正确,∴C 错误,故选:C .【点评】本题考查全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.二.解答题(共4小题)3.如图,在△ABC 中,已知AB =AC ,AD 平分∠BAC ,点M ,N 分别在AB ,AC 边上,MB =NC .求证:DM =DN .【分析】根据等式的性质得出AM =AN ,根据SAS 证明△AMD 和△AND 全等,利用全等三角形的性质解答即可.【解答】证明:∵AB =AC ,MB =NC ,∴AB ﹣MB =AC ﹣NC ,即AM =AN ,又∵AD 平分∠BAC ,∴∠MAD =∠NAD ,在△AMD 和△AND 中,{AM =AN ∠MAD =∠NAD AD =AD,∴△AMD ≌△AND (SAS ),∴DM =DN .【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的性质,证明三角形全等是解题的关键.4.如图所示,AD 是△ABC 的中线,在AD 及其延长线上截取DE =DF ,连接CE 、BF ,试判断△BDF 与△CDE 全等吗?BF 与CE 有何位置关系?并说明原因.【分析】结论:①△BDF ≌△CDE ②BF ∥CE ,①根据两边和夹角对应相等的两个三角形全等即可判断;②根据内错角相等两直线平行即可判断.【解答】解:结论:①△BDF ≌△CDE ②BF ∥CE .理由:①∵AD 是△ABC 中线,∴BD =DC ,在△BDF 和△CDE 中,{BD =CD ∠BDF =∠EDC DF =DE,∴△BDF ≌△CDE .②∴△BDF ≌△CDE ,∴∠F =∠CED ,∴BF ∥CE .【点评】本题考查全等三角形的判断和性质、两直线平行的判定等知识,解题的关键是熟练掌握全等三角形的判定,属于中考常考题型.5.已知,如图△ABC 中,AM 是BC 边上的中线,求证:AM <12(AB +AC).【分析】可延长AM到D,使MD=AM,连CD,则△ABM≌△DCM得AB=CD,进而在△ACD中利用三角形三边关系,证之.【解答】证明:延长AM到D,使MD=AM,连CD,∵AM是BC边上的中线,∴BM=CM,又AM=DM,∠AMB=∠CMD,∴△ABM≌△DCM,∴AB=CD,在△ACD中,则AD<AC+CD,即2AM<AC+AB,AM<12(AB+AC).【点评】本题主要考查了全等三角形的判定及性质以及三角形的三边关系问题,应熟练掌握.6.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.【分析】(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得∠HFB=∠HEC,由得对顶角相等得∠BHF =∠CHE ,所以∠ABD =∠ACG .再由AB =CG ,BD =AC ,利用SAS 可得出三角形ABD 与三角形ACG 全等,由全等三角形的对应边相等可得出AD =AG ,(2)利用全等得出∠ADB =∠GAC ,再利用三角形的外角和定理得到∠ADB =∠AED +∠DAE ,又∠GAC =∠GAD +∠DAE ,利用等量代换可得出∠AED =∠GAD =90°,即AG 与AD 垂直.【解答】(1)证明:∵BE ⊥AC ,CF ⊥AB ,∴∠HFB =∠HEC =90°,又∵∠BHF =∠CHE ,∴∠ABD =∠ACG ,在△ABD 和△GCA 中{AB =CG ∠ABD =∠ACG BD =CA,∴△ABD ≌△GCA (SAS ),∴AD =GA (全等三角形的对应边相等);(2)位置关系是AD ⊥GA ,理由:∵△ABD ≌△GCA ,∴∠ADB =∠GAC ,又∵∠ADB =∠AED +∠DAE ,∠GAC =∠GAD +∠DAE ,∴∠AED =∠GAD =90°,∴AD ⊥GA .【点评】此题考查了全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.。
2020秋八年级数学上册第13章三角形中的边角关系、命题与证明同步练习沪科版
2020秋⼋年级数学上册第13章三⾓形中的边⾓关系、命题与证明同步练习沪科版1.三⾓形中边的关系知识点:1、三⾓形:不在同⼀条直线上的线段⾸位顺次相接组成的封闭图形2、三⾓形分类3、三⾓形的三边关系:两边之和⼤于第三边,两边之差⼩于第三边测试题1.由______________的三条线段______相接所组成得图形叫做三⾓形。
2.如图,三⾓形的三边分别是________或______,三⾓形的内⾓分别是__________,三⾓形的顶点分别是_______ ,这个三⾓形记作______,读作____________.3.三⾓形按边的关系可分为和,⽽等腰三⾓形⼜分为和。
三⾓形按内⾓⼤⼩可分为、和。
4.三⾓形两边的和第三边,三⾓形两边的差第三边。
5.三⾓形的三边分别为2、x、5,则整数x = 。
6.等腰三⾓形的周长为16,其⼀边长为6,则另两边长为。
