《模式识别》线性分类器设计实验报告
哈尔滨工程大学-模式识别实验报告模板

实验报告实验课程名称:模式识别姓名:班级: 20120811 学号:注:1、每个实验中各项成绩按照5分制评定,实验成绩为各项总和2、平均成绩取各项实验平均成绩3、折合成绩按照教学大纲要求的百分比进行折合2015年 4月实验1 图像的贝叶斯分类1.1 实验目的将模式识别方法与图像处理技术相结合,掌握利用最小错分概率贝叶斯分类器进行图像分类的基本方法,通过实验加深对基本概念的理解。
1.2 实验仪器设备及软件HP D538、MATLAB1.3 实验原理1.3.1基本原理阈值化分割算法是计算机视觉中的常用算法,对灰度图象的阈值分割就是先确定一个处于图像灰度取值范围内的灰度阈值,然后将图像中每个像素的灰度值与这个阈值相比较。
并根据比较的结果将对应的像素划分为两类,灰度值大于阈值的像素划分为一类,小于阈值的划分为另一类,等于阈值的可任意划分到两类中的任何一类。
此过程中,确定阈值是分割的关键。
对一般的图像进行分割处理通常对图像的灰度分布有一定的假设,或者说是基于一定的图像模型。
最常用的模型可描述如下:假设图像由具有单峰灰度分布的目标和背景组成,处于目标和背景内部相邻像素间的灰度值是高度相关的,但处于目标和背景交界处两边的像素灰度值有较大差别,此时,图像的灰度直方图基本上可看作是由分别对应于目标和背景的两个单峰直方图混合构成。
而且这两个分布应大小接近,且均值足够远,方差足够小,这种情况下直方图呈现较明显的双峰。
类似地,如果图像中包含多个单峰灰度目标,则直方图可能呈现较明显的多峰。
上述图像模型只是理想情况,有时图像中目标和背景的灰度值有部分交错。
这时如用全局阈值进行分割必然会产生一定的误差。
分割误差包括将目标分为背景和将背景分为目标两大类。
实际应用中应尽量减小错误分割的概率,常用的一种方法为选取最优阈值。
这里所谓的最优阈值,就是指能使误分割概率最小的分割阈值。
图像的直方图可以看成是对灰度值概率分布密度函数的一种近似。
模式识别上机实验报告

实验一、二维随机数的产生1、实验目的(1) 学习采用Matlab 程序产生正态分布的二维随机数 (2) 掌握估计类均值向量和协方差矩阵的方法(3) 掌握类间离散度矩阵、类内离散度矩阵的计算方法(4) 熟悉matlab 中运用mvnrnd 函数产生二维随机数等matlab 语言2、实验原理多元正态分布概率密度函数:11()()2/21/21()(2)||T X X d p X eμμπ---∑-=∑其中:μ是d 维均值向量:Td E X μμμμ=={}[,,...,]12Σ是d ×d 维协方差矩阵:TE X X μμ∑=--[()()](1)估计类均值向量和协方差矩阵的估计 各类均值向量1ii X im X N ω∈=∑ 各类协方差矩阵1()()iTi iiX iX X N ωμμ∈∑=--∑(2)类间离散度矩阵、类内离散度矩阵的计算类内离散度矩阵:()()iTi iiX S X m X m ω∈=--∑, i=1,2总的类内离散度矩阵:12W S S S =+类间离散度矩阵:1212()()Tb S m m m m =--3、实验内容及要求产生两类均值向量、协方差矩阵如下的样本数据,每类样本各50个。
1[2,2]μ=--,11001⎡⎤∑=⎢⎥⎣⎦,2[2,2]μ=,21004⎡⎤∑=⎢⎥⎣⎦ (1)画出样本的分布图;(2) 编写程序,估计类均值向量和协方差矩阵;(3) 编写程序,计算类间离散度矩阵、类内离散度矩阵; (4)每类样本数增加到500个,重复(1)-(3)4、实验结果(1)、样本的分布图(2)、类均值向量、类协方差矩阵根据matlab 程序得出的类均值向量为:N=50 : m1=[-1.7160 -2.0374] m2=[2.1485 1.7678] N=500: m1=[-2.0379 -2.0352] m2=[2.0428 2.1270] 根据matlab 程序得出的类协方差矩阵为:N=50: ]0628.11354.01354.06428.1[1=∑ ∑--2]5687.40624.00624.08800.0[N=500:∑--1]0344.10162.00162.09187.0[∑2]9038.30211.00211.09939.0[(3)、类间离散度矩阵、类内离散度矩阵根据matlab 程序得出的类间离散度矩阵为:N=50: ]4828.147068.147068.149343.14[=bS N=500: ]3233.179843.169843.166519.16[b =S根据matlab 程序得出的类内离散度矩阵为:N=50:]0703.533088.73088.71052.78[1=S ]7397.2253966.13966.18975.42[2--=S ]8100.2789123.59123.50026.121[=W SN=500: ]5964.5167490.87490.86203.458[1--=S ]8.19438420.78420.70178.496[2=S ]4.24609071.09071.06381.954[--=W S5、结论由mvnrnd 函数产生的结果是一个N*D 的一个矩阵,在本实验中D 是2,N 是50和500.根据实验数据可以看出,当样本容量变多的时候,两个变量的总体误差变小,观测变量各个取值之间的差异程度减小。
