蒸发器计算

合集下载

蒸发器的设计计算

蒸发器的设计计算

蒸发器的设计计算蒸发器是一种用于蒸发液体的设备,广泛应用于化工、制药、食品等行业。

它通过提供适当的温度和压力条件,将液体转化为气体,并将其中的溶质分离出来。

蒸发器的设计计算是确保蒸发器能够有效地工作并达到预期性能的重要一环。

1.蒸发器的传热计算:蒸发过程是通过传热实现的,因此需要计算蒸发器的传热表面积和传热系数。

传热表面积的确定涉及到物料的传热需求以及蒸发器的设计参数,例如液体和气体的温度差,气体速度等。

传热系数的计算可以通过经验公式或者通过实验测定得到。

2.蒸发器的蒸汽消耗计算:蒸发过程需要提供适当的蒸汽量来提供传热热量,因此需要计算蒸汽的需求量。

蒸汽消耗的计算涉及到蒸发器的传热效率、物料的传热需求以及蒸汽的热量等因素。

3.蒸发器的液体供给计算:蒸发器是通过液体供给来进行蒸发的,因此需要计算液体的供给量。

液体供给的计算涉及到物料的蒸发速率、液体的流量以及液体的浓度等因素。

4.蒸发器的驱动力计算:蒸发器需要提供适当的驱动力来推动蒸发过程,因此需要计算驱动力的大小。

驱动力的计算涉及到物料的浓度差、压力差以及温度差等因素。

除了以上几个方面,蒸发器的设计还需要考虑到其他因素,例如材料的选择、操作条件的确定以及设备的尺寸等。

蒸发器的设计计算需要综合考虑这些因素,并根据实际情况进行优化。

总结起来,蒸发器的设计计算是一个复杂的过程,需要综合考虑传热、蒸汽消耗、液体供给以及驱动力等因素。

这些计算是确保蒸发器能够有效地工作并达到预期性能的关键。

通过合理的设计计算,可以提高蒸发器的效率,提高生产能力,降低能源消耗,并确保产品质量的稳定性。

蒸发器效率公式

蒸发器效率公式

蒸发器效率公式蒸发器是一种常见的热交换设备,用于将液体转化为蒸汽。

蒸发器的效率是衡量其工作性能的重要指标。

本文将介绍蒸发器效率的计算公式及其影响因素,以及如何提高蒸发器的效率。

蒸发器的效率可以通过以下公式来计算:效率 = (蒸发器传热量 / 理论最大传热量) × 100%其中,蒸发器传热量是指单位时间内从液体中传递给蒸汽的热量,理论最大传热量是指在理想条件下蒸发器可以达到的最大传热量。