7.已知三⾓形的两边长是3cm和8cm ,则此三⾓形的第三边长可能是()A.4 cmB.5 cmC.6 cmD.13cm8.⼀个三⾓形的三边长是 m 、3 、5,那么m的取值范围是()A.3B.0C.2D.09.下列选项中,给出的三条线段不能组成三⾓形的是()A.a+1,a+2,a+3B.三边之⽐为2:3:4C.30cm,8cm ,10cmD.3k ,4k ,5k10.下列说法中正确的是()A.等腰三⾓形⼀腰的长⾄少要⼤于底边长的⼀半B.三⾓形按边的关系分为不等边三⾓形、等边三⾓形C.长度为5、6、10的三条线段不能组成三⾓形 D.等腰三⾓形的两边长是1和2,则其周长为4或511、现有两根⽊棒,它们的长分别为40cm和50cm,若要钉成⼀个三⾓形⽊架(?不计接头),则在下列四根⽊棒中应选取()A.10cm长的⽊棒 B.40cm长的⽊棒 C.90cm长的⽊棒 D.100cm长的⽊棒拓展训练:1.已知⼀个三⾓形的两边长分别是3cm和4cm,则第三边长x的取值范围是.?若x是奇数,则x的值是______;则它的周长为______;?若x?是偶数,?则x?的值是______ 。
中考数学直角三角形的边角关系综合练习题附详细答案
中考数学直角三角形的边角关系综合练习题附详细答案一、直角三角形的边角关系1.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,【答案】(1)∠BPQ=30°;(2)该电线杆PQ的高度约为9m.【解析】试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;(2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.试题解析:延长PQ交直线AB于点E,(1)∠BPQ=90°-60°=30°;(2)设PE=x米.在直角△APE中,∠A=45°,则AE=PE=x米;∵∠PBE=60°∴∠BPE=30°在直角△BPE中,33米,∵AB=AE-BE=6米,则3,解得:3则BE=(33+3)米.在直角△BEQ中,QE=33BE=33(33+3)=(3+3)米.∴PQ=PE-QE=9+33-(3+3)=6+23≈9(米).答:电线杆PQ的高度约9米.考点:解直角三角形的应用-仰角俯角问题.2.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】.【解析】试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==,∴BC=.故该船与B港口之间的距离CB的长为海里.考点:解直角三角形的应用-方向角问题.3.已知:△ABC内接于⊙O,D是弧BC上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB 于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=,BN=,tan∠ABC=,求BF的长.【答案】(1)证明见解析;(2)证明见解析;(3)24.【解析】试题分析:(1)易证OH为△ABC的中位线,可得AC=2OH;(2)∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,又∵∠PAC =∠BCD,可证∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,连接OB,易证∠GBN=∠ABC,所以BG=BQ.在Rt△BNQ中,根据tan∠ABC=,可求得NQ、BQ的长.利用圆周角定理可求得IC和AI 的长度,设QH=x,利用勾股定理可求出QH和HD的长度,利用垂径定理可求得ED的长度,最后利用tan∠OED=即可求得RG的长度,最后由垂径定理可求得BF的长度.试题解析:(1)在⊙O中,∵OD⊥BC,∴BH=HC,∵点O是AB的中点,∴AC=2OH;(2)在⊙O中,∵OD⊥BC,∴弧BD=弧CD,∴∠PAC=∠BCD,∵∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,∴∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB 与OD相交于点M,连接OB,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴2∠AND=180°,∴∠AND=90°,∵tan∠ABC=,∴,∴,∴,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵∠ACI=90°,tan∠AIC=tan∠ABC=,∴,∴IC=,∴由勾股定理可求得:AI=25,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=,BH=BQ+QH=,∵OB2=BH2+OH2,∴,解得:,当QH=时,∴QD=,∴ND=,∴MN=,MD=15,∵,∴QH=不符合题意,舍去,当QH=时,∴QD=∴ND=NQ+QD=,ED=,∴GD=GN+ND=,∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴ BR=RG+BG=12,∴BF=2BR=24.考点:1圆;2相似三角形;3三角函数;4直角三角形.4.如图,某公园内有一座古塔AB,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD.中午12时太阳光线与地面的夹角为45°,此时塔尖A在地面上的影子E与墙角C的距离为15米(B、E、C在一条直线上),求塔AB的高度.