遗传学ppt课件
合集下载
遗传学绪论PPT课件.ppt

➢ The central dogma (中心法则) in biology is that information flows from DNA to RNA to protein.
2024/9/29
Genetics
33
DNA Replication: Propagating Genetic Information
➢What is gene? ➢Genes were shown to consist of substances
called nucleic acids.
2024/9/29
Genetics
28
2024/9/29
Genetics
29
3、The Human Genome Project: Sequencing DNA and Cataloguing Genes
➢Replication (复制) ➢Expression (表达) ➢Mutation (突变)
2024/9/29
Genetics
20
Key Points
➢Genetics is the study of the hereditary materials.
➢The hereditary material explains both the similarities and differences among organisms.
2024/9/29
Genetics
22
1、Mendel: Genes and the Rules of Inheritance
2024/9/29
Genetics
23
2024/9/29
Mendel’s method involved hybridizing plants that showed different traits—for example, short plants were hybridized with tall plants—to see how the traits were inherited by the offspring.
2024/9/29
Genetics
33
DNA Replication: Propagating Genetic Information
➢What is gene? ➢Genes were shown to consist of substances
called nucleic acids.
2024/9/29
Genetics
28
2024/9/29
Genetics
29
3、The Human Genome Project: Sequencing DNA and Cataloguing Genes
➢Replication (复制) ➢Expression (表达) ➢Mutation (突变)
2024/9/29
Genetics
20
Key Points
➢Genetics is the study of the hereditary materials.
➢The hereditary material explains both the similarities and differences among organisms.
2024/9/29
Genetics
22
1、Mendel: Genes and the Rules of Inheritance
2024/9/29
Genetics
23
2024/9/29
Mendel’s method involved hybridizing plants that showed different traits—for example, short plants were hybridized with tall plants—to see how the traits were inherited by the offspring.
遗传学——绪论 ppt课件

1958年梅西尔逊(M.Meselson)和史泰尔 (F.Stahl)证明了DNA的半保留复制
1961年,雅各布(F.Jacob)和莫诺根 (J.L.Monod)提出细菌中基因表达与调控 的操纵元模型
21
1966年,莱文伯格(M.W.Nirenberg)和柯 兰拉(H.G.Khorana)建立了完整的遗传密 码
20世纪30年代,研究者们提出杂种优势理 论
15
1930~1932年费希尔(R.A.Fisher)、奈特 (S.Wright)和霍尔丹(J.B.S.Haldane) 等奠定了数量遗传学和群体遗传学的基础
费希尔
16
1941年比德尔(G.W.Beadle)和泰特姆 (E.T.Tatum)证明了基因是通过酶而起作 用的,提出“一个基因一个酶”的假说
遗传学——绪论 ppt课件
第一节 遗传学的研究对象和任务
2
研究的对象