蒸发器效率的计算公式可以帮助我们评估蒸发器的工作性能。

这个公式中的两个关键参数是蒸发器传热量和理论最大传热量。

蒸发器传热量取决于蒸发器的设计和工作条件,而理论最大传热量则取决于液体的热物性和蒸汽的热物性。

蒸发器效率的影响因素有很多,下面我们将重点介绍几个关键因素。

首先是蒸发器的设计。

蒸发器的设计需要考虑液体和蒸汽的流动方式、传热面积和传热方式等因素。

合理的设计可以增加液体和蒸汽之间的接触面积,提高传热效率。

其次是蒸发器的工作条件。

蒸发器的工作条件包括液体的进口温度、蒸汽的进口温度和压力等因素。

适当调整这些参数可以提高蒸发器的效率。

例如,增加液体的进口温度可以提高蒸发器的传热量。

蒸发器的热物性也会影响其效率。

热物性是指液体和蒸汽的传热性能,包括热导率、比热容和密度等参数。

不同的液体和蒸汽具有不同的热物性,因此蒸发器的效率也会有所差异。

提高蒸发器效率的方法有很多。

首先,可以优化蒸发器的设计,增加传热面积和接触面积,提高传热效率。

其次,可以调整蒸发器的工作条件,如增加液体的进口温度和蒸汽的进口压力,以提高传热量。

此外,选择具有良好热物性的液体和蒸汽也能提高蒸发器的效率。

蒸发器效率是评估蒸发器工作性能的重要指标。

通过计算蒸发器的效率,可以评估其传热性能。

蒸发器效率的计算公式包括蒸发器传热量和理论最大传热量两个关键参数。

蒸发器效率的影响因素包括蒸发器的设计、工作条件和热物性等。

为了提高蒸发器的效率,可以优化蒸发器的设计,调整工作条件,并选择具有良好热物性的液体和蒸汽。

各种蒸发器冷凝器计算

各种蒸发器冷凝器计算

各种蒸发器冷凝器计算蒸发器和冷凝器是热力工程中常见的设备,用于蒸发和冷凝流体。

本文将介绍各种蒸发器和冷凝器的计算方法。

一、蒸发器蒸发器是将液体转化为蒸汽的设备。

根据蒸发器的类型有多种不同的计算方法。

1.蒸发器内换热面积计算蒸发器的内换热面积可以通过以下公式计算:A=Q/(U×ΔTm)其中,A为内换热面积,Q为传热量,U为换热系数,ΔTm为平均温差。

2.各种蒸发器的计算常见蒸发器种类有多效蒸发器、喷雾式蒸发器、蒸镜式蒸发器等。

这些蒸发器的计算方法略有不同。

多效蒸发器的换热器内换热面积计算可以使用以下公式:A = Q / (Ud × ΔTmd)其中,A为内换热面积,Q为传热量,Ud为蒸气侧的换热系数,ΔTmd为蒸汽的平均温差。

喷雾式蒸发器的蒸发速率计算可以使用以下公式:W = (G × H) / (λ × (hlg - hgf))量蒸发潜热,hlg为蒸汽的焓值,hgf为液体的焓值。

蒸镜式蒸发器的换热面积和蒸发速率计算方法类似多效蒸发器。

二、冷凝器冷凝器是将蒸汽或气体转变为液体的设备。

根据冷凝器的类型有多种不同的计算方法。

1.冷凝器的内换热面积计算冷凝器的内换热面积可以通过以下公式计算:A=Q/(U×ΔTm)其中,A为内换热面积,Q为传热量,U为换热系数,ΔTm为平均温差。

2.各种冷凝器的计算常见冷凝器种类有冷却管束冷凝器、冷凝器冷凝管束冷凝器等。

这些冷凝器的计算方法略有不同。

冷却管束冷凝器的换热面积计算可以使用以下公式:A = Q / (Ud × ΔTmd)其中,A为内换热面积,Q为传热量,Ud为冷却侧的换热系数,ΔTmd为冷却水的平均温差。

冷凝器冷凝管束冷凝器的冷凝速率计算可以使用以下公式:W = (G × H) / (λ × (hgf - hfg))量冷凝潜热,hgf为蒸汽的焓值,hfg为液体的焓值。

以上就是各种蒸发器和冷凝器的计算方法。

(完全版本)蒸发器热量和面积的计算法则

(完全版本)蒸发器热量和面积的计算法则

(完全版本)蒸发器热量和面积的计算法则1. 介绍本文档提供了一种用于计算蒸发器热量和面积的方法,该方法可以帮助用户根据具体需求设计蒸发器,以确保其高效、稳定地运行。

2. 热量计算法则2.1 基本原理蒸发器的热量主要由输入热量、损失热量和有效热量组成。

输入热量是指蒸发器从外界接收的热量,损失热量是指在热量传递过程中产生的热量损失,有效热量是指实际用于蒸发器工作的热量。

2.2 计算公式蒸发器的热量计算公式如下:\[ Q = Q_{\text{输入}} - Q_{\text{损失}} \]\[ Q_{\text{有效}} = Q_{\text{输入}} - Q_{\text{损失}} \]其中:- \( Q \) 表示蒸发器的热量(单位:千瓦时,kWh);- \( Q_{\text{输入}} \) 表示蒸发器的输入热量(单位:千瓦时,kWh);- \( Q_{\text{损失}} \) 表示蒸发器的损失热量(单位:千瓦时,kWh);- \( Q_{\text{有效}} \) 表示蒸发器的有效热量(单位:千瓦时,kWh)。