(结果精确到0.01米)参考数据:sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.62492 1.4142.【答案】塔高AB 约为32.99米. 【解析】 【分析】过点D 作DH ⊥AB ,垂足为点H ,设AB =x ,则 AH =x ﹣3,解直角三角形即可得到结论. 【详解】解:过点D 作DH ⊥AB ,垂足为点H .由题意,得 HB = CD = 3,EC = 15,HD = BC ,∠ABC =∠AHD = 90°, ∠ADH = 32°.设AB = x ,则 AH = x – 3.在Rt △ABE 中,由 ∠AEB = 45°,得 tan tan451ABAEB EB∠=︒==. ∴ EB = AB = x .∴ HD = BC = BE + EC = x + 15. 在Rt △AHD 中,由 ∠AHD = 90°,得 tan AHADH HD∠=. 即得 3tan3215x x -︒=+. 解得 15tan32332.991tan32x ⋅︒+=≈-︒.∴ 塔高AB 约为32.99米. 【点睛】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.5.在平面直角坐标系中,四边形OABC 是矩形,点()0,0O ,点()3,0A ,点()0,4C,连接OB ,以点A 为中心,顺时针旋转矩形AOCB ,旋转角为()0360αα︒<<︒,得到矩形ADEF ,点,,O C B 的对应点分别为,,D E F .(Ⅰ)如图,当点D 落在对角线OB 上时,求点D 的坐标; (Ⅱ)在(Ⅰ)的情况下,AB 与DE 交于点H . ①求证BDE DBA ∆≅∆; ②求点H 的坐标.(Ⅲ)α为何值时,FB FA =.(直接写出结果即可).【答案】(Ⅰ)点D 的坐标为5472(,)2525;(Ⅱ)①证明见解析;②点H 的坐标为(3,258);(Ⅲ)60α=︒或300︒. 【解析】 【分析】(Ⅰ) 过A D 、分别作,AM OB DN OA ⊥⊥,根据点A 、点C 的坐标可得出OA 、OC 的长,根据矩形的性质可得AB 、OB 的长,在Rt △OAM 中,利用∠BOA 的余弦求出OM 的长,由旋转的性质可得OA=AD ,利用等腰三角形的性质可得OD=2OM ,在Rt △ODN 中,利用∠BOA 的正弦和余弦可求出DN 和ON 的长,即可得答案;(Ⅱ)①由等腰三角形性质可得∠DOA=∠ODA ,根据锐角互余的关系可得ABD BDE ∠∠=,利用SAS 即可证明△DBA ≌△BDE ;②根据△DBA ≌△BDE 可得∠BEH=∠DAH ,BE=AD ,即可证明△BHE ≌△DHA ,可得DH=BH ,设AH=x ,在Rt △ADH 中,利用勾股定理求出x 的值即可得答案;(Ⅲ)如图,过F 作FO ⊥AB ,由性质性质可得∠BAF=α,分别讨论0<α≤180°时和180°<α<360°时两种情况,根据FB=FA 可得OA=OB ,利用勾股定理求出FO 的长,由余弦的定义即可求出∠BAF 的度数. 【详解】(Ⅰ)∵点()30A ,,点()04C ,, ∴3,4OA OC ==. ∵四边形OABC 是矩形, ∴AB=OC=4,∵矩形DAFE 是由矩形AOBC 旋转得到的 ∴3AD AO ==.在Rt OAB ∆中,225OB OA AB +=, 过A D 、分别作B,DN OA AM O ⊥⊥在Rt ΔOAM 中,OM OA 3cos BOA OA OB 5∠===, ∴9OM 5=∵AD=OA ,AM ⊥OB , ∴18OD 2OM 5==. 在Rt ΔODN 中:DN 4sin BOA OD 5∠==,cos ∠BOA=ON OD =35, ∴72DN 25=,54ON 25=. ∴点D 的坐标为5472,2525⎛⎫⎪⎝⎭.(Ⅱ)①∵矩形DAFE 是由矩形AOBC 旋转得到的, ∴OA AD 3,ADE 90,DE AB 4∠===︒==. ∴OD AD =.∴DOA ODA ∠∠=.又∵DOA OBA 90∠∠+=︒,BDH ADO 90∠∠+=︒ ∴ABD BDE ∠∠=.又∵BD BD =, ∴ΔBDE ΔDBA ≅.②由ΔBDE ΔDBA ≅,得BEH DAH ∠∠=,BE AD 3==, 又∵BHE DHA ∠∠=,∴ΔBHE ΔDHA ≅. ∴DH=BH ,设AH x =,则DH BH 4x ==-, 在Rt ΔADH 中,222AH AD DH =+, 即()222x 34x =+-,得25x 8=, ∴25AH 8=.∴点H 的坐标为253,8⎛⎫ ⎪⎝⎭. (Ⅲ)如图,过F 作FO ⊥AB , 当0<α≤180°时,∵点B 与点F 是对应点,A 为旋转中心, ∴∠BAF 为旋转角,即∠BAF=α,AB=AF=4, ∵FA=FB ,FO ⊥AB , ∴OA=12AB=2, ∴cos ∠BAF=OA AF =12, ∴∠BAF=60°,即α=60°, 当180°<α<360°时,同理解得:∠BAF′=60°, ∴旋转角α=360°-60°=300°.综上所述:α60=︒或300︒. 【点睛】本题考查矩形的性质、旋转变换、全等三角形的判定与性质、锐角三角函数的定义等知识,正确找出对应边与旋转角并熟记特殊角的三角函数值是解题关键.6.