遗传学所研究的主要内容是由母细胞到子细 胞、由亲代到子代,而细胞及其所含的染色 体则是生物信息遗传的基础。
5
DNA分子
6
ቤተ መጻሕፍቲ ባይዱ
任务
遗传学研究的任务在于:阐明生物遗传和变 异的现象及其表现的规律;探索遗传和变异 的原因及其物理基础,揭示其内在规律;从 而进一步指导动物、植物和微生物的育种实 践,防治遗传疾病,提高医学水平,造福人 类。
20世纪70年代,分子遗传学已成功地进行 人工分离基因和人工合成基因,开始建立 遗传工程这一新的研究领域
20世纪90年代初,实施“人类基因组计划” 21世纪,遗传学的发展进入“后基因组时
代”
22
第三节 遗传学的重要性
23
遗传学与进化论有着不可分割的关系 遗传学对于农业科学起着直接的指导作用,
1961年,雅各布(F.Jacob)和莫诺根 (J.L.Monod)提出细菌中基因表达与调控 的操纵元模型
21
1966年,莱文伯格(M.W.Nirenberg)和柯 兰拉(H.G.Khorana)建立了完整的遗传密 码
20世纪30年代,研究者们提出杂种优势理 论
15
1930~1932年费希尔(R.A.Fisher)、奈特 (S.Wright)和霍尔丹(J.B.S.Haldane) 等奠定了数量遗传学和群体遗传学的基础
费希尔
16
1941年比德尔(G.W.Beadle)和泰特姆 (E.T.Tatum)证明了基因是通过酶而起作 用的,提出“一个基因一个酶”的假说
遗传学——绪论 ppt课件
第一节 遗传学的研究对象和任务
2
研究的对象
遗传学所研究的主要内容是由母细胞到子细 胞、由亲代到子代,而细胞及其所含的染色 体则是生物信息遗传的基础。
5
DNA分子
6
ቤተ መጻሕፍቲ ባይዱ
任务
遗传学研究的任务在于:阐明生物遗传和变 异的现象及其表现的规律;探索遗传和变异 的原因及其物理基础,揭示其内在规律;从 而进一步指导动物、植物和微生物的育种实 践,防治遗传疾病,提高医学水平,造福人 类。
20世纪70年代,分子遗传学已成功地进行 人工分离基因和人工合成基因,开始建立 遗传工程这一新的研究领域
20世纪90年代初,实施“人类基因组计划” 21世纪,遗传学的发展进入“后基因组时
代”
22
第三节 遗传学的重要性
23
遗传学与进化论有着不可分割的关系 遗传学对于农业科学起着直接的指导作用,
遗传学第二章遗传基本规律课件.ppt

证实F1的♀ 蝇w和B连锁,W和b连锁。
通过两个测交结果的分析, 摩尔根证实了:
在上述相引组中,w和b进入同一配子,W 和B进入同一配子。在上述相斥组中,则是w 和B进入同一配子,W和b进入同一配子。
至此,摩尔根证实了上述两对基因在传递 时是连锁的,他对性状连锁遗传现象的解释 是成立的。
连锁和交换的遗传机理
电镜下染色质结构
黑麦根尖细胞有丝分裂中期染色体
染色质螺旋化形成染色体被认可的是Bak(1977)等人提出的四级结构模型
由染色质到染色体的四级结构模型
染色质结构的核小体模式图
染色体的四级结构
核小体呈念珠状排列
(电子显微镜观察结果)
一级结构:是核小体组成的串珠式染色质线;
二级结构:直径为10nm的染色质线过螺旋化, 每一圈6个核小体,形成了外径30nm,内径 10nm,螺距11nm的螺线体;
aaBB X AAbb
(聋哑) ↓ (聋哑)
AaBb(正常)
↓
9A_B_ 3A_bb 3aaB_ 1aabb
9正常
7聋哑
积加作用:
两种显性基因分别存在时,具有相同的性状决定作用;两种显性 基因共同存在时,积加出新的性状;无显性基因时表现隐性性状。积 加作用的F2 表现型有三种,分离比例为9:6:1。
2.5 遗传的染色体学说
染色质和染色体
• 染色质(chromatin)又称为染 色质线(chromatin fiber), 细胞间期;
• 染色体(chromosome), 细胞分裂期。
• 二者组成一致,由DNA、组蛋 白、非组蛋白和少量RNA组成,
能被碱性染料染色,是同一
复合物在细胞周期的不同存在形 式
摩尔根对性状连锁遗传的解释:位于同一条染色体的两个基因,以该染色体为 单位进行传递。上述解释得到他以下实验的验证。
通过两个测交结果的分析, 摩尔根证实了:
在上述相引组中,w和b进入同一配子,W 和B进入同一配子。在上述相斥组中,则是w 和B进入同一配子,W和b进入同一配子。
至此,摩尔根证实了上述两对基因在传递 时是连锁的,他对性状连锁遗传现象的解释 是成立的。
连锁和交换的遗传机理
电镜下染色质结构
黑麦根尖细胞有丝分裂中期染色体
染色质螺旋化形成染色体被认可的是Bak(1977)等人提出的四级结构模型
由染色质到染色体的四级结构模型
染色质结构的核小体模式图
染色体的四级结构
核小体呈念珠状排列
(电子显微镜观察结果)
一级结构:是核小体组成的串珠式染色质线;
二级结构:直径为10nm的染色质线过螺旋化, 每一圈6个核小体,形成了外径30nm,内径 10nm,螺距11nm的螺线体;