3. 面积计算法则3.1 基本原理蒸发器的面积主要由传热面积和辅助面积组成。

传热面积是指蒸发器中进行热量传递的面积,辅助面积是指用于支持蒸发器运行的面积。

3.2 计算公式蒸发器的面积计算公式如下:\[ A = A_{\text{传热}} + A_{\text{辅助}} \]其中:- \( A \) 表示蒸发器的总面积(单位:平方米,m²);- \( A_{\text{传热}} \) 表示蒸发器的传热面积(单位:平方米,m²);- \( A_{\text{辅助}} \) 表示蒸发器的辅助面积(单位:平方米,m²)。

4. 应用示例以下是一个简单的应用示例,用于计算一个特定蒸发器的热量和面积。

4.1 假设条件- 输入热量:1000 kWh;- 损失热量:200 kWh;- 传热面积:50 m²;- 辅助面积:10 m²。

蒸发器的设计计算

蒸发器的设计计算

蒸发器的设计计算蒸发器设计计算已知条件:工质为R22,制冷量为3kW,蒸发温度为7℃。

进口空气的干球温度为21℃,湿球温度为15.5℃,相对湿度为56.34%;出口空气的干球温度为13℃,湿球温度为11.1℃,相对湿度为80%。

当地大气压力为Pa。

1.蒸发器结构参数选择选择φ10mm×0.7mm紫铜管,厚度为0.2mm的铝套片作为翅片,肋片间距为2.5mm,管排方式采用正三角排列,垂直于气流方向的管间距为25mm,沿气流方向的管排数为4,迎面风速为3m/s。

2.计算几何参数翅片为平直套片,考虑套片后的管外径为10.4mm,沿气流方向的管间距为21.65mm,沿气流方向套片的长度为86.6mm。

设计结果为每米管长翅片表面积为0.3651m²/m。

每米管长翅片间管子表面积为0.03m²/m。

每米管长总外表面积为0.3951m²/m。

每米管长管内面积为0.027m²/m。

每米管长的外表面积为0.m²/m。

肋化系数为14.63.3.计算空气侧的干表面传热系数1)空气的物性空气的平均温度为17℃。

空气在下17℃时的物性参数为:密度为1.215kg/m³,比热容为1005kJ/(kg·K)。

2)空气侧传热系数根据空气侧传热系数的计算公式,计算得到空气侧的干表面传热系数为12.5W/(m²·K)。

根据给定的数据,蒸发器的尺寸为252.5mm×1mm×10.4mm。

空气在最窄截面处的流速为5.58m/s,干表面传热系数可以用小型制冷装置设计指导式(4-8)计算得到,计算结果为68.2W/m2·K。

在确定空气在蒸发器内的变化过程时,根据进出口温度和焓湿图,可以得到空气的进出口状态点1和点2的参数,连接这两个点并延长与饱和气线相交的点w的参数为hw25kJ/kg。