模式识别--第二讲 线性分类器

第 1 页第二讲 线性分类器一、 判别函数1、 决策论方法在模式识别中,如果根据模式特征信息,按照决策论的思路,以一定的数量规则来采取不同的分类决策,将待识别的模式划分到不同的类别中去,就称为模式识别的决策论方法。
在决策论方法中,特征空间被划分成不同的区域,每个区域对应一个模式类,称为决策区域(Decision Region )。
当我们判定待识别的模式位于某个决策区域时,就判决它可以划归到对应的类别中。
图1 决策区域需要注意的是:决策区域包含模式类中样本的分布区域,但不等于模式类的真实分布范围。
2、 判别函数如果特征空间中的决策区域边界(Decision Boundary )可以用一组方程0)( x i G来表示,则将一个模式对应的特征向量x 代入边界方程中的)(x i G ,确定其正负符号,就可以确定该模式位于决策区域边界的哪一边,从而可以判别其应当属于的类别,)(x i G 称为判别函数(Discriminant Function )。
判别函数的形式可以是线性的(Linear )或非线性(Non-linear)的。
第 2 页例如图2就显示了一个非线性判别函数,当G (x )>0时,可判别模式x ∈ω1;当G (x )<0时,可判别x ∈ω2。
图2 非线性判别函数非线性判别函数的处理比较复杂,如果决策区域边界可以用线性方程来表达,则决策区域可以用超平面(Hyperplane )来划分,无论在分类器的学习还是分类决策时都比较方便。
例如图3中的特征空间可以用两个线性判别函数来进行分类决策:当G 21(x )>0且G 13(x )>0时,x ∈ω2; 当G 13(x )<0且G 21(x )<0时,x ∈ω3; 当G 21(x )<0 且 G 13(x )>0时,x ∈ω1;当G 21(x )>0且G 13(x )<0时,x 所属类别无法判别。
《模式识别》实验报告-贝叶斯分类

《模式识别》实验报告---最小错误率贝叶斯决策分类一、实验原理对于具有多个特征参数的样本(如本实验的iris 数据样本有4d =个参数),其正态分布的概率密度函数可定义为112211()exp ()()2(2)T d p π-⎧⎫=--∑-⎨⎬⎩⎭∑x x μx μ 式中,12,,,d x x x ⎡⎤⎣⎦=x 是d 维行向量,12,,,d μμμ⎡⎤⎣⎦=μ是d 维行向量,∑是d d ⨯维协方差矩阵,1-∑是∑的逆矩阵,∑是∑的行列式。
本实验我们采用最小错误率的贝叶斯决策,使用如下的函数作为判别函数()(|)(),1,2,3i i i g p P i ωω==x x (3个类别)其中()i P ω为类别i ω发生的先验概率,(|)i p ωx 为类别i ω的类条件概率密度函数。
由其判决规则,如果使()()i j g g >x x 对一切j i ≠成立,则将x 归为i ω类。
我们根据假设:类别i ω,i=1,2,……,N 的类条件概率密度函数(|)i p ωx ,i=1,2,……,N 服从正态分布,即有(|)i p ωx ~(,)i i N ∑μ,那么上式就可以写为1122()1()exp ()(),1,2,32(2)T i i dP g i ωπ-⎧⎫=-∑=⎨⎬⎩⎭∑x x -μx -μ对上式右端取对数,可得111()()()ln ()ln ln(2)222T i i i i dg P ωπ-=-∑+-∑-i i x x -μx -μ上式中的第二项与样本所属类别无关,将其从判别函数中消去,不会改变分类结果。
则判别函数()i g x 可简化为以下形式111()()()ln ()ln 22T i i i i g P ω-=-∑+-∑i i x x -μx -μ二、实验步骤(1)从Iris.txt 文件中读取估计参数用的样本,每一类样本抽出前40个,分别求其均值,公式如下11,2,3ii iii N ωωω∈==∑x μxclear% 原始数据导入iris = load('C:\MATLAB7\work\模式识别\iris.txt'); N=40;%每组取N=40个样本%求第一类样本均值 for i = 1:N for j = 1:4w1(i,j) = iris(i,j+1); end endsumx1 = sum(w1,1); for i=1:4meanx1(1,i)=sumx1(1,i)/N; end%求第二类样本均值 for i = 1:N for j = 1:4 w2(i,j) = iris(i+50,j+1);end endsumx2 = sum(w2,1); for i=1:4meanx2(1,i)=sumx2(1,i)/N; end%求第三类样本均值 for i = 1:N for j = 1:4w3(i,j) = iris(i+100,j+1); end endsumx3 = sum(w3,1); for i=1:4meanx3(1,i)=sumx3(1,i)/N; end(2)求每一类样本的协方差矩阵、逆矩阵1i -∑以及协方差矩阵的行列式i ∑, 协方差矩阵计算公式如下11()(),1,2,3,41i ii N i jklj j lk k l i x x j k N ωωσμμ==--=-∑其中lj x 代表i ω类的第l 个样本,第j 个特征值;ij ωμ代表i ω类的i N 个样品第j 个特征的平均值lk x 代表i ω类的第l 个样品,第k 个特征值;iw k μ代表i ω类的i N 个样品第k 个特征的平均值。