aaBB X AAbb
(聋哑) ↓ (聋哑)
AaBb(正常)
↓
9A_B_ 3A_bb 3aaB_ 1aabb
9正常
7聋哑
积加作用:
两种显性基因分别存在时,具有相同的性状决定作用;两种显性 基因共同存在时,积加出新的性状;无显性基因时表现隐性性状。积 加作用的F2 表现型有三种,分离比例为9:6:1。
2.5 遗传的染色体学说
染色质和染色体
• 染色质(chromatin)又称为染 色质线(chromatin fiber), 细胞间期;
• 染色体(chromosome), 细胞分裂期。
• 二者组成一致,由DNA、组蛋 白、非组蛋白和少量RNA组成,
能被碱性染料染色,是同一
复合物在细胞周期的不同存在形 式
摩尔根对性状连锁遗传的解释:位于同一条染色体的两个基因,以该染色体为 单位进行传递。上述解释得到他以下实验的验证。
遗传学课件全部完整版

与单基因性状的区别
多因子复杂性状受多个基因控制,每个基因作用较小,且易受环境 影响;而单基因性状通常受单一基因控制,遗传效应显著。
研究意义
揭示多因子复杂性状的遗传机制,为疾病预测、诊断和治疗提供理论 依据。
数量性状遗传学原理
数量性状定义
01
表现为连续变异的性状,如身高、体重等。
遗传基础
02
数量性状受多对基因控制,每对基因作用微小,呈累加效应。
克隆技术介绍
简要介绍动物克隆技术的原理、方法和应用实例。
伦理道德问题
探讨动物克隆技术所涉及的伦理道德问题,如生命尊严、生物多样 性、人类安全等。
社会影响与监管
分析动物克隆技术对社会的影响以及政府对相关技术的监管措施。
未来发展趋势预测
精准医学
随着遗传学研究的深入,精准医学将成为 未来发展的重要方向,实现个体化诊断和
RNA翻译的过程
RNA翻译是以mRNA为模板合成蛋白质的过程。在翻译过程中,核糖体识别 mRNA上的遗传密码,并根据密码子的顺序合成相应的氨基酸序列,从而合成蛋 白质。
基因突变与修复机制
基因突变的类型
基因突变包括点突变、插入突变、缺失突变等类型。这些突变可能导致遗传信息的改变,从而影响生 物体的性状和表型。
包括点突变、插入突变、缺失突变等。
对生物表型的影响
可能导致生物体形态、生理、生化等方面的 异常表现。
对蛋白质结构和功能的影响
可能导致蛋白质结构异常、功能丧失或获得 新的功能。
对生物进化的意义
是生物进化的原材料,为自然选择提供多样 性。
基因重组与染色体变异
基因重组类型
包括同源重组、非同源重组等 。
染色体变异类型
DNA复制的特点
多因子复杂性状受多个基因控制,每个基因作用较小,且易受环境 影响;而单基因性状通常受单一基因控制,遗传效应显著。
研究意义
揭示多因子复杂性状的遗传机制,为疾病预测、诊断和治疗提供理论 依据。
数量性状遗传学原理
数量性状定义
01
表现为连续变异的性状,如身高、体重等。
遗传基础
02
数量性状受多对基因控制,每对基因作用微小,呈累加效应。
克隆技术介绍
简要介绍动物克隆技术的原理、方法和应用实例。
伦理道德问题
探讨动物克隆技术所涉及的伦理道德问题,如生命尊严、生物多样 性、人类安全等。
社会影响与监管
分析动物克隆技术对社会的影响以及政府对相关技术的监管措施。
未来发展趋势预测
精准医学
随着遗传学研究的深入,精准医学将成为 未来发展的重要方向,实现个体化诊断和
RNA翻译的过程
RNA翻译是以mRNA为模板合成蛋白质的过程。在翻译过程中,核糖体识别 mRNA上的遗传密码,并根据密码子的顺序合成相应的氨基酸序列,从而合成蛋 白质。
基因突变与修复机制
基因突变的类型
基因突变包括点突变、插入突变、缺失突变等类型。这些突变可能导致遗传信息的改变,从而影响生 物体的性状和表型。
包括点突变、插入突变、缺失突变等。
对生物表型的影响
可能导致生物体形态、生理、生化等方面的 异常表现。
对蛋白质结构和功能的影响
可能导致蛋白质结构异常、功能丧失或获得 新的功能。
对生物进化的意义
是生物进化的原材料,为自然选择提供多样 性。
基因重组与染色体变异
基因重组类型
包括同源重组、非同源重组等 。
染色体变异类型
DNA复制的特点
遗传学--ppt课件全篇

真核生物一个mRNA只编码一个基因;原核生 物一个mRNA编码多个基因
遗传密码与蛋白质的翻译
遗传密码
遗传密码的基本特性
• 遗传密码为三联体 • 遗传密码不重叠(少数例外),在一个mRNA上每个核苷
三点测交
干扰与并发
一个单交换发生后,在它邻近再发生第二个单交换的 机会就会减少,这种现象称为干扰或干涉 (interference,I )
对于受到干扰的程度,通常用并发系数或符合系数 (coefficient of coincidence,C )来表示
并发系数 = 实际双交换值 / 理论双交换值
非整倍体
超倍体(hyperploidy)