已知:如图,AB 为⊙O 的直径,AC 与⊙O 相切于点A ,连接BC 交圆于点D ,过点D 作⊙O 的切线交AC 于E . (1)求证:AE =CE(2)如图,在弧BD 上任取一点F 连接AF ,弦GF 与AB 交于H ,与BC 交于M ,求证:∠FAB +∠FBM =∠EDC .(3)如图,在(2)的条件下,当GH =FH ,HM =MF 时,tan ∠ABC =34,DE =394时,N为圆上一点,连接FN 交AB 于L ,满足∠NFH +∠CAF =∠AHG ,求LN 的长.【答案】(1)详见解析;(2)详见解析;(3)4013 NL【解析】【分析】(1)由直径所对的圆周角是直角,得∠ADC=90°,由切线长定理得EA=ED,再由等角的余角相等,得到∠C=∠EDC,进而得证结论.(2)由同角的余角相等,得到∠BAD=∠C,再通过等量代换,角的加减进而得证结论.(3)先由条件得到AB=26,设HM=FM=a,GH=HF=2a,BH=43a,再由相交弦定理得到GH•HF=BH•AH,从而求出FH,BH,AH,再由角的关系得到△HFL∽△HAF,从而求出HL,AL,BL,FL,再由相交弦定理得到LN•LF=AL•BL,进而求出LN的长.【详解】解:(1)证明:如图1中,连接AD.∵AB是直径,∴∠ADB=∠ADC=90°,∵EA、ED是⊙O的切线,∴EA=ED,∴∠EAD=∠EDA,∵∠C+∠EAD=90°,∠EDC+∠EDA=90°,∴∠C=∠EDC,∴ED=EC,∴AE=EC.(2)证明:如图2中,连接AD.∵AC是切线,AB是直径,∴∠BAC=∠ADB=90°,∴∠BAD+∠CAD=90°,∠CAD+∠C=90°,∴∠BAD=∠C,∵∠EDC=∠C,∴∠BAD=∠EDC,∵∠DBF=∠DAF,∴∠FBM+∠FAB=∠FBM+∠DAF=∠BAD,∴∠FAB+∠FBM=∠EDC.(3)解:如图3中,由(1)可知,DE=AE=EC,∵DE=394,∴AC=392,∵tan∠ABC=34=ACAB,∴39 32 4AB ,∴AB=26,∵GH=FH,HM=FN,设HM=FM=a,GH=HF=2a,BH=43a,∵GH•HF=BH•AH,∴4a2=43a(26﹣43a),∴a=6,∴FH=12,BH=8,AH=18,∵GH=HF,∴AB⊥GF,∴∠AHG=90°,∵∠NFH+∠CAF=∠AHG,∴∠NFH+∠CAF=90°,∵∠NFH+∠HLF=90°,∴∠HLF=∠CAF,∵AC∥FG,∴∠CAF=∠AFH,∴∠HLF=∠AFH,∵∠FHL=∠AHF,∴△HFL∽△HAF,∴FH2=HL•HA,∴122=HL•18,∴HL=8,∴AL=10,BL=16,FL=22=413,FH HL∵LN•LF=AL•BL,∴413•LN=10•16,∴LN=4013.13【点睛】本题考查了圆的综合问题,涉及到的知识有:切线的性质;切线长定理;圆周角定理;相交弦定理;相似三角形性质与判定等,熟练掌握圆的相关性质是解题关键.7.如图,在矩形ABCD中,AB=6cm,AD=8cm,连接BD,将△ABD绕B点作顺时针方向旋转得到△A′B′D′(B′与B重合),且点D′刚好落在BC的延长上,A′D′与CD相交于点E.(1)求矩形ABCD与△A′B′D′重叠部分(如图1中阴影部分A′B′CE)的面积;(2)将△A′B′D′以每秒2cm的速度沿直线BC向右平移,如图2,当B′移动到C点时停止移动.设矩形ABCD与△A′B′D′重叠部分的面积为y,移动的时间为x,请你直接写出y关于x 的函数关系式,并指出自变量x的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x,使得△AA′B′成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.【答案】(1)452;(2)详见解析;(3)使得△AA ′B ′成为等腰三角形的x 的值有:0秒、32 秒、95- . 【解析】【分析】(1)根据旋转的性质可知B ′D ′=BD =10,CD ′=B ′D ′﹣BC =2,由tan ∠B ′D ′A ′='''''=A B CE A D CD 可求出CE ,即可计算△CED ′的面积,S ABCE =S ABD ′﹣S CED ′; (2)分类讨论,当0≤x ≤115时和当115<x ≤4时,分别列出函数表达式; (3)分类讨论,当AB ′=A ′B ′时;当AA ′=A ′B ′时;当AB ′=AA ′时,根据勾股定理列方程即可.【详解】解:(1)∵AB =6cm ,AD =8cm ,∴BD =10cm ,根据旋转的性质可知B ′D ′=BD =10cm ,CD ′=B ′D ′﹣BC =2cm ,∵tan ∠B ′D ′A ′='''''=A B CE A D CD ∴682=CE ∴CE =32cm , ∴S ABCE =S ABD ′﹣S CED ′=8634522222⨯-⨯÷=(cm 2); (2)①当0≤x <115时,CD ′=2x +2,CE =32(x +1), ∴S △CD ′E =32x 2+3x +32, ∴y =12×6×8﹣32x 2﹣3x ﹣32=﹣32x 2﹣3x +452; ②当115≤x ≤4时,B ′C =8﹣2x ,CE =43(8﹣2x ) ∴()214y 8223x =⨯-=83x 2﹣643x +1283. (3)①如图1,当AB ′=A ′B ′时,x =0秒; ②如图2,当AA ′=A ′B ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =245, ∵AN 2+A ′N 2=36,∴(6﹣245)2+(2x+185)2=36,解得:x=6695-,x=6695--(舍去);③如图2,当AB′=AA′时,A′N=BM=BB′+B′M=2x+185,A′M=NB=245,∵AB2+BB′2=AN2+A′N2∴36+4x2=(6﹣245)2+(2x+185)2解得:x=32.