(整理)实验六主成分分析.
主成分分析

因子分析(factor analysis)
因子分析与主成分分析一样,是一种探索性分 析技巧 主要应用:合理解释多个能直接测量的且有一 定相关性的实测指标是如何受少数几个不能直 接测量相对独立的因子支配的
举 例
例5.1 为了解中学生的知识和能力,抽查了
100名学生,每人答40道题,可测得得分。问题
一、主成分的基本原理
一、主成分的基本原理
寻找一个适当的线性或非线性变换,将若干个
彼此相关的变量转变为彼此独立的新变量,然
后根据新变量的方差大小,选取几个方差较大
的新变量替代原变量,使得用较少的几个新变
量就能综合反映原变量中包含的主要信息且又
各自带有独特的专业含义。
新变量(综合变量)称为原变量的主成分
2 h2 aij i2 j
主成分是原变量的线性组合,是对原变量信息 的一种提取,主成分不增加总信息,也不减少 总信息量,只是对原信息进行重新分配。 应用者可根据实际情况选择重要的信息(前几个
主成分),作进一步分析。
2. 确定主成分个数
① 经验法: 主成分的累积贡献率达到70~80%以上;
因子分析
曹 明 芹 流行病与卫生统计学教研室
因子分析(factor analysis)
医学研究中,很多情况下我们研究的变量是不 能或不易直接测量得到的 例如,研究家庭环境、社会环境和学校环境对 儿童智商的发育影响问题。这些个变量都是不 能或不易直接测量的 不能或不易直接观测得到的变量称为潜在变量 (latent variable)或潜在因子(latent factor)。
Extraction Method: Principal Component Analysis.
主成分分析实验报告

主成分分析地信0901班陈任翔010******* 【实验目的及要求】掌握主成分分析与因子分析的思想和具体步骤。
掌握SPSS实现主成分分析与因子分析的具体操作。
【实验原理】1.主成分分析的主要目的是希望用较少的变量去解释原来资料中的大部分变异,将我们手中许多相关性很高的变量转化成彼此相互独立或不相关的变量。
通常是选出比原始变量个数少,能解释大部分资料中的变异的几个新变量,即所谓主成分,并用以解释资料的综合性指标。
由此可见,主成分分析实际上是一种降维方法。
2.因子分析研究相关矩阵或协方差矩阵的内部依赖关系,它将多个变量综合为少数几个因子,以再现原始变量与因子之间的相关关系。
【实验步骤】1.数据准备●1)首先在Excel中打开“水样元素成分分析数据”,删除表名“水样元素成分分析数据”,保存数据。
●3)数据格式转换。
2.数据描述分析操作1)Descriptives过程点击Analyze下的Descriptive Statistics选项,选择该选项下的Descriptives●选中待处理的变量(左侧的As…..Hg等);●点击使变量As…..Hg 移至Variable(s)中;●选中Save standrdized values as variables;●点击Options2)数据标准化标准化处理后的结果2.主成分分析1)点击Analyze下的Data Reduction选项,选择该选项下的Factor过程。
选中待处理的变量,移至Variables2)点击Descriptives判断是否有进行因子分析的必要Coefficients(计算相关系数矩阵)Significance levels(显著水平)KMO and Bartlett’s test of sphericity (对相关系数矩阵进行统计学检验)Inverse(倒数模式):求出相关矩阵的反矩阵;Reproduced(重制的):显示重制相关矩阵,上三角形矩阵代表残差值,而主对角线及下三角形代表相关系数;Determinant(行列式):求出前述相关矩阵的行列式值;Anti-image(反映像):求出反映像的共同量及相关矩阵。
主成份分析实验报告