指体细胞中多若干条染色体的个体 超倍体的来源
• 由于减数分裂时个别染色体行为异常所致 n +1 配子与 n 配子结合形成三体(trisomy)
• 两个相同的 n + 1 配子结合形成四体(tetrasomy) 两个不同的 n + 1 配子结合形成双三体(double trisomy)
X三体综合征 Klinefelter (克氏)综合征
(又称小睾丸症)
超Y综合征
典型核型
45,X 47,XXX 47,XXY
47,XYY
主要特征
卵巢发育不全,呈索条状,不育,乳房不发育,蹼颈, 肘外翻 大多患者外表正常,内外生殖器、性功能一般正常,少 数卵巢功能异常。有生育能力或不育等
先天性睾丸不发育,智力低下,乳房发育等
Cy + +S
+S ×
Cy +
Cy +
Cy +
Cy +
+S
Cy - 果蝇翘翅基因
+S
遗传密码与蛋白质的翻译
遗传密码
遗传密码的基本特性
• 遗传密码为三联体 • 遗传密码不重叠(少数例外),在一个mRNA上每个核苷
三点测交
干扰与并发
一个单交换发生后,在它邻近再发生第二个单交换的 机会就会减少,这种现象称为干扰或干涉 (interference,I )
对于受到干扰的程度,通常用并发系数或符合系数 (coefficient of coincidence,C )来表示
并发系数 = 实际双交换值 / 理论双交换值
非整倍体
超倍体(hyperploidy)
指体细胞中多若干条染色体的个体 超倍体的来源
• 由于减数分裂时个别染色体行为异常所致 n +1 配子与 n 配子结合形成三体(trisomy)
• 两个相同的 n + 1 配子结合形成四体(tetrasomy) 两个不同的 n + 1 配子结合形成双三体(double trisomy)
X三体综合征 Klinefelter (克氏)综合征
(又称小睾丸症)
超Y综合征
典型核型
45,X 47,XXX 47,XXY
47,XYY
主要特征
卵巢发育不全,呈索条状,不育,乳房不发育,蹼颈, 肘外翻 大多患者外表正常,内外生殖器、性功能一般正常,少 数卵巢功能异常。有生育能力或不育等
先天性睾丸不发育,智力低下,乳房发育等
Cy + +S
+S ×
Cy +
Cy +
Cy +
Cy +
+S
Cy - 果蝇翘翅基因
+S
遗传学ppt课件

➢贝特生(Bateson,W.) 1906
✓从香豌豆中发现性状连锁; ✓创造“genetics”一字。
➢詹森斯(Janssens, F. A.) 1909
✓观察到染色体在减数分裂时呈交叉现象,为解释 基因连锁现象提供了基础。
最新版整理ppt
9
➢摩尔根(Morgan T.H.,1866~1945):
最新版整理ppt
4
(二)、 遗传学的诞生(1900)
(1). 孟德尔 (Gregor Mendel) (1822-1884): 奥地利的一个修道士,他从1856年开始进行了8年的豌
豆杂交试验 : 1866年发表《植物杂交试验》,提出了分离规律和
独立分配规律;并应用统计学方法分析和验证了这些假设。 假定细胞中有它的物质基础“遗传因子”,但是他的
第一章 绪 论
最新版整理ppt
1
一、遗传学基本概念
(一)什么是遗传学(genetics):研究生物的遗传 和变异 现象及其规律的一门学科。
(1)遗传(heredity, inheritance): 生物有性或无性生
殖方式繁殖,子代与亲代相似、物种的延续性
“ 种瓜得瓜,种豆得豆。”
(2)变异(variation):生物个体之间差异的现象。
“一母生九子,九子各不同。”
(3)矛盾运动:遗传
变异
物质、能量、信息
生物
变异 自然选择进化
人工选择最新版育整种理ppt
2
(二)遗传学的研究任务
遗传学:研究遗传物质(基因)结构、功能、
传递和表达规律。 1) 性状遗传学:描述遗传变异的现象和规律 2) 细胞遗传学和分子遗传学:
阐述生物遗传变异的原因、 遗传物质的本质、结构、功能、变化、表 达及其调控。
✓从香豌豆中发现性状连锁; ✓创造“genetics”一字。
➢詹森斯(Janssens, F. A.) 1909
✓观察到染色体在减数分裂时呈交叉现象,为解释 基因连锁现象提供了基础。
最新版整理ppt
9
➢摩尔根(Morgan T.H.,1866~1945):
最新版整理ppt
4
(二)、 遗传学的诞生(1900)
(1). 孟德尔 (Gregor Mendel) (1822-1884): 奥地利的一个修道士,他从1856年开始进行了8年的豌
豆杂交试验 : 1866年发表《植物杂交试验》,提出了分离规律和
独立分配规律;并应用统计学方法分析和验证了这些假设。 假定细胞中有它的物质基础“遗传因子”,但是他的
第一章 绪 论
最新版整理ppt
1
一、遗传学基本概念
(一)什么是遗传学(genetics):研究生物的遗传 和变异 现象及其规律的一门学科。