dw6.6g/kg。

tw8℃。

各种蒸发器冷凝器计算

各种蒸发器冷凝器计算

各种蒸发器冷凝器计算蒸发器和冷凝器是蒸发冷凝循环系统的两个重要组成部分。

蒸发器用于将液体转化为蒸汽,冷凝器则将蒸汽重新转化为液体。

在工业生产或空调系统中,蒸发器和冷凝器的设计和计算十分重要,因为它们的效率和性能直接影响到系统的运行效果。

下面将对各种蒸发器和冷凝器的计算进行详细介绍。

一、蒸发器的计算蒸发器的主要作用是通过向环境中提供热量,将液体转变为蒸汽。

在计算蒸发器时,需要考虑以下参数:1.蒸发器的热负荷:即单位时间内从蒸发器中蒸发的液体的热量。

热负荷可以通过以下公式计算:热负荷=蒸发流量×蒸发潜热2.蒸发器的换热面积:蒸发器的换热面积决定了热量的传递效率。

一般而言,换热面积越大,热量传递效率越高。

换热面积的计算常采用多种方法,如LMTD法和效能法。

3. 蒸发器的传热系数:传热系数是指单位面积上的热量传递速率。

蒸发器的传热系数一般由蒸发器的材料和工况条件决定。

常见的计算方法有Nu数法和Kern法。

4.蒸发器的风速:蒸发器通过风速来增加传热效果。

风速的选择应根据具体的应用环境和蒸发器的性能来确定。

二、冷凝器的计算冷凝器的主要作用是将蒸汽重新冷凝为液体。

在计算冷凝器时,需要考虑以下参数:1.冷凝器的冷负荷:即单位时间内从冷凝器中冷凝的蒸汽的热量。

冷负荷可以通过以下公式计算:冷负荷=冷凝流量×冷凝潜热2.冷凝器的换热面积:冷凝器的换热面积决定了热量的传递效率。

一般而言,换热面积越大,热量传递效率越高。

换热面积的计算方法与蒸发器类似。

3. 冷凝器的传热系数:传热系数是指单位面积上的热量传递速率。

冷凝器的传热系数一般由冷凝器的材料和工况条件决定。

常见的计算方法也是采用Nu数法和Kern法。

4.冷凝器的冷却水流量和温差:冷凝器通过冷却水来吸收蒸汽的热量。

冷却水的流量和温差会影响冷凝器的性能和效率。

一般而言,冷却水的流量越大,温差越小,冷凝器的工作效果越好。

综上所述,不同类型的蒸发器和冷凝器在计算时,需要考虑的参数有所差异。

汽化蒸发器蒸发计算方式

汽化蒸发器蒸发计算方式
本文档介绍了汽化蒸发器蒸发计算的方法。

汽化蒸发器是一种
用于汽化液体的热传递设备,通常用于工业生产过程中的蒸发操作。

蒸发计算方法
蒸发计算方法通常基于质量平衡和能量平衡原理。

下面是一种
常用的蒸发计算方法:
1. 计算输入参数:首先,确定蒸发操作的输入参数。

这些参数
包括初始液体的质量和温度,加热介质的温度和流量,以及蒸发器
的几何参数等。

2. 计算蒸发量:根据质量平衡原理,计算蒸发器中液体的蒸发量。

蒸发量可以根据以下公式计算:
蒸发量 = 初始液体质量 - 终止液体质量
其中,初始液体质量是指进入蒸发器的液体的质量,终止液体
质量是指从蒸发器中排出的液体的质量。

这两个参数可以通过实际
测量或估算获得。

3. 计算热量传递:根据能量平衡原理,计算蒸发器中的热量传递。

热量传递可以根据以下公式计算:
热量传递 = 质量流量 * 热容 * 温度差
其中,质量流量是指加热介质的质量流量,热容是指液体的比
热容,温度差是指蒸发器中液体的平均温度和加热介质的温度之差。