姓名课程多元统计分析实验内容主成份与因子分析指导老师实验目的本文旨在通过对通过对多个企业的效益指标的分析,对各企业进行主成份分析,并对各企业经营状况进行评分并排序。
同时,达到通过本实验达到熟练掌握主成份分析和因子分析操作的目的。
实验数据本文利用表1的数据进行分析。
其中,X1为“固定资产产值率”;X2为“固定资产利税率”;X3为“资金利润率”;X4为“资金利税率”;X5为“流动资金周转天数”;X6为“销售收入利税率”;X7为“全员劳动生产率”。
表1 各企业效益指标数据实验步骤选择【Analyze】-【Date Reduction】-【Factor】,如图2。
图2 主成份分析操作在主成份分析对话框中进行设置,将变量X1—X6选入Variables,如图3。
图3 主成份分析对话框选择【Descriptives】,弹出对话框如图4,保留默认设置。
图4 Descriptives对话框选择【Extraction】,弹出对话框如图5所示。
方法(method)默认为Principal components,即主成份分析,保留默认设置。
在提取Extract项下选Number of factors,填入6,即提取6个主成份。
图5 提取主成分设置选择【Rotation】,弹出对话框如图6所示,因子旋转采用Varimax方法,如图6所示。
图6 因子旋转对话框选择【Scores】,弹出对话框如图7所示。
选择将主成份保存成变量(Save as variables),方法(method)为回归(Regression)。
图7 主成份得分设置点击【OK】,即可得到主成份分析和因子分析结果。
实验结果表8为变量共同度,表中显示原始数据所有信息都被提取出来了。
表8 变量共同度CommunalitiesInitial Extraction固定资产产值率 1.000 1.000固定资产利税率 1.000 1.000资金利润率 1.000 1.000资金利税率 1.000 1.000流动资金周转天数 1.000 1.000销售收入利税率 1.000 1.000Extraction Method: Principal ComponentAnalysis.表9为各主成份特征根和累计贡献率。
(完整版)主成分分析法的原理应用及计算步骤...doc

zm
lm1x1
lm 2x2
lmpxp
系数lij的确定原 :
①zi与zj(i≠j;i,j=1,2,⋯,m)相互无关;
②z1是x1,x2,⋯,xP的一切 性 合中方差最大者,z2是与z1不相关的x1,x2,⋯,xP的所有 性 合中方差最大者;zm是与z1,z2,⋯⋯,zm-1都不相关的x1,x2,⋯xP, 的所有 性 合中方差最大者。
标准化后的变量的协方差矩阵就是原变量的相关系数矩阵 。 也就是说, 在标准化前后变量的相关系数矩阵不变化。
根据以上论述,为消除量纲的影响,将变量标准化后再计算其协方差矩阵,就是直接计算原变量的相关系数矩阵,所以主成分分析的实际常用计算步骤是:☆计算相关系数矩阵
☆求出相关系数矩阵的特征值i及相应的正交化单位特征向量ai
与原 量Xj之 的相互
关 程度:
( ,
xi
)
(
, 1,2,
L
, ;
1,2,
L
, )
P Zk
kakii
p k
m
三、主成分分析法的计算步骤
主成分分析的具体步 如下:
(1) 算 方差矩
算 品数据的 方差矩 :Σ=(sij)pp,其中
1
n
i,j=1,2,⋯,p
sij
( xki
xi)( xkj
xj)
n
1k 1
解特征方程
I
R 0
,常用雅可比法(Jacobi)求出特征 ,并使其按大
小 序排列1
2
p
0;
p
1,2, L , p)
2
e ( i
分 求出 于特征
i
的特征向量
主成分分析实验报告

一、实验目的本次实验旨在通过主成分分析(PCA)方法,对给定的数据集进行降维处理,从而简化数据结构,提高数据可解释性,并分析主成分对原始数据的代表性。