综上所述,使得△AA′B′成为等腰三角形的x的值有:0秒、32秒、669-.【点睛】本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.8.如图,某次中俄“海上联合”反潜演习中,我军舰A测得潜艇C的俯角为30°.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为68°.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,3≈1.7)【答案】潜艇C离开海平面的下潜深度约为308米【解析】试题分析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,用锐角三角函数分别在Rt△ACD中表示出CD和在Rt△BCD中表示出BD,利用BD=AD+AB二者之间的关系列出方程求解.试题解析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,设AD=x,则BD=BA+AD=1000+x,在Rt△ACD中,CD=tan AD ACD=tan30x= 3x在Rt△BCD中,BD=CD•tan68°,∴325+x=3x•tan68°解得:x≈100米,∴潜艇C离开海平面的下潜深度为100米.点睛:本题考查了解直角三角形的应用,解题的关键是作出辅助线,从题目中找出直角三角形并选择合适的边角关系求解.视频9.小明坐于堤边垂钓,如图①,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离(如图②).【答案】1.5米.【解析】试题分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出在Rt△ACD中,米,CD=2AD=3米,再证明△BOD是等边三角形,得到米,然后根据BC=BD−CD即可求出浮漂B与河堤下端C之间的距离.试题解析:延长OA交BC于点D.∵AO的倾斜角是,∴∵在Rt△ACD中, (米),∴CD=2AD=3米,又∴△BOD是等边三角形,∴(米),∴BC=BD−CD=4.5−3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.10.如图,在航线l的两侧分别有观测点A和B,点B到航线l的距离BD为4km,点A位于点B北偏西60°方向且与B相距20km处.现有一艘轮船从位于点A南偏东74°方向的C 处,沿该航线自东向西航行至观测点A的正南方向E处.求这艘轮船的航行路程CE的长度.(结果精确到0.1km3,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)【答案】20.9km【解析】分析:根据题意,构造直角三角和相似三角形的数学模型,利用相似三角形的判定与性质和解直角三角形即可.详解:如图,在Rt △BDF 中,∵∠DBF=60°,BD=4km ,∴BF=cos 60BD o =8km , ∵AB=20km ,∴AF=12km , ∵∠AEB=∠BDF ,∠AFE=∠BFD ,∴△AEF ∽△BDF ,∴AE BD AF BF, ∴AE=6km , 在Rt △AEF 中,CE=AE•tan74°≈20.9km .故这艘轮船的航行路程CE 的长度是20.9km .点睛:本题考查相似三角形,掌握相似三角形的概念,会根据条件判断两个三角形相似.11.如图,在平面直角坐标系xOy 中,已知点A (3,0),点B (0,33),点O 为原点.动点C 、D 分别在直线AB 、OB 上,将△BCD 沿着CD 折叠,得△B'CD .(Ⅰ)如图1,若CD ⊥AB ,点B'恰好落在点A 处,求此时点D 的坐标;(Ⅱ)如图2,若BD=AC ,点B'恰好落在y 轴上,求此时点C 的坐标;(Ⅲ)若点C 的横坐标为2,点B'落在x 轴上,求点B'的坐标(直接写出结果即可).【答案】(1)D (02)C (12﹣﹣18);(3)B'(0),(20).【解析】【分析】(1)设OD 为x ,则x ,在RT △ODA 中应用勾股定理即可求解;(2)由题意易证△BDC ∽△BOA ,再利用A 、B 坐标及BD=AC 可求解出BD 长度,再由特殊角的三角函数即可求解;(3)过点C 作CE ⊥AO 于E ,由A 、B 坐标及C 的横坐标为2,利用相似可求解出BC 、CE 、OC 等长度;分点B’在A 点右边和左边两种情况进行讨论,由翻折的对称性可知BC=B’C ,再利用特殊角的三角函数可逐一求解.【详解】(Ⅰ)设OD 为x ,∵点A (3,0),点B (0,),∴AO=3,BO=∴AB=6∵折叠∴BD=DA在Rt △ADO 中,OA2+OD2=DA2.∴9+OD2=(﹣OD )2.