电子科技大学模式识别作业ANN-BP分类器设计

ANN-BP分类器设计(控制工程XXXXXXXXXX)1、问题表述对“data3.m”数据,用其中一半的数据采用ANN-BP算法设计分类器,另一半数据用于测试分类器性能。
二、方法描述神经网络(Neural Networks, NN)是由大量的、简单的处理单元(称为神经元)广泛地互相连接而形成的复杂网络系统,它反映了人脑功能的许多基本特征,是一个高度复杂的非线性动力学系统。
神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学习能力,特别适合处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题。
BP 神经网络的标准学习过程:神经网络在外界输入样本的刺激下,不断改变网络的连接权值,以使网络的输出不断地接近期望的输出。
信号正向传播;若输出层的实际输出与期望的输出(教师信号)不符时,转入反向传播阶段;误差反传,误差以某种形式在各层表示——修正各层单元的权值;依次循环,直到网络输出的误差减少到可接受的程度或者进行到预先设定的学习次数为止。
BP神经网络的标准学习步骤:第一步,网络初始化给各连接权值分别赋一个区间(-1,1)内的随机数,设定误差函数e,给定计算精度值和最大学习次数M。
第二步,随机选取第k个输入样本及对应期望输出。
第三步,计算隐含层各神经元的输入和输出。
第四步,利用网络期望输出和实际输出,计算误差函数对输出层的各神经元的偏导数。
第五步,利用隐含层到输出层的连接权值、输出层的偏导数和隐含层的输出计算误差函数对隐含层各神经元的偏导数。
第六步,利用输出层各神经元的偏导数和隐含层各神经元的输出来修正连接权值。
第七步,利用隐含层各神经元的偏导数和输入层各神经元的输入修正连接权。
第八步,计算全局误差。
第九步,判断网络误差是否满足要求。
当误差达到预设精度或学习次数大于设定的最大次数,则结束算法。
否则,选取下一个学习样本及对应的期望输出,返回到第三步,进入下一轮学习。
BP神经网络的特点:非线性映射能力:能学习和存贮大量输入-输出模式映射关系,而无需事先了解描述这种映射关系的数学方程。
模式识别试验(基于Fisher准则线性分类器设计)

模式识别实验(三)一、实验名称基于Fisher准则线性分类器设计二、实验目的:本实验旨在让同学进一步了解分类器的设计概念,能够根据自己的设计对线性分类器有更深刻地认识,理解Fisher准则方法确定最佳线性分界面方法的原理,以及Lagrange乘子求解的原理。
三、实验原理:线性判别函数的一般形式可表示成其中根据Fisher选择投影方向W的原则,即使原样本向量在该方向上的投影能兼顾类间分布尽可能分开,类内样本投影尽可能密集的要求,用以评价投影方向W的函数为:上面的公式是使用Fisher准则求最佳法线向量的解,该式比较重要。
另外,该式这种形式的运算,我们称为线性变换,其中(m1-m2)式一个向量,Sw-1是Sw的逆矩阵,如(m1-m2)是d维,Sw和Sw-1都是d×d维,得到的也是一个d维的向量。
向量就是使Fisher准则函数达极大值的解,也就是按Fisher准则将d维X 空间投影到一维Y空间的最佳投影方向,该向量的各分量值是对原d维特征向量求加权和的权值。
以上讨论了线性判别函数加权向量W 的确定方法,并讨论了使Fisher 准则函数极大的d 维向量 的计算方法,但是判别函数中的另一项w0尚未确定,一般可采用以下几种方法确定w0如或者或当与已知时可用……当W 0确定之后,则可按以下规则分类,使用Fisher 准则方法确定最佳线性分界面的方法是一个著名的方法,尽管提出该方法的时间比较早,仍见有人使用。
四、实验内容:已知有两类数据1ω和2ω二者的概率已知=0.6,=0.4。
1ω中数据点的坐标对应一一如下:数据:x =0.2331 1.5207 0.6499 0.7757 1.0524 1.19740.2908 0.2518 0.6682 0.5622 0.9023 0.1333-0.5431 0.9407 -0.2126 0.0507 -0.0810 0.73150.3345 1.0650 -0.0247 0.1043 0.3122 0.6655 0.5838 1.1653 1.2653 0.8137 -0.3399 0.5152 0.7226 -0.2015 0.4070 -0.1717 -1.0573 -0.2099 y =2.3385 2.1946 1.6730 1.6365 1.7844 2.0155 2.0681 2.1213 2.4797 1.5118 1.9692 1.83401.87042.2948 1.7714 2.3939 1.5648 1.93292.2027 