二、实验背景在许多实际问题中,数据集往往包含大量的变量,这些变量之间可能存在高度相关性,导致数据分析困难。
主成分分析(PCA)是一种常用的降维技术,通过提取原始数据中的主要特征,将数据投影到低维空间,从而简化数据结构。
三、实验数据本次实验采用的数据集为某电商平台用户购买行为的调查数据,包含用户年龄、性别、收入、职业、购买商品种类、购买次数等10个变量。
四、实验步骤1. 数据预处理首先,对数据进行标准化处理,消除不同变量之间的量纲影响。
然后,进行缺失值处理,删除含有缺失值的样本。
2. 计算协方差矩阵计算标准化后的数据集的协方差矩阵,以了解变量之间的相关性。
3. 计算特征值和特征向量求解协方差矩阵的特征值和特征向量,特征值表示对应特征向量的方差,特征向量表示数据在对应特征方向上的分布。
4. 选择主成分根据特征值的大小,选择前几个特征值对应特征向量作为主成分,通常选择特征值大于1的主成分。
5. 构建主成分空间将选定的主成分进行线性组合,构建主成分空间。
6. 降维与可视化将原始数据投影到主成分空间,得到降维后的数据,并进行可视化分析。
五、实验结果与分析1. 主成分分析结果根据特征值大小,选取前三个主成分,其累计贡献率达到85%,说明这三个主成分能够较好地反映原始数据的信息。
2. 主成分空间可视化将原始数据投影到主成分空间,绘制散点图,可以看出用户在主成分空间中的分布情况。
3. 主成分解释根据主成分的系数,可以解释主成分所代表的原始数据特征。
例如,第一个主成分可能主要反映了用户的购买次数和购买商品种类,第二个主成分可能反映了用户的年龄和性别,第三个主成分可能反映了用户的收入和职业。
六、实验结论通过本次实验,我们成功运用主成分分析(PCA)方法对数据进行了降维处理,提高了数据可解释性,并揭示了数据在主成分空间中的分布规律。
主成分分析、因子分析实验报告--SPSS

主成分分析、因子分析实验报告--SPSS主成分分析、因子分析实验报告SPSS一、实验目的主成分分析(Principal Component Analysis,PCA)和因子分析(Factor Analysis,FA)是多元统计分析中常用的两种方法,旨在简化数据结构、提取主要信息和解释变量之间的关系。
本次实验的目的是通过使用 SPSS 软件对给定的数据集进行主成分分析和因子分析,深入理解这两种方法的原理和应用,并比较它们的结果和差异。
二、实验原理(一)主成分分析主成分分析是一种通过线性变换将多个相关变量转换为一组较少的不相关综合变量(即主成分)的方法。
这些主成分是原始变量的线性组合,且按照方差递减的顺序排列。
主成分分析的主要目标是在保留尽可能多的数据信息的前提下,减少变量的数量,从而简化数据分析和解释。
(二)因子分析因子分析则是一种探索潜在结构的方法,它假设观测变量是由少数几个不可观测的公共因子和特殊因子线性组合而成。
公共因子解释了变量之间的相关性,而特殊因子则代表了每个变量特有的部分。
因子分析的目的是找出这些公共因子,并估计它们对观测变量的影响程度。
三、实验数据本次实验使用了一份包含多个变量的数据集,这些变量涵盖了不同的领域和特征。
数据集中的变量包括具体变量 1、具体变量 2、具体变量 3等,共X个观测样本。
四、实验步骤(一)主成分分析1、打开 SPSS 软件,导入数据集。
2、选择“分析”>“降维”>“主成分分析”。
3、将需要分析的变量选入“变量”框。
4、在“抽取”选项中,选择主成分的提取方法,如基于特征值大于1 或指定提取的主成分个数。
5、点击“确定”,运行主成分分析。
(二)因子分析1、同样在 SPSS 中,选择“分析”>“降维”>“因子分析”。
2、选入变量。
3、在“描述”选项中,选择相关统计量,如 KMO 检验和巴特利特球形检验。
4、在“抽取”选项中,选择因子提取方法,如主成分法或主轴因子法。