∴∴D(0)(Ⅱ)∵折叠∴∠BDC=∠CDO=90°∴CD ∥OA ∴BD BC BO AB =且BD=AC , ∴66BD -= ∴BD=18∴OD=﹣(18)=18﹣∵tan ∠ABO=OB 3AO = ∴∠ABC=30°,即∠BAO=60°∵tan ∠ABO=BD CD = ∴CD=12﹣∴D(12﹣63,123﹣18)(Ⅲ)如图:过点C作CE⊥AO于E∵CE⊥AO∴OE=2,且AO=3∴AE=1,∵CE⊥AO,∠CAE=60°∴∠ACE=30°且CE⊥AO∴AC=2,3∵BC=AB﹣AC∴BC=6﹣2=4若点B'落在A点右边,∵折叠∴BC=B'C=4,3CE⊥OA∴22B C CE-='13∴13∴B'(130)若点B'落在A点左边,∵折叠∴BC=B'C=4,3CE⊥OA∴22-=B C CE'13∴132∴B'(2130)综上所述:B'(130),(2130)【点睛】本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B’点的两种情况是解题关键.12.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,AE为⊙O的切线,过点B作BD⊥AE于D.(1)求证:∠DBA=∠ABC;(2)如果BD=1,tan∠BAD=,求⊙O的半径.【答案】(1)证明见解析;(2).【解析】试题分析:(1)如图,连接OA,由AE为⊙O的切线,BD⊥AE得到∠DAO=∠EDB=90°,于是得到DB∥AO,推出∠DBA=∠BAO,由于OA=OB,得到∠ABC=∠BAO,即可得到结论;(2)根据三角函数的知识可求出AD,从而根据勾股定理求出AB的长,根据三角函数的知识即可得出⊙O的半径.试题解析:(1)如图,连接OA,∵AE为⊙O的切线,BD⊥AE,∴∠DAO=∠EDB=90°,∴DB∥AO,∴∠DBA=∠BAO,又∵OA=OB,∴∠ABC=∠BAO,∴∠DBA=∠ABC;(2)∵BD=1,tan∠BAD=,∴AD=2,∴AB=,∴cos∠DBA=;∵∠DBA=∠CBA,∴BC=.∴⊙O的半径为2.5.考点:1.切线的性质;2.勾股定理;3.解直角三角形.。
2020-2021九年级中考数学直角三角形的边角关系解答题压轴题提高专题练习附答案解析
2020-2021九年级中考数学直角三角形的边角关系解答题压轴题提高专题练习附答案解析一、直角三角形的边角关系1.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点A 、点B ,且ABO ∆的面积为8.(1)求k 的值;(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K 在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,求四边形BOCM 的面积.【答案】(1)1k =;(2)4m t =+;(3)32BOCM S =Y .【解析】【分析】(1)先求出A 的坐标,然后利用待定系数法求出k 的值;(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证POD OCE ∆≅∆可得OE PD =,进一步得出m 与t 的函数关系式;(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出QTB PTO ∆≅∆;再证出KPB BPN ∠=∠;设KPB x ∠=︒,通过计算证出PO PM =;再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到OD BO PD MO =,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32.【详解】解:(1)把0x =代入4y kx =+,4y =,∴4BO =,又∵4ABO S ∆=, ∴142AO BO ⋅=,4AO =, ∴(4,0)A -,把4x =-,0y =代入4y kx =+,得044k =-+,解得1k =.故答案为1;(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,∴90PDO CEO ∠=∠=︒,∴90POD OPD ∠+∠=︒,∵线段OP 绕点O 顺时针旋转90°至线段OC ,∴90POC ∠=︒,OP OC =,∴90POD EOC ∠+∠=︒,∴OPD EOC ∠=∠,∴POD OCE ∆≅∆,∴OE PD =,4m t =+.故答案为4m t =+.