2.4568 1.7523 1.6991 2.4883 1.7259 2.0466 2.0226 2.3757 1.7987 2.0828 2.0798 1.9449 2.3801 2.2373 2.1614 1.9235 2.2604 z =0.5338 0.8514 1.0831 0.4164 1.1176 0.55360.6071 0.4439 0.4928 0.5901 1.0927 1.07561.0072 0.4272 0.4353 0.9869 0.4841 1.0992 1.0299 0.7127 1.0124 0.4576 0.8544 1.1275 0.7705 0.4129 1.0085 0.7676 0.8418 0.8784 0.9751 0.7840 0.4158 1.0315 0.7533 0.9548 数据点的对应的三维坐标为2x2 =1.4010 1.23012.0814 1.1655 1.3740 1.1829 1.7632 1.9739 2.4152 2.5890 2.8472 1.9539 1.2500 1.2864 1.2614 2.0071 2.1831 1.79091.3322 1.1466 1.7087 1.59202.9353 1.46642.9313 1.8349 1.8340 2.5096 2.7198 2.3148 2.0353 2.6030 1.2327 2.1465 1.5673 2.9414y2 =1.0298 0.9611 0.9154 1.4901 0.8200 0.93991.1405 1.0678 0.8050 1.2889 1.4601 1.43340.7091 1.2942 1.3744 0.9387 1.2266 1.18330.8798 0.5592 0.5150 0.9983 0.9120 0.71261.2833 1.1029 1.2680 0.7140 1.2446 1.33921.1808 0.5503 1.4708 1.1435 0.7679 1.1288z2 =0.6210 1.3656 0.5498 0.6708 0.8932 1.43420.9508 0.7324 0.5784 1.4943 1.0915 0.76441.2159 1.3049 1.1408 0.9398 0.6197 0.66031.3928 1.4084 0.6909 0.8400 0.5381 1.37290.7731 0.7319 1.3439 0.8142 0.9586 0.73790.7548 0.7393 0.6739 0.8651 1.3699 1.1458数据的样本点分布如下图:0.511.522.5五、实验要求:1. 可以选择二维的数据,或者选择三维的数据作为样本。
模式识别:线性分类器

模式识别:线性分类器一、实验目的和要求目的:了解线性分类器,对分类器的参数做一定的了解,理解参数设置对算法的影响。
要求:1. 产生两类样本2. 采用线性分类器生成出两类样本的分类面3. 对比线性分类器的性能,对比参数设置的结果二、实验环境、内容和方法环境:windows 7,matlab R2010a内容:通过实验,对生成的实验数据样本进行分类。
三、实验基本原理感知器基本原理:1.感知器的学习过程是不断改变权向量的输入,更新结构中的可变参数,最后实现在有限次迭代之后的收敛。
感知器的基本模型结构如图1所示:图1 感知器基本模型其中,X输入,Xi表示的是第i个输入;Y表示输出;W表示权向量;w0是阈值,f是一个阶跃函数。
感知器实现样本的线性分类主要过程是:特征向量的元素x1,x2,……,xk是网络的输入元素,每一个元素与相应的权wi相乘。
,乘积相加后再与阈值w0相加,结果通过f函数执行激活功能,f为系统的激活函数。
因为f是一个阶跃函数,故当自变量小于0时,f= -1;当自变量大于0时,f= 1。
这样,根据输出信号Y,把相应的特征向量分到为两类。
然而,权向量w并不是一个已知的参数,故感知器算法很重要的一个步骤即是寻找一个合理的决策超平面。
故设这个超平面为w,满足:(1)引入一个代价函数,定义为:(2)其中,Y是权向量w定义的超平面错误分类的训练向量的子集。
变量定义为:当时,= -1;当时,= +1。
显然,J(w)≥0。
当代价函数J(w)达到最小值0时,所有的训练向量分类都全部正确。
为了计算代价函数的最小迭代值,可以采用梯度下降法设计迭代算法,即:(3)其中,w(n)是第n次迭代的权向量,有多种取值方法,在本设计中采用固定非负值。
由J(w)的定义,可以进一步简化(3)得到:(4)通过(4)来不断更新w,这种算法就称为感知器算法(perceptron algorithm)。
可以证明,这种算法在经过有限次迭代之后是收敛的,也就是说,根据(4)规则修正权向量w,可以让所有的特征向量都正确分类。
《模式识别》课程标准精选全文完整版

可编辑修改精选全文完整版《模式识别》课程标准一、课程概述1.课程性质《模式识别》是人工智能技术服务专业针对人工智能产业及其应用相关的企事业单位的人工智能技术应用开发、系统运维、产品营销、技术支持等岗位,经过对企业岗位典型工作任务的调研和分析后,归纳总结出来的为适应人工智能产品开发与测试、数据处理、系统运维等能力要求而设置的一门专业核心课程。