实验设计中的主成分分析方法

实验设计中的主成分分析方法实验设计是科学研究不可或缺的一部分,它可以帮助研究人员寻找变量之间的潜在关系并评估方案的效果。
主成分分析(PCA)是实验设计中常用的数据分析方法之一。
在本文中,我们将探讨主成分分析方法的定义、应用以及如何在实验设计中使用该方法。
什么是主成分分析?主成分分析是一种多元统计学方法,旨在将多个相关变量转换为一组无关变量,称为主成分。
主成分是根据方差的大小排序的,第一主成分包含最大方差,第二主成分次之,依此类推。
主成分的数量通常少于原始变量的数量。
主成分分析的应用主成分分析可用于不同领域的研究。
在医学领域,它可用于探索生理数据和诊断结果之间的潜在关系。
在社会科学领域,它可用于分析调查问卷数据。
在环境领域,它可用于分析水质监测数据。
主成分分析的步骤主成分分析的步骤可以归纳为以下几个步骤:1. 收集数据:将需要分析的原始数据收集起来。
2. 标准化数据:标准化数据可以确保不同变量处于相同的尺度,有利于后续的分析。
标准化可以使用z-score标准化或最大-最小标准化等方式实现。
3. 计算主成分:计算主成分可以使用传统的主成分分析方法或更高级的机器学习方法,例如k均值和深度学习。
4. 确定主成分数量:确定主成分数量的最常用方法是考虑前几个主成分的贡献率。
例如,如果前两个主成分的总贡献率超过70%,则可以将其视为显著的主成分。
5. 解释和解释主成分:通过分析每个主成分包含的变量,可以解释每个主成分的含义。
随着主成分数量的增加,解释和解释主成分会变得更为复杂。
主成分分析在实验设计中的应用主成分分析在实验设计中的应用可以分为以下几个方面:1. 降低变量数量:当实验涉及大量原始变量时,主成分分析可用于减少变量数量。
这有助于将注意力集中在更重要的变量上。
2. 探索变量之间的关系:主成分分析可用于探索变量之间的潜在关系。
如果两个变量高度相关,那么它们可能属于同一个主成分。
3. 预测:主成分分析可用于创建预测模型。
主成分分析

各主成分的方差贡献大小按特征根顺序排列,是 依次递减的, 即 1 ≥ 2 ≥…≥ p ≥0。
3.主成分的计算
3.1 两个变量的主成分计算(最简单情况)
两个原变量为x1和x2 原变量组合成一个新变量
y=v1x1+v2x2 使得y有极大的方差,即:
1 n ( yi y ) 2 极大 n i 1
求多维变量(变量数大于2)的主成分与二维 变量相同。
计算原变量的协方差阵S; 解特征方程 (SI)V 0,得特征根λ与特征向量V; 计算主成分得分(p为主成分数,n为样品数):
y1 v11 y 2 v 21 ... y v p p1
合中方差最大者; …… zm 是与 z1, z2, …, zm-1 都不相关 的 x1, x2, …, xP 的所有线性组合中方差最大者。 第二,…,第 m 主成分。
则新变量 z1,z2,…,zm 分别称为原变量 x1,x2,…,xP 的第一,
主成分分析的实质就是确定原来变量 xj(j=1, 2 ,…, p)在诸主成分 zi(i=1,2,…,m)上 的系数 lij( i=1,2,…,m; j=1,2 ,…,p) 。 从数学上可以证明,它们分别是 p 个原始变量 ( x1 , x2 ,, x p )协方差矩阵的前 m 个具有较大 特征值所对应的特征向量,而各个综合变量 Zi 的 方差 var(Zi)恰好是相应的特征根 i 。
变量之间多存在着错综复杂的相互关系; 全面选择因素会增加各种成本,甚至不可能实现。 选择次要因素反而可能降低精度;
目标:希望在原m个变量基础上:
用较少的综合变量代替原来较多的变量 保留大部分信息 新变量之间互不相关
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验课:主成分分析实验目的理解主成分(因子)分析的基本原理,熟悉并掌握SPSS中的主成分(因子)分析方法及其主要应用。