(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,由(1)知,4AO BO ==,90BOA ∠=︒,∴ABO ∆为等腰直角三角形,∴45ABO BAO ∠=∠=︒,9045BOT ABO ABO ∠=︒-∠=︒=∠,∴BT TO =,∵90BTO ∠=︒,∴90TPO TOP ∠+∠=︒,∵PO BM ⊥,∴90BNO ∠=︒,∴BQT TPO ∠=∠,∴QTB PTO ∆≅∆,∴QT TP =,PO BQ =,∴PQT QPT ∠=∠,∵PO PK KB =+,∴QB PK KB =+,QK KP =,∴KQP KPQ ∠=∠,∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠,∴KPB BPN ∠=∠,设KPB x ∠=︒,∴BPN x ∠=︒,∵2PMB KPB ∠=∠,∴2PMB x ∠=︒,45POM PAO APO x ∠=∠+∠=︒+︒,9045NMO POM x ∠=︒-∠=︒-︒, ∴45PMO PMB NMO x POM ∠=∠+∠=︒+︒=∠,∴PO PM =,过点P 作PD x ⊥轴,垂足为点D ,∴22OM OD t ==,9045OPD POD x BMO ∠=︒-∠=︒-︒=∠,tan tan OPD BMO ∠=∠,OD BO PD MO =,442t t t=+, 14t =,22t =-(舍)∴8OM =,由(2)知,48m t OM =+==,∴CM y P 轴,∵90PNM POC ∠=∠=︒,∴BM OC P , ∴四边形BOCM 是平行四边形,∴4832BOCM S BO OM =⨯=⨯=Y .故答案为32.【点睛】本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.2.2018年12月10日,郑州市城乡规划局网站挂出《郑州都市区主城区停车场专项规划》,将停车纳入城市综合交通体系,计划到2030年,在主城区新建停车泊位33.04万个,2019年初,某小区拟修建地下停车库,如图是停车库坡道入口的设计图,其中MN 是水平线,MN ∥AD ,AD ⊥DE ,CF ⊥AB ,垂足分别为D ,F ,坡道AB 的坡度为1:3,DE =3米,点C 在DE 上,CD =0.5米,CD 是限高标志屏的高度(标志牌上写有:限高米),如果进入该车库车辆的高度不能超过线段CF 的长,则该停车库限高多少米?(结果精确到0.1米,参考数据2≈1.41, 3≈1.73)【答案】该停车库限高约为2.2米.【解析】【分析】据题意得出3tan B =,即可得出tan A ,在Rt △ADE 中,根据勾股定理可求得DE ,即可得出∠1的正切值,再在Rt △CEF 中,设EF =x ,即可求出x ,从而得出CF 3的长.【详解】解:由题意得,3tan 3B =∵MN ∥AD ,∴∠A =∠B ,∴tan A=33,∵DE⊥AD,∴在Rt△ADE中,tan A=DEAD,∵DE=3,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=33.在Rt△CEF中,设EF=x,CF=3x(x>0),CE=2.5,代入得(52)2=x2+3x2,解得x=1.25,∴CF=3x≈2.2,∴该停车库限高约为2.2米.【点睛】本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.3.如图,在正方形ABCD中,E是边AB上的一动点,点F在边BC的延长线上,且CF AE=,连接DE,DF,EF. FH平分EFB∠交BD于点H.(1)求证:DE DF⊥;(2)求证:DH DF=:(3)过点H作HM EF⊥于点M,用等式表示线段AB,HM与EF之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析.【解析】【分析】(1)根据正方形性质, CF AE =得到DE DF ⊥.(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠, 得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以22sin 45HN BH HN HM ===︒. 由22cos 45DF EF DF DH ===︒,得22EF AB HM =-. 【详解】(1)证明:∵四边形ABCD 是正方形,∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒.∴90EAD FCD ∠=∠=︒.∵CF AE =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
摆齐根据
C
写出结论
∠A=∠C (已证) AF=CE (已证) △AFD≌△CEB(SAS) EB=DF
已知:如图,点A、B、C、D在同一条直线上, AC=DB,AE=DF,EA⊥AD,FD⊥AD,垂足分别是A, D。 求证:△EAB≌△FDC
E A C B ∟ ∟D F 90°
已知:如图,AB=AC,AD=AE,∠1=∠2, A 求证:△ABD≌△ACE 证明:∵ ∠1=∠2, B ∴ ∠1+ ∠EAB = ∠2+ ∠EAB 即 ∠DAB = ∠EAC 在△ABD和△ACE中, AB = AC ∠DAB = ∠EAC AD = AE
C 1 2 E D
∴ △ABD ≌ △ACE(SAS)
实际应用
某校八年级一班学生到野外活动,为测量 一池塘两端A、B的距离。设计了如下方案: 如图,先在平地上取一个可直接到达A、B 的点C,再连结AC、BC并分别延长AC至E, 使DC=BC,EC=AC,最后测得DE的距离即 为AB的长.你认为这种方法是否可行? A B
已知:AE=AC,AB=AD, ∠EAB= ∠CAD。试说明: ∠B= ∠D。
1 1
2
3、如图,B点在A点的正北方向。两车 从路段AB的一端A出发,分别向东、向 西进行相同的距离,到达C、D两地。此 时C,D到B的距离相等吗?为什么?