2.课程任务《模式识别》课程通过与各类特征识别应用案例开发相关的实际项目学习,增强学生对本专业智能感知与识别算法知识的认识,训练他们养成良好的解析思维习惯,在理解理论知识的基础之上,根据实现情况分析与设计出最优解决方案,再用编程方式实现特征提取和识别算法并加以应用的能力,从而满足企业对相应岗位的职业能力需求。
3.课程要求通过课程的学习培养学生智能感知与识别算法应用方面的岗位职业能力,分析问题、解决问题的能力,养成良好的职业道德,为后续课程的学习打下坚实的基础。
二、教学目标(一)知识目标(1)了解模式识别的概念,掌握通过编程实现模板匹配算法来解决简单的模式识别问题的能力;(2)了解常用模式识别算法的原理,能初步利用该类算法解决具体模式识别问题的一般方法;(3)理解特征提取与降维的概念及主要方法,并能够在解决模式识别问题的过程中加以应用;(4)详细了解BP神经网络的原理,熟练掌握利用该算法解决手写体识别问题的方法;(5)详细了解朴素贝叶斯分类器算法的原理,熟练掌握利用该算法解决打印体文字识别问题的方法;(6)详细了解基于隐马尔可夫模型的语音识别原理,熟练掌握利用该模型解决语音识别问题的方法;(7)详细了解基于PCA和SVM模型的人脸识别原理,熟练掌握利用该模型解决人脸识别问题的方法。
(二)能力目标(1)会识读程序流程图,能看懂案例程序代码;(2)会使用Python语言实现“模式识别”常规算法;(3)能按照任务要求,设计程序流程图,编写程序代码;(4)能够根据系统功能要求对程序进行调试;(5)能够对所编写的程序故障进行分析,提出解决方案并进行故障排除:(6)能根据系统工作情况,提出合理的改造方案,组织技术改造工作、绘制程序流程图、提出工艺要求、编制技术文件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《模式识别》实验报告
三、线性分类器实验
1.(a)产生两个都具有200 个二维向量的数据集X1 和X1 ’。
向量的前半部分来自m1=[-5;0]的正态分布,并且S1=I 。
向量的后半部分来自m2=[5;0]的正态分布,并且S1=I。
其中I是一个2×2 的单位矩阵。
(b)在上面产生的数据集上运用Fisher 线性判别、感知器算法和最小平方误差判别算法,需要初始化参数的方法使用不同的初始值。
(c)测试每一种方法在X1 和X1 ’ 上的性能(错误率)。
(d)画出数据集X1 和X1 ’,已经每种方法得到对应参数向量W 的分界线。
Fisher线性判别
图1 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,
参数向量w = [-9.9406, 0.9030]’
错误率error=0,
感知器算法:
图2 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[0.1;0.1];迭代次数iter=2
参数向量w = [-4.8925, 0.0920]’
错误率error=0
图3 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[1; 1];迭代次数iter=2
参数向量w = [-3.9925, 0.9920]’
错误率error=0
图4 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[10; 10];迭代次数iter=122
参数向量w = [-5.6569, 7.8096]’
错误率error=0
图5 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[50; 50];迭代次数iter=600
参数向量w = [-27.0945, 37.4194]’
错误率error=0
图6 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[50; 100];迭代次数iter=1190
参数向量w = [-54.0048, 74.5875]’
错误率error=0
最小平方误差判别算法:
图7 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[0.1; 0.1];参数向量w = [-0.1908, -0.0001]’
错误率error=0
图8 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[0.5; 0.5];参数向量w = [-0.1924, 0.1492]’
错误率error=0
图9 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[1; 0.5];参数向量w = [-0.1914, 0.0564]’
错误率error=0
图10 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[1; 1];参数向量w = [-0.1943, 0.3359]’