(1)遗传(heredity, inheritance): 生物有性或无性生
殖方式繁殖,子代与亲代相似、物种的延续性
“ 种瓜得瓜,种豆得豆。”
(2)变异(variation):生物个体之间差异的现象。
“一母生九子,九子各不同。”
(3)矛盾运动:遗传
变异
物质、能量、信息
生物
变异 自然选择进化
人工选择最新版育整种理ppt
2
(二)遗传学的研究任务
遗传学:研究遗传物质(基因)结构、功能、
传递和表达规律。 1) 性状遗传学:描述遗传变异的现象和规律 2) 细胞遗传学和分子遗传学:
阐述生物遗传变异的原因、 遗传物质的本质、结构、功能、变化、表 达及其调控。
《遗传学》课件ppt

谢谢聆听
长发育异常、生殖障碍以及多种躯体畸形等问题。对于染色体疾病的诊断,通常需要进行遗传学咨询、家族史 调查、临床表现观察以及遗传学检测等综合评估。治疗方面,目前尚无根治方法,但可以通过对症治疗、康复 训练以及社会心理支持等手段,提高患者的生活质量和社会适应能力。
03 基因表达调控与表观遗传学
基因表达调控机制
阐述基因歧视的概念、表现形式 和危害,包括在就业、保险、教 育等领域的歧视现象。
原因分析
分析基因歧视产生的社会、文化 和心理等方面的原因,以及现有 法律法规在防止基因歧视方面的 不足。
应对措施建议
提出防止基因歧视的政策建议, 包括完善法律法规、加强宣传教 育、推动基因科技合理应用等。
辅助生殖技术中伦理道德问题思考
染色体的形态结构
染色体的功能
染色体是遗传物质的主要载体,通过 复制、转录和翻译等过程,控制生物 体的遗传性状。
染色体在细胞分裂的不同时期呈现不 同的形态,包括染色质丝、染色单体、 四分体等。
染色体数目异常及遗传效应
1 2
染色体数目异常的类型 包括整倍体和非整倍体,如单体、三体、多倍体 等。
染色体数目异常的原因 主要是由于细胞分裂过程中染色体的不分离或丢 失所致。
高通量测序技术
利用微流控边测序。
第三代测序技术
基于单分子荧光测序或纳米孔测序,无需PCR扩增,具有读长长、速 度快、成本低等优点。
生物信息学在分子遗传学中应用
基因组组装与注释 利用生物信息学方法对基因组序列进行组装、拼接和注释, 解析基因结构和功能。
个性化医疗
基于患者的基因组信息, 制定个性化的治疗方案 和用药指导,提高治疗 效果和减少副作用。
基因治疗
遗传学PPTppt(共43张PPT)

一、雌雄配子的形成 高等动植物雌雄配子形成
图 1-14 高等动物性细胞形成过程
图 1-15 高等植物 雌雄配子 形成过程
二、植物授粉与受精
自花授粉:同一花朵或同株异花
授粉方式 异花授粉:不同植株间
受精:雄配子+雌配子 → 合子 精核(n)+卵细胞(n) →胚 (2n)
双受精 精核(n)+2极核(n) →胚乳(3n)
基因控制
细胞周期
第二类基因直接控制
细胞进入各个时期
(控制点-失控-肿瘤)
图 1-10 细胞周期的遗传控制
二、细胞无丝分裂与有丝分裂
细胞分裂
无丝分裂(直接) 有丝分裂
有丝分裂过程
前期
中期
后期
末期
DNA量 的变化
图 1-1 原核细胞的结构 非组蛋白:少量 多核细胞:核分裂、质不分裂 染色单体—1DNA+pro — 花粉直感(胚乳直感):3n胚乳 与真核生物相比,原核生物的染色体要简单得多,其染色体通常只有一个核酸分子(DNA或RNA) 。 图1-17 种子植物的生活周期 保证染色体数目恒定性、物种相对 (由母体发育而来) 第一类基因主要控制 染色体组型分析(核型分析):根据染色体长度、着丝粒位置、臂比、随体有无等特点,对各对同源染色体进行分类、编号,研究一个细胞的整套 染色体 细胞周期中的关键蛋 (1)染色质的基本结构 图 1-9 细胞有丝分裂周期 图 1-15 高等植物雌雄配子形成过程
图 1-5 人类染色体核型
三、 染色体分子结构
1、原核生物染色体
与真核生物相比,原核生物 的染色体要简单得多,其染 色体通常只有一个核酸分子 (DNA或RNA) 。
大肠杆菌的染色体
DNA分子伸展有1100µm长,细菌直径1-2µm
图 1-14 高等动物性细胞形成过程
图 1-15 高等植物 雌雄配子 形成过程
二、植物授粉与受精
自花授粉:同一花朵或同株异花
授粉方式 异花授粉:不同植株间
受精:雄配子+雌配子 → 合子 精核(n)+卵细胞(n) →胚 (2n)
双受精 精核(n)+2极核(n) →胚乳(3n)
基因控制
细胞周期
第二类基因直接控制
细胞进入各个时期
(控制点-失控-肿瘤)
图 1-10 细胞周期的遗传控制
二、细胞无丝分裂与有丝分裂
细胞分裂
无丝分裂(直接) 有丝分裂
有丝分裂过程
前期
中期
后期
末期
DNA量 的变化