B
【证明】∵在△BAD和△BAC中, BA=BA∠BAD=∠BACD NhomakorabeaE
F
H
△EDH≌△FDH 根据“SAS”,所 以EH=FH
探究2: 已知:AC∥DF,AE=BD,AC=DF.探 究BC与EF的位置关系?
变式训练: 已知:点E是AB 中点,点D是AC 中点,AC=AB, 则△ABD与△ACE全等吗?
拓展练习: 已知:正方形ABCD,点E、F分别是 AB、BC的中点。 问: △ADE与△BAF全等吗?
·C
D
E
课堂小结:证明三角形全等的过程
1、准备条件
2、指明范围
3、摆齐根据
4、写出结论
如图:AB=AD,∠BAC= ∠DAC,△ABC和△ADC全等吗? 为什么?
A
B
C
D
间接条件
例题: 如图 , 在△ ABC中, AB= AC, AD 平 分∠BAC,求证:△ABD≌△ACD.
开放题
创造条件
如图,在四边形ABCD中,已知 AD=BC, 要使△ ABC ≌ △ CDA,可 补充的一个条件是:____________
即∠A=∠D
练习1.教材119页练习 (补充)2.图3,已知:AD∥BC,AD= CB. 求证:△ADC≌△CBA (补充)3.如图4,已知AB=AC, AD=AE, ∠1=∠2,求证:△ABD≌ACE
三、机动练习
1 如图,A、B、C三点在一条直线上,DA⊥AC, E E EC⊥AC,AB=CE,AD=CB. 求:∠DBE的度数. D
AD=AC
D A C
则△BAD≌△BAC (SAS). 即BD=BC
2、如图,点E、F在BC上,BE=CF, AB=DC, ∠B=∠C,求证: ∠A=∠D
【证明】∵BF=BE+EF CE=CF+FE
A
D
而BE=CF ∴BF=CE 在△ABF和△DCE中,
B
E
F
C
BF=CE
∠B=∠C
AB=DC 则△BAD≌△BAC (SAS).
BE =DF
分析:证三角形全等的三个条件 边 角 边 AD = CB
(已知) 两直线平行,
∠A=∠C AF = CE
内错角相等
AD // BC
?
AE = CF
证明: ∵AD//BC
∴ ∠A=∠C
准备条 件
(两直线平行,内错角相等) A D
又∵AE=CF
∴AE+EF=CF+EF
E
F
即 AF=CE 指范围 在△AFD和△CEB中, AD=CB
A D
B
C
练习 1. 变式练习:
如图,已知AD//BC , AD=BC, AE=CF, 求证:△ △ABC AFD ≌ ≌△ △CDA CEB
E
A
F
D
B
C
小明做了一个如图所示的风筝,其中 ∠EDH=∠FDH, ED=FD ,将上述条件 标注在图中,小明不用测量就能知道 EH=FH吗?与同桌进行交流。
证明:∵ ∠AFE=∠BFD (对顶角相等) 全等 又∵ ∠1=∠2 (已知) ∴∠AFE+∠1=∠BFD+∠2 (等式性质) 条件 即 ∠AFC=∠BFC 在△AFC与△BFC中 AF=BF (已知) 列齐全 ∠AFC=∠BFC (已证) 等条件 CF=CF (公共边) ∴ △AFC≌△BFC (SAS) 得出结论 ∴ AC=BC (全等三角形的对应边相等)
链接生活:
小明不小心打翻了墨水,将 自己所画的三角形涂黑了,你能 帮小明想想办法,画一个与原来 完全一样的三角形吗?
1、如图:AB=AC,AD=AE,△ABE和 △ACD全等吗?请说明理由。
B
在这个图形中你还能得到哪些相等 的线段和相等的角?
例2:点E、F在AC上,AD//BC,AD=CB,AE=CF 求证:△AFD≌△CEB A D E F B C
A B C 2 如图, A 、 B 、 C 三点在一条直线上, AD=AE , AC平分∠DAE,图中有多少对全等三角形?证明 你的结论. D A
E
B
C
例 4 已知:如图, AD 与 BE 交于 F , AF=BF , A ∠1=∠2. E 求证:AC=BC F 2 1 △AFC △BFC B C D 创造