4. 计算蒸发率:最后,根据蒸发量和热量传递,计算蒸发器的
蒸发率。

蒸发率可以根据以下公式计算:
蒸发率 = 蒸发量 / 热量传递
蒸发率可以用来评估蒸发器的性能和效率。

总结
本文介绍了一种常用的汽化蒸发器蒸发计算方法。

使用质量平衡和能量平衡原理,可以计算出蒸发器中液体的蒸发量、热量传递和蒸发率,从而评估蒸发器的性能。

这种计算方法可以帮助工程师和研究人员优化蒸发器的设计和运行。

蒸发器计算

必须满足校核值
SRS-S-163 1.00000 Qo= Ni= mf Gk= to= tr= tg= t1= t2= t2= to= △tm= △t= 137.20000 45.60000 3268.00000 5881.00000 2.00000 5.00000 5.00000 12.00000 7.00000 5.0-15 2.00000 7.21348 5.00000
输入 输入 输入 输入 137.20000 qf= F= Gk= Gk= 9.00000 15.24444 0.00656 23.59866 9.5-11
三、蒸发器基本尺寸参数 A= 0.01700 正三角形 0.01270 0.01170 0.03988 1 244 1.9820 4 61 输入 输入 输入 输入
16.7689 1.0-1.4
1.150065
干式蒸发器换热参数计算
一、计算输入参数 压缩机型号 压缩机数量 制冷量KW 压缩机输入功率KW 压缩机标准工况下质量流量kg/h 压缩机排气量kg/h 蒸发温度℃ 过热度℃ 过冷度℃ 冷冻水进口温度℃ 冷冻水出口温度℃ 冷冻水出口温度范围℃ 蒸发温度℃ 传热温差℃ 冷冻水进出口温差℃ 蒸发器制冷量KW 单位面积热负荷KW/m2 蒸发器传热面积m2 冷冻水量kg/s 冷冻水量m3/h 换热器换热管间距m 排列方式 换热管管径m 换热管内径m 单根换热管每米管长换热面积m2/m 蒸发器组数 每组蒸发器换热管数 每组蒸发器换热管长m 每组蒸发器换热管流程 每组蒸发器每流程换热管数 每组蒸发器水侧通流面积m2 每组蒸发换热面积m2 蒸发器换热面积m2 冷却水流速m/s 摩擦阻力系数 水阻力KPa D= D1= Fd= 二、换热器物理参数计算 N= N1= L= N3= N4= Fy= Fz= F= ω= f= △Pk= 100 19.28532 19.28532

(详尽版)蒸发器的热量和面积计算公式

(详尽版)蒸发器的热量和面积计算公式
1. 引言
本文档旨在提供关于蒸发器热量和面积计算的详细公式和方法。

蒸发器是一种常见的热交换设备,用于将液体转化为气体,通常用
于工业生产中的蒸发过程。

正确计算蒸发器所需的热量和面积对于
设备设计和操作至关重要。

2. 蒸发器热量计算公式
蒸发器的热量计算涉及液体的蒸发过程,其中涉及到以下参数:
- 初始液体温度(T1)
- 终止液体温度(T2)
- 需要蒸发的液体质量(m)
- 液体的蒸发潜热(L)
蒸发器的热量计算公式如下:
Q = m * L
其中,Q表示蒸发器所需的热量。

3. 蒸发器面积计算公式
蒸发器的面积计算涉及到传热过程,其中涉及到以下参数:
- 热传导率(k)
- 温度差(ΔT)
- 热阻(R)
蒸发器的面积计算公式如下:
A = ΔT / (k * R)
其中,A表示蒸发器的面积。

4. 其他考虑因素
蒸发器的热量和面积计算公式提供了基本的计算方法,但在实际应用中,还需要考虑其他因素,如流体流动情况、传热系数、壁面阻力等。

这些因素会对蒸发器的设计和性能产生影响,需要根据具体情况进行综合考虑和调整。

5. 结论
本文档介绍了蒸发器热量和面积计算的详细公式和方法。

在设计和操作蒸发器时,正确计算所需的热量和面积对于设备的正常运行和效率至关重要。

然而,在实际应用中,还需要综合考虑其他因素,以确保蒸发器的性能和稳定性。

以上所述仅为计算公式和基本方法,具体应用时请根据实际情况进行调整和验证。

制冷技术:蒸发器的选择计算

蒸发器的选择计算一、蒸发器选择计算的方法蒸发器的选择计算首先选择蒸发器的形式,然后计算所需的传热面积、被冷却介质的流量和流动阻力。

对于冷却液体的蒸发器,其计算方法与水冷式冷凝器相同。

1、蒸发器型式的选择开式冷水系统采用冷水箱式蒸发器(如制冰)。

冷藏库中根据各类冷间的要求不同,采用冷却排管和冷风机。

1.蒸发器传热面积的计算 蒸发器传热面积F 的计算式为F =Fq Qt K Q 00=∆⋅(m 2) (6-1) 式中 Q 0——制冷装置的制冷量,即蒸发器的负荷。