图 1-1 原核细胞的结构 非组蛋白:少量 多核细胞:核分裂、质不分裂 染色单体—1DNA+pro — 花粉直感(胚乳直感):3n胚乳 与真核生物相比,原核生物的染色体要简单得多,其染色体通常只有一个核酸分子(DNA或RNA) 。 图1-17 种子植物的生活周期 保证染色体数目恒定性、物种相对 (由母体发育而来) 第一类基因主要控制 染色体组型分析(核型分析):根据染色体长度、着丝粒位置、臂比、随体有无等特点,对各对同源染色体进行分类、编号,研究一个细胞的整套 染色体 细胞周期中的关键蛋 (1)染色质的基本结构 图 1-9 细胞有丝分裂周期 图 1-15 高等植物雌雄配子形成过程
图 1-5 人类染色体核型
三、 染色体分子结构
1、原核生物染色体
与真核生物相比,原核生物 的染色体要简单得多,其染 色体通常只有一个核酸分子 (DNA或RNA) 。
大肠杆菌的染色体
DNA分子伸展有1100µm长,细菌直径1-2µm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
志》上,都证实了孟德尔定律。开始他们都以为是自己发现 了这一重要定律,可后来发现早在35年以前,孟德尔就已经 发现并证明了分离定律和自由组合定律,这就是遗传学历史 上孟德尔定律的重新发现,标志着遗传学的诞生。
1910年起将孟德尔遗传规律改称为孟德尔定律,公认孟 德尔是遗传学的奠基人。
6
(三)经典遗传学时期 (1900-1939年)
✓观察到染色体在减数分裂时呈交叉现象,为解释 基因连锁现象提供了基础。
9
➢摩尔根(Morgan T.H.,1866~1945):
✓提出“性状连锁遗传规律”;伴性遗传 ✓提出染色体遗传理论 细胞遗传学; ✓著《基因论》:认为基因在染色体上直
线排列,创立基因学说 ✓这是对孟德尔遗传学说的重大发展,也
✓ 1953 根据对DNA的化学分析和对 DNA X射线晶体学所得资料提出DNA 分子结构模式理论 -双螺旋结构。
✓标志分子遗传学的诞生。
16
➢克里克 (Crick F.H.C.) 1961 和同事们用实验证明了他于1958年
提出的关于遗传三联密码的推测。
➢尼伦伯格(Nirenberg, M.W.) 柯兰拉(Khorana,H. G. 1968诺贝尔奖) 1957~1969 解译出64种遗传密码。
3
二、遗传学的发展历史
(一)、遗传学的萌芽(~1900)
拉马克(Lamark): “用进废退”学说和“获得性状遗传”: 长颈鹿?
魏斯曼(Weisman): “种质论”: 小鼠截尾实验:“种质”和“体质”
达尔文(C.R.Darwin):“泛生论”:泛生粒
侧重于遗传变异原因的解释,初步肯定了其物质性 缺点:导向不好
“一母生九子,九子各不同。”
(3)矛盾运动:遗传
变异
物质、能量、信息
生物
变异 自然选择进化
人工选择育种
2
(二)遗传学的研究任务
遗传学:研究遗传物质(基因)结构、功能、
传递和表达规律。 1) 性状遗传学:描述遗传变异的现象和规律 2) 细胞遗传学和分子遗传学:
阐述生物遗传变异的原因、 遗传物质的本质、结构、功能、变化、表 达及其调控。
1952等用同位素示踪法在研究T2噬菌体感染细菌 的实验中,再次确认了DNA是遗传物质
至此,已为遗传物质的化学本质及基因的功能 奠定了初步的理论基础。
14
二战后:物理学家对研究生物学问题产 生了浓厚的兴趣。他们在研究中带进了物理 学新理论、概念和方法。
15
➢瓦特森(Watson,J.D.) 克里克(Crick F.H.C.) 1962 Nobel prize
4
(二)、 遗传学的诞生(1900)
(1). 孟德尔 (Gregor Mendel) (1822-1884): 奥地利的一个修道士,他从1856年开始进行了8年的豌
豆杂交试验 : 1866年发表《植物杂交试验》,提出了分离规律和
独立分配规律;并应用统计学方法分析和验证了这些假设。 假定细胞中有它的物质基础“遗传因子”,但是他
1. 主要领域:
➢微生物遗传学 ➢分子遗传学 ➢基因工程 ➢基因组学
12
2. 主要科学家及其贡献
➢比德尔(Beadle, G.W.) 泰特姆(Tatum, E.L. 1958 Nobel prize )
1941, X射线红色面包霉突变体遗传学研究 ✓提出“一个基因一种酶”假说; “一个基因一个
蛋白质或多肽”。 ✓发展了微生物遗传学、生化遗传学。
的发现并未引起重视,而是被埋没了35年之后才被3位科 学家重新发现。
5
(2). 孟德尔定律的重新发现 狄·弗里斯 (De Vries,H. 1848~1935) [荷] 月见草 科伦斯 (Correns, C. 1864~1933) [德]玉米 冯·柴马克 (VonTschermak, E.) [奥]豌豆 他们三人的论文都刊登在1900年出版的《德国植物学杂
➢卡斯佩森(Caspersson, T.O.):
40年代初用定量细胞化学方法 ✓ 证明DNA存在于细胞核中。
13
➢阿委瑞(Avery O. T.)
