第九章:回归分析

合集下载

第九章 回归分析

第九章 回归分析

系数:
参数a、b的最小二乘估计
A good
line is one that minimizes the sum of squared differences between the points and the line.
根据推导,
a y bx
( x x )( y y ) b (x x)
Multiple Regression
R2adj - “adjusted R-square”
R2是一个受自变量个数与样本规模之比(k:n)影响的系数,一般是1:10 以上为好。当这个比值小于1:5时,R2倾向于高估实际的拟合的程度。 Takes into account the number of regressors in the model
X的变异
r2
Y的变异
Simple Regression
R2 - “Goodness of fit”
For simple regression, R2 is the square of the correlation coefficient
Reflects variance accounted for in data by the best-fit line
第九章 多元回归分析
浙江师范大学教育学院心理系
徐长江 xucj@
纲要
回归分析的基本原理
一元回归分析 多元回归分析
多元回归分析的方法 多元回归分析的实现
回归分析的目的
设法找出变量间的依存(数量)关系, 用函数 关系式表达出来
Example: Height vs Weight
Takes values between 0 (0%) and 1 (100%) Frequently expressed as percentage, rather than decimal

第九章 复习-方差分析及回归分析

第九章  复习-方差分析及回归分析


s
n j X . j nቤተ መጻሕፍቲ ባይዱ X ij nX 0
j 1 i 1
因此得知SA的自由度是 s -1.
由(1.3),(1.6)及Xij的独立性得知
X ~ N ( , / n)
2
s j 1
(1.14)
E ( S A ) E[ n j X .2j nX 2 ]
j 1
s
(1.13) 可以计算 E( S E ) (n s) 2. SA的统计特性. 它是s个变量 n j ( X . j X )
2
的平方和,且仅有一个线性约束条件:

j 1 s j 1
s
nj

nj ( X. j X ) nj ( X. j X )
j 1 s nj
i 1

( X ij X . j ) 2 / 2 ~ 2 (n j 1)
i 1
nj
(1.11)中各项独立,根据 分布的可加性,得 s
2
S E / 2 ~ 2 ( ( n j 1))
j 1
即S E / 2 ~ 2 ( n s ),
n n j (1.12)
j
Xij - μj可以看成是随机误差. 记为Xij - μj =εij ,
则Xij 可以写为
Xij = μj +εij
εij ~N(0, ζ2),各ε
ij独立
(1.1)
i=1,2,…,nj , j=1,2,…,s
(1.1)称为单因素方差分析的数学模型.
方差分析的任务
X i1 ~ N (1 , 2 ), X i 2 ~ N (2 , 2 ),..., X is ~ N ( s , 2 ) I. 检验s个总体

第九章:回归分析-30页文档

第九章:回归分析-30页文档
Regression Analysis
Chapter 11
Regression and Correlation
Techniques that are used to establish whether there is a mathematical relationship between two or more variables, so that the behavior of one variable can be used to predict the behavior of others. Applicable to “Variables” data only.
run
axis.
b
0
X
A simple linear relationship can be described mathematically by
Y = mX + b
Simple Linear Regression
slope =
rise run
=
(6 - 3)
1
=
(10 - 4)
2
Y
rise
5
run intercept = 1
Rent
Step 1: Scatter plot
2500 2300 2100 1900 1700 1500 1300 1100 900 700 500
500 700 900 1100 1300 1500 1700 1900 2100
Size
Scatter plot suggests that there is a ‘linear’ relationship between Rent and Size
High

第九章时间序列数据的基本回归分析

第九章时间序列数据的基本回归分析

第九章时间序列数据的基本回归分析时间序列数据是指按照时间顺序排列的一系列数据观测值。

在实际应用中,时间序列数据广泛存在于经济学、金融学、气象学等领域,对于了解数据的趋势、季节性等特征具有重要意义。

时间序列数据的基本回归分析是通过建立回归模型,来研究时间序列数据中因变量与自变量之间的关系。

时间序列数据的回归分析可以分为简单回归和多元回归。

其中,简单回归是指只含有一个自变量的回归模型,多元回归是指含有多个自变量的回归模型。

下面将分别介绍这两种回归模型及其应用。

简单回归模型简单回归模型是时间序列数据回归分析中最基础的模型,其形式为:Y_t=α+βX_t+ε_t其中,Y_t表示时间为t时的因变量观测值,X_t表示时间为t时的自变量观测值,α和β分别是回归方程的截距项和斜率项,ε_t是误差项。

简单回归模型常用于分析两个变量之间的关系,并通过计算斜率项β的值来判断两个变量之间的线性相关程度。

如果β的值为正,则表示两个变量之间呈正相关关系;如果β为负,则表示两个变量之间呈负相关关系。

同时,可以通过计算误差项ε_t的方差来评估模型的拟合优度。

多元回归模型当考虑到多个自变量对因变量的影响时,可以使用多元回归模型。

其形式为:Y_t=α+β_1X_1,t+β_2X_2,t+...+β_kX_k,t+ε_t其中,Y_t表示时间为t时的因变量观测值,X_1,t,X_2,t,...,X_k,t表示时间为t时的自变量观测值,α和β_1,β_2,...,β_k分别是回归方程的截距项和各自变量的斜率项,ε_t是误差项。