它等于制冷量与制冷装置的冷量损失之和(kW );K ——蒸发器的传热系数(W /m 2·℃); t ∆——平均传热温差(℃);F q ——蒸发器的单位面积热负荷,即热流密度(W /m 2); 平均传热温差:t ∆=)()(ln ln 020121min max min max t t t t t t t t t t ---=∆∆∆-∆ (6-2)t 1——被冷却介质进入蒸发器的温度(℃); t 2——被冷却介质出蒸发器的温度(℃); t 0——蒸发温度(℃);蒸发器选型计算时,蒸发器的传热系数K 按经验选取,对排管有相应的计算公式。

对于冷却液体的蒸发器,蒸发温度一般比被冷却水的出口温度低3~5℃。

被冷却液体的进出口温差取5℃左右,这样,平均传热温差为5~6℃。

对于冷却空气的蒸发器,由于空气侧的放热系数很低而使传热系数很低,为了设备的初投资,选取较大的平均传热温差,一般蒸发温度比空气的出口温度低10℃左右,平均传热温差为15℃左右。

各种蒸发器的传热系数K 值等参数见表6-7。

3、 被冷却介质(水或空气)流量的计算与冷凝器中冷却介质流量的计算方法相同,不再重复。

蒸发器的传热系数和单位面积热负荷 表6-7二、冷风机选型计算(一)根据冷间冷却设备负荷,按公式(6-1)计算所需冷风机的冷却面积; 注意△t 取冷间温度与制冷剂温度差。

传热系数K 见表6-8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D1=
0.01170
Fd=
0.03988
二、换热器物理参数计算
蒸发器组数
N=
1
每组蒸发器换热管数
N1=
244
每组蒸发器换热管长m
L=
1.9820
每组蒸发器换热管流程
N3=
4
每组蒸发器每流程换热管数
N4=
61
每组蒸发器水侧通流面积m2
Fy=
每组蒸发换热面积m2 蒸发器换热面积m2 冷却水流速m/s 摩擦阻力系数 水阻力KPa
137.20000
单位面积热负荷KW/m2
qf=
9.00000
蒸发器传热面积m2
F=
15.24444
冷冻水量kg/s
Gk=
0.00656
冷冻水量m3/h
Gk=
23.59866
三、蒸发器基本尺寸参数
换热器换热管间距m
A=
0.01700
排列方式
正三角形
换热管管径m
D=
0.01270
换 单热 根管 换内 热径 管每m 米管长换热面积 m2/m
Fz= F= ω= f= △Pk=
19.28532 19.28532
输入 输入 输入 输入 输入 输入
9.5-11
输入 输入 输入 输入
必须满足校核 值
16.7689
1.0-1.4
1.150065
100
tr=
5.00000
过冷度℃
tg=
5.00000
冷冻水进口温度℃
t1=
12.00000
冷冻水出口温度℃
t2=
7.00000
冷冻水出口温度范围℃
t2=
5.0-15
蒸发温度℃
to=
2.00000
传热温差℃
△tm=
7.21348
冷冻水进出口温差℃
△t=
5.00000
二、蒸发器热力计算求解
蒸发器制冷量KW
Qk=
干式蒸发器换热参数计算
一、计算输入参数
压缩机型号
SRS-S-163
பைடு நூலகம்
压缩机数量
1.00000
制冷量KW
Qo=
137.20000
压缩机输入功率KW
Ni=
45.60000
压缩机标准工况下质量流量kg/h
mf
3268.00000
压缩机排气量kg/h
Gk=
5881.00000
蒸发温度℃
to=
2.00000
过热度℃
相关文档
最新文档