一、相关知识1 概念因子分析(Factor analysis):就是用少数几个因子来描述许多指标或因素之间的联系,以较少几个因子来反映原资料的大部分信息的统计学分析方法。
主成分分析(Principal component analysis):是因子分析的一个特例,是使用最多的因子提取方法。
它通过坐标变换手段,将原有的多个相关变量,做线性变化,转换为另外一组不相关的变量。
选取前面几个方差最大的主成分,这样达到了因子分析较少变量个数的目的,同时又能与较少的变量反映原有变量的绝大部分的信息。
从数学角度来看,主成分分析是一种化繁为简的降维处理技术。
两者关系:主成分分析(PCA)和因子分析(FA)是两种把变量维数降低以便于描述、理解和分析的方法,而实际上主成分分析可以说是因子分析的一个特例。
2 特点(1)因子变量的数量远少于原有的指标变量的数量,因而对因子变量的分析能够减少分析中的工作量。
(2)因子变量不是对原始变量的取舍,而是根据原始变量的信息进行重新组构,它能够反映原有变量大部分的信息。
(3)因子变量之间不存在显著的线性相关关系,对变量的分析比较方便,但原始部分变量之间多存在较显著的相关关系。
(4)因子变量具有命名解释性,即该变量是对某些原始变量信息的综合和反映。
在保证数据信息丢失最少的原则下,对高维变量空间进行降维处理(即通过因子分析或主成分分析)。
显然,在一个低维空间解释系统要比在高维系统容易的多。
3 类型根据研究对象的不同,把因子分析分为R型和Q型两种。
当研究对象是变量时,属于R型因子分析;当研究对象是样品时,属于Q型因子分析。
但有的因子分析方法兼有R型和Q型因子分析的一些特点,如因子分析中的对应分析方法,有的学者称之为双重型因子分析,以示与其他两类的区别。
4分析原理假定:有n 个地理样本,每个样本共有p 个变量,构成一个n ×p 阶的地理数据矩阵 :当p 较大时,在p 维空间中考察问题比较麻烦。
这就需要进行降维处理,即用较少几个综合指标代替原来指标,而且使这些综合指标既能尽量多地反映原来指标所反映的信息,同时它们之间又是彼此独立的。
线性组合:记x1,x2,…,xP 为原变量指标,z1,z2,…,zm (m ≤p )为新变量指标(主成分),则其线性组合为:Lij 是原变量在各主成分上的载荷无论是哪一种因子分析方法,其相应的因子解都不是唯一的,主因子解仅仅是无数因子解中之一。
Z 为因子变量或公共因子,可以理解为在高维空间中互相垂直的m 个坐标轴。
zi 与zj 相互无关;z1是x1,x2,…,xp 的一切线性组合中方差最大者,z2是与z1不相关的x1,x2,…的所有线性组合中方差最大者。
则,新变量指标z1,z2,…分别称为原变量指标的第一,第二,…主成分。
主成分分析实质就是确定原来变量xj (j=1,2 ,…,p )在各主成分zi (i=1,2,…,m )上的荷载 lij 。
从数学上容易知道,从数学上也可以证明,它们分别是相关矩阵的m 个较大的特征值所对应的特征向量。
5分析步骤5.1 确定待分析的原有若干变量是否适合进行因子分析(第一步)因子分析是从众多的原始变量中重构少数几个具有代表意义的因子变量的过程。
其潜在⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X 212222111211⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z 22112222121212121111⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z 22112222121212121111的要求:原有变量之间要具有比较强的相关性。
因此,因子分析需要先进行相关分析,计算原始变量之间的相关系数矩阵。