错误率error= 0.0050
2.重复1.中的实验内容,数据集为X2 和X2 ’。
向量的前半部分来自m1=[-2;0]的正态分布,并且S1=I。
向量的后半部分来自m2=[2;0]的正态分布,并且S1=I。
Fisher线性判别
图11 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,
参数向量w = [-3.9763, 0.3612]’
错误率error=0.1125,
感知器算法:
图12 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[0.1;0.1];迭代次数iter=10000
参数向量w = [-0.2302, 0.0322]’
错误率error= 0.0200
图13 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[1;1];迭代次数iter=10000
参数向量w = [-0.0319, 0.0070]’
错误率error= 0.0225
图14 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[10;10];迭代次数iter=10000
参数向量w = [-0.0241, -0.0479]’
错误率error= 0.1900
最小平方误差判别算法:
图15 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[0.1; 0.1];参数向量w = [-0.1908, -0.0001]’
错误率error=0.02
图16 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[0.5; 0.5];参数向量w = [-0.3505, 0.2484]’
错误率error= 0.0425
图17 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[1; 0.5];参数向量w = [-0.3108, 0.2273]’
错误率error= 0.0450
3.重复1.中的实验内容,数据集为X3 和X3 ’。
向量的前半部分来自[-1;0]的正态分布,并且S1=I。
向量的后半部分来自[1;0]的正态分布,并且S1=I。
Fisher线性判别
图18 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,
参数向量w = [-1.9881, 0 0.1806]’
错误率error= 0.2475,
感知器算法:
图19 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[0.1;0.1];迭代次数iter=10000
参数向量w = [-0.0187, 0.0175]’
错误率error= 0.2250
图20 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[1;1];迭代次数iter=10000
参数向量w = [-0.3430, 0.0430]’
错误率error= 0.1675
图21 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[10;10];迭代次数iter=10000
参数向量w = [-0.0332, 0.0061]’
错误率error= 0.1650
图22 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,
参数的初始值为[50;50];迭代次数iter=10000
参数向量w = [-0.3722, -0.0620]’
错误率error= 0.1725
最小平方误差判别算法:
图23 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[0.1; 0.1];参数向量w = [-0.2688, 0.0290]’
错误率error= 0.1650
图24 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[0.5; 0.5];参数向量w = [-0.1174, 0.2402]’
错误率error= 0.3425
4.讨论从以上1.~3.实验中获得的结果。
当样本明显线性可分时,三种判别方法都能将样本很好地区分,只是有初始化的感知器算法在不同的初始化下收敛到不同的局部最优参数值,且收敛次数随参数的变化而变化,最小平方误差判别算法在初始参数不同时收敛到的局部最优参数也不同。
且通过图形可以明显看到,感知器算法和最小平方误差判别算法在初始参数较小的时候能收敛到较好的参数,随初始化参数的变大,最终参数越差,最后最小平方误差判别算法都不能完全正确区分两类样本了。
当样本线性不可分时,三种判别方法都不能将样本无差地区分,且同线性可分一样,初始化参数的不同,最终的参数也不同,初始化参数可影响分类算法的分来性能的好坏。