1944肺炎双球菌的转化实验中,证明了遗传物质是 DNA而不是蛋白质。
➢赫尔希(Hershey A. D. 1969 Nobel prize )
蔡斯(Chase, M. )
1. 核心: 遗传的染色体理论 (Theory of Chromosome)
1)遗传物质位于染色体上 2)遗传物质的传递与有丝分裂、减数
分裂行为相联系
7
2. 突出的科学家:
➢孟德尔(1822-1884):孟德尔遗传规律 ➢狄·费里斯:
1901-1903 提出“突变学说”: 突变生物进化。
➢约翰生(Johannsen W.L.,1859 - 1927) 1909年发表“纯系学说”: 明确区别基因型vs.表现型; 遗传因子“基因”
是这一历史时期的巨大成就。
1933 诺贝尔奖
10
➢穆勒(Muller H.T.): 1927年在果蝇用X 射线诱发突变。
➢斯特德勒(Stadler L.T.): 1927年在玉米用X 射线诱发突变- 人工诱变
➢布莱克斯生(Blakeslee A.F.): 利用秋水仙素诱导多倍体。
11
(四)、现代遗传学时期(1940~)
17
➢雅各布(Jacob F.) 莫诺(Monod J.,1965 诺贝尔奖):
1961 大肠杆菌的操纵子,阐明微生物基因 表达的调控机制。
➢史密斯(Smith,H. 1978诺贝尔奖): 1970分离到限制性内切酶基因工程
第一章 绪 论
1
一、遗传学基本概念
(一)什么是遗传学(genetics):研究生物的遗传 和变异 现象及其规律的一门学科。
(1)遗传(heredity, inheritance): 生物有性或无性生
殖方式繁殖,子代与亲代相似、物种的延续性
“ 种瓜得瓜,种豆得豆。”
(2)变异(variation):生物个体之间差异的现象。
8Sutton W.) 1903
✓ 发现遗传因子的行为与染色体行为呈平行关系, 是染色体遗传学说的初步论证。
➢贝特生(Bateson,W.) 1906
✓从香豌豆中发现性状连锁; ✓创造“genetics”一字。
➢詹森斯(Janssens, F. A.) 1909
1910年起将孟德尔遗传规律改称为孟德尔定律,公认孟 德尔是遗传学的奠基人。
6
(三)经典遗传学时期 (1900-1939年)
✓观察到染色体在减数分裂时呈交叉现象,为解释 基因连锁现象提供了基础。
9
➢摩尔根(Morgan T.H.,1866~1945):
✓提出“性状连锁遗传规律”;伴性遗传 ✓提出染色体遗传理论 细胞遗传学; ✓著《基因论》:认为基因在染色体上直
线排列,创立基因学说 ✓这是对孟德尔遗传学说的重大发展,也
✓ 1953 根据对DNA的化学分析和对 DNA X射线晶体学所得资料提出DNA 分子结构模式理论 -双螺旋结构。
✓标志分子遗传学的诞生。
16
➢克里克 (Crick F.H.C.) 1961 和同事们用实验证明了他于1958年
提出的关于遗传三联密码的推测。
➢尼伦伯格(Nirenberg, M.W.) 柯兰拉(Khorana,H. G. 1968诺贝尔奖) 1957~1969 解译出64种遗传密码。
3
二、遗传学的发展历史
(一)、遗传学的萌芽(~1900)
拉马克(Lamark): “用进废退”学说和“获得性状遗传”: 长颈鹿?