多元回归模型相较于简单回归模型更能够适用于分析多个自变量与因变量之间的复杂关系。

在建模过程中,可以通过检验回归系数的显著性水平,来判断自变量对因变量的影响是否显著。

此外,还可以通过判断方程残差的波动性来评估模型的拟合优度。

时间序列数据的回归分析在实际应用中具有重要意义。

例如,经济学中常使用时间序列数据回归分析来研究GDP与通货膨胀率之间的关系;金融学中,可以利用时间序列数据回归分析来研究股票收益率与市场因素之间的关系。

第九章 相关与回归分析

第九章  相关与回归分析

第9章相关与回归分析【教学内容】相关分析与回归分析是两种既有区别又有联系的统计分析方法。

本章阐述了相关关系的概念与特点;相关关系与函数关系的区别与联系;相关关系的种类;相关关系的测定方法(直线相关系数的含义、计算方法与运用);回归分析的概念与特点;回归直线方程的求解及其精确度的评价;估计标准误差的计算。

【教学目标】1、了解相关与回归分析的概念、特点和相关分析与回归分析的区别与联系;2、掌握相关分析的定性和定量分析方法;3、掌握回归模型的拟合方法、对回归方程拟合精度的测定和评价的方法。

【教学重、难点】1、相关分析与回归分析的概念、特点、区别与联系;2、相关与回归分析的有关计算公式和应用条件。

第一节相关分析的一般问题一、相关关系的概念与特点(一)相关关系的概念在自然界与人类社会中,许多现象之间是相互联系、相互制约的,表现在数量上也存在着一定的联系。

这种数量上的联系和关系究其实质,可以概括为两种不同类型,即函数关系与相关关系。

相关关系:是指现象之间客观存在的,在数量变化上受随机因素的影响,非确定性的相互依存关系。

例如,商品销售额与流通费用率之间的关系就是一种相关关系。

(二)相关关系的特点1、相关关系表现为数量相互依存关系。

2、相关关系在数量上表现为非确定性的相互依存关系。

二、相关关系的种类1、相关关系按变量的多少,可分为单相关和复相关2、相关关系从表现形态上划分,可分为直线相关和曲线相关3、相关关系从变动方向上划分,可分为正相关和负相关4、按相关的密切程度分,可分为完全相关、不完全相关和不相关三、相关分析的内容相关分析是对客观社会经济现象间存在的相关关系进行分析研究的一种统计方法。

其目的在于对现象间所存在的依存关系及其所表现出的规律性进行数量上的推断和认识,以便为回归分析提供依据。

相关分析的内容和程序是:(1)判别现象间有无相关关系(2)判定相关关系的表现形态和密切程度第二节相关关系的判断与分析一、相关关系的一般判断(一)定性分析对现象进行定性分析,就是根据现象之间的本质联系和质的规定性,运用理论知识、专业知识、实际经验来进行判断和分析。

第九章 回归分析华中科技大学共34页

第九章 回归分析华中科技大学共34页

习题
P174
返回
谢谢!
未知参数a,b的估计
(1)取 x的n个完全不同的值 x1 , x2 , , xn作独立试验,得到样本 ( x1 ,Y1), ( x2 ,Y2 ), , ( xn ,Yn ), 于是有
Yi a bxi i , i ~ N (0, 2 ),各 i相互独立。则有 Yi ~ N (a bxi , 2 ), i 1,2, , n,Yi之间相互独立。
回归分析
一元线性回归 未知参数a,b的估计 未知参数2的估计 线性假设的显著性检验 系数b的置信区间 回归函数值的点估计和置信区间
退出 返回
一元线性回归
E(Y)和X之间的函数 (X 关)称 系为 Y关于 X的回归函数。
以下假设:
E(Y)(X)abX YE(Y) , ~N(0,2) 即YabX , ~N(0,2),称为一元线性 型回 。
(2)bˆ ~ N(b, 2 Sxx )
(3)Yˆ0

bˆx0
Y
bˆ( x0
x)
~
N(a
bx0 ,
1 n
( x0 x)2 Sxx
2)
(4)Qe 2 ~ 2(n 2)
(5)Y ,bˆ,Qe相互独立
(6)若Y0 a bx0 0与Y1,Y2, ,Yn独立,则Y0,Yˆ0,Qe相互独立
线性假设的显著性检验
(2)利用最小二乘法估计 a, b,即使得
解得
n
min [Yi (a bxi )]2 i1
n

( xi x )(Yi Y )
i1 n
( xi x)2
S xY S xx
i1
aˆ Y bˆ x
2的估计
一元回归方程各有关计 统量的一些结果:

第九章 回归分析

第九章 回归分析
第九章 一元线性回归
经济与管理学院
教学要求
• 一、教学重点 • 回归分析的基本假设;运用SPSS进行线性 回归分析 • 二、教学难点 • 回归分析的原理 • 三、教学方式 • 课堂教学+实践环节 • 四、课时数 • 12学时
第一节 相关回归分析的基本概念
西藏大学 经济与管理学 院
一、基本概念 (一)现象间的依存关系 函数关系 相关关系
第九章
经济与管理学 院
这样的方程有意义吗?
第九章
第三节 一元回归方程的检验
一、方差的分解
西藏大学 经济与管理学 院
yi y yi i i y y y
第九章
180 160 140 120 100 80 60 40 20 0 0 200000 400000 600000 800000 1000000
第九章
(二)相关关系的种类
1、直线相关与曲线相关 见图1,图2 2、 单相关与复相关 (1)单相关(一元相关) (2)复相关(多元相关)
西藏大学 经济与管理学 院
农 作 物 产 量 f 气 温, 降 雨 量, 阳 光, 施 肥 量
3、正相关与负相关
第九章
经济与管理学 院
180 160 140 120 100 80 60 40 20 0 0 200000 400000 600000 800000 1000000 1200000
第九章
二、回归分析的类别
一元回归 多元回归 线性回归 非线性回归
西藏大学 经济与管理学 院
回 归 分 析
第九章
三、一元线性回归方程的确定
西藏大学 经济与管理学 院
对于具有线性关系的两个变量,我们可以写成:
yi a b xi

第九章:回归分析

第九章:回归分析

df
SS
MS
F Significance F
1
2268777 2268777 59.91376 7.51833E-08
23 870949.5 37867.37
24
3139726
Intercept X Variable 1
Coefficients Std Error t Stat P-value 177.12082 161.0043 1.1001 0.28267 1.0651439 0.137608 7.740398 7.52E-08
Correlation Levels
r = 0.05
r = 0.50
6
4
2
0
0
6
12
6
4
2
0
0
6
12
8
6
4
2
0
0
6
12
r = 0.95
10 8 6 4 2 0 0
6
12
r = –0.95
Correlation tells us how much linear association there is between two variables.
Thus, we should not use the equation to predict rent for an apartment whose size is 500 square feet, since this value is not in the range of size values used to create the regression equation.
df
SS
MS
F Significance F
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

?
Y
..
.
. ..
?
. . .. .
Low
.. . . ?
Low
High
X
Simple Linear Regression
m = slope =
rise run
Y
rise
b = Y intercept
= the Y value
at point that
the line
intersects Y
run
0
X
0
5
10
Y = 0.5X + 1
Simple regression example
An agent for a residential real estate company in a large city would like to predict the monthly rental cost for apartments based on the size of the apartment as defined by square footage. A sample of 25 apartments in a particular residential neighborhood was selected to gather the information.
TheTahneaalnyasliysssistasrtatsrtswwitihthaa SSccaatttteerrPPloltootfoYf Yvs vXs X.
Regression and Correlation
Excel will do Regression analysis and Correlation analysis:
Is there a Relationship Between the Variables?
What Direction is the Relationship?
How Strong is the Relationship?
High
... .
Y
..
.
.. . .
Low
df
SS
MS
F Significance F
1
2268777 2268777 59.91376 7.51833E-08
23
870949.5 37867.37
24
3139726
Intercept X Variable 1
Coefficients Std Error t Stat P-value 177.12082 161.0043 1.1001 0.28267 1.0651439 0.137608 7.740398 7.52E-08
Tools>> Data analysis>> Regression (Correlation)
Simple Linear Regression
What is it?
Determines if Y
depends on X and
provides a math
equation for the
y
relationship
• “Regression” provides a functional relationship (Y=f(x)) between the variables; the function represents the “average” relationship.
• “Correlation” tells us the direction and the strength of the relationship.
Regression Analysis
Chapter 11
Regression and Correlation
Techniques that are used to establish whether there is a mathematical relationship between two or more variables, so that the behavior of one variable can be used to predict the behavior of others. Applicable to “Variables” data only.
Rent
Step 1: Scatter plot
2500 2300 2100 1900 1700 1500 1300 1100
900 700 500
500 700 900 1100 1300 1500 1700 1900 2100
Size
Scatter plot suggests that there is a ‘linear’ relationship between Rent and Size
High
X
Simple Linear Regression
Is there a Relationship Between the Variables?
What Direction is the Relationship?
How Strong is the Relationship?
High
... .
(continuous data)
x
Does Y depend on X? Which line is correct?
Examples:
Process conditions and product properties
Sales and advertising budget
4
Simple Linear Regression
axis.
b
0
X
A simple linear relationship can be described mathematically by
Y = mX + b
Simple Linear Regression
slope =
rise run
=
(6 - 3)
1
=
(10 - 4)
2
Y
rise
5
run intercept = 1
Step 2: Analysis via EXCEL
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.85
R Square
0.72
Adjusted R Square 0.71
Standard Error
194.60
Observations
25
ANOVA
Regression Residual Total
相关文档
最新文档