魏斯曼(Weisman): “种质论”: 小鼠截尾实验:“种质”和“体质”
达尔文(C.R.Darwin):“泛生论”:泛生粒
侧重于遗传变异原因的解释,初步肯定了其物质性 缺点:导向不好
“一母生九子,九子各不同。”
(3)矛盾运动:遗传
变异
物质、能量、信息
生物
变异 自然选择进化
人工选择育种
2
(二)遗传学的研究任务
遗传学:研究遗传物质(基因)结构、功能、
传递和表达规律。 1) 性状遗传学:描述遗传变异的现象和规律 2) 细胞遗传学和分子遗传学:
阐述生物遗传变异的原因、 遗传物质的本质、结构、功能、变化、表 达及其调控。
1952等用同位素示踪法在研究T2噬菌体感染细菌 的实验中,再次确认了DNA是遗传物质
至此,已为遗传物质的化学本质及基因的功能 奠定了初步的理论基础。
14
二战后:物理学家对研究生物学问题产 生了浓厚的兴趣。他们在研究中带进了物理 学新理论、概念和方法。
15
➢瓦特森(Watson,J.D.) 克里克(Crick F.H.C.) 1962 Nobel prize
4
(二)、 遗传学的诞生(1900)
(1). 孟德尔 (Gregor Mendel) (1822-1884): 奥地利的一个修道士,他从1856年开始进行了8年的豌
豆杂交试验 : 1866年发表《植物杂交试验》,提出了分离规律和
独立分配规律;并应用统计学方法分析和验证了这些假设。 假定细胞中有它的物质基础“遗传因子”,但是他
1. 主要领域:
➢微生物遗传学 ➢分子遗传学 ➢基因工程 ➢基因组学
12
2. 主要科学家及其贡献
➢比德尔(Beadle, G.W.) 泰特姆(Tatum, E.L. 1958 Nobel prize )
1941, X射线红色面包霉突变体遗传学研究 ✓提出“一个基因一种酶”假说; “一个基因一个
蛋白质或多肽”。 ✓发展了微生物遗传学、生化遗传学。
的发现并未引起重视,而是被埋没了35年之后才被3位科 学家重新发现。
5
(2). 孟德尔定律的重新发现 狄·弗里斯 (De Vries,H. 1848~1935) [荷] 月见草 科伦斯 (Correns, C. 1864~1933) [德]玉米 冯·柴马克 (VonTschermak, E.) [奥]豌豆 他们三人的论文都刊登在1900年出版的《德国植物学杂
➢卡斯佩森(Caspersson, T.O.):
40年代初用定量细胞化学方法 ✓ 证明DNA存在于细胞核中。
13
➢阿委瑞(Avery O. T.)
1944肺炎双球菌的转化实验中,证明了遗传物质是 DNA而不是蛋白质。
➢赫尔希(Hershey A. D. 1969 Nobel prize )
蔡斯(Chase, M. )
1. 核心: 遗传的染色体理论 (Theory of Chromosome)
1)遗传物质位于染色体上 2)遗传物质的传递与有丝分裂、减数
分裂行为相联系
7
2. 突出的科学家:
➢孟德尔(1822-1884):孟德尔遗传规律 ➢狄·费里斯:
1901-1903 提出“突变学说”: 突变生物进化。
➢约翰生(Johannsen W.L.,1859 - 1927) 1909年发表“纯系学说”: 明确区别基因型vs.表现型; 遗传因子“基因”
是这一历史时期的巨大成就。
1933 诺贝尔奖
10
➢穆勒(Muller H.T.): 1927年在果蝇用X 射线诱发突变。
➢斯特德勒(Stadler L.T.): 1927年在玉米用X 射线诱发突变- 人工诱变
➢布莱克斯生(Blakeslee A.F.): 利用秋水仙素诱导多倍体。
11
(四)、现代遗传学时期(1940~)
17
➢雅各布(Jacob F.) 莫诺(Monod J.,1965 诺贝尔奖):
1961 大肠杆菌的操纵子,阐明微生物基因 表达的调控机制。
➢史密斯(Smith,H. 1978诺贝尔奖): 1970分离到限制性内切酶基因工程
第一章 绪 论
1
一、遗传学基本概念
(一)什么是遗传学(genetics):研究生物的遗传 和变异 现象及其规律的一门学科。
(1)遗传(heredity, inheritance): 生物有性或无性生
殖方式繁殖,子代与亲代相似、物种的延续性
“ 种瓜得瓜,种豆得豆。”
(2)变异(variation):生物个体之间差异的现象。
8Sutton W.) 1903
✓ 发现遗传因子的行为与染色体行为呈平行关系, 是染色体遗传学说的初步论证。
➢贝特生(Bateson,W.) 1906
✓从香豌豆中发现性状连锁; ✓创造“genetics”一字。
➢詹森斯(Janssens, F. A.) 1909