如果相关系数矩阵在进行统计检验时,大部分相关系数均小于0.3且未通过检验,则这些原始变量就不太适合进行因子分析。
进行原始变量的相关分析之前,需要对输入的原始数据进行标准化计算(一般采用标准差标准化方法,标准化后的数据均值为0,方差为1)。
SPSS 在因子分析中还提供了几种判定是否适合因子分析的检验方法。
主要有以下3种: 巴特利特球形检验(Bartlett Test of Sphericity )反映象相关矩阵检验(Anti-image correlation matrix ) KMO (Kaiser-Meyer-Olkin )检验 (1)巴特利特球形检验该检验以变量的相关系数矩阵作为出发点,它的零假设H0为相关系数矩阵是一个单位阵,即相关系数矩阵对角线上的所有元素都为1,而所有非对角线上的元素都为0,也即原始变量两两之间不相关。
巴特利特球形检验的统计量是根据相关系数矩阵的行列式得到。
如果该值较大,且其对应的相伴概率值小于用户指定的显著性水平,那么就应拒绝零假设H0,认为相关系数不可能是单位阵,也即原始变量间存在相关性。
(2)反映象相关矩阵检验该检验以变量的偏相关系数矩阵作为出发点,将偏相关系数矩阵的每个元素取反,得到反映象相关矩阵。
偏相关系数是在控制了其他变量影响的条件下计算出来的相关系数,如果变量之间存在较多的重叠影响,那么偏相关系数就会较小,这些变量越适合进行因子分析。
(3)KMO (Kaiser-Meyer-Olkin )检验该检验的统计量用于比较变量之间的简单相关和偏相关系数。
KMO 值介于0-1,越接近1,表明所有变量之间简单相关系数平方和远大于偏相关系数平方和,越适合因子分析。
其中,Kaiser 给出一个KMO 检验标准:KMO>0.9,非常适合;0.8<KMO<0.9,适合;0.7<KMO<0.8,一般;0.6<KMO<0.7,不太适合;KMO<0.5,不适合。
⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=pp p p p p r r r r r r r r r R212222111211∑∑∑===----=nk nk jkj i ki nk j kj i kiij x xx xx x x xr 11221)()())((5.2 构造因子变量因子分析中有很多确定因子变量的方法,如基于主成分模型的主成分分析和基于因子分析模型的主轴因子法、极大似然法、最小二乘法等。
前者应用最为广泛。
主成分分析法(Principal component analysis ):该方法通过坐标变换,将原有变量作线性变化,转换为另外一组不相关的变量Zi (主成分)。
求相关系数矩阵的特征根λi (λ1,λ2,…,λp>0)和相应的标准正交的特征向量li ;根据相关系数矩阵的特征根,即公共因子Zj 的方差贡献(等于因子载荷矩阵L 中第j 列各元素的平方和),计算公共因子Zj 的方差贡献率与累积贡献率。
主成分分析是在一个多维坐标轴中,将原始变量组成的坐标系进行平移变换,使得新的坐标原点和数据群点的重心重合。
新坐标第一轴与数据变化最大方向对应。
通过计算特征根(方差贡献)和方差贡献率与累积方差贡献率等指标,来判断选取公共因子的数量和公共因子(主成分)所能代表的原始变量信息。
公共因子个数的确定准则:1)根据特征值的大小来确定,一般取大于1的特征值对应的几个公共因子/主成分。
2)根据因子的累积方差贡献率来确定,一般取累计贡献率达85-95%的特征值所对应的第一、第二、…、第m (m ≤p )个主成分。
也有学者认为累积方差贡献率应在80%以上。
5.3 因子变量的命名解释因子变量的命名解释是因子分析的另一个核心问题。
经过主成分分析得到的公共因子/主成分Z1,Z2,…,Zm 是对原有变量的综合。
原有变量是有物理含义的变量,对它们进行线性变换后,得到的新的综合变量的物理含义到底是什么?在实际的应用分析中,主要通过对载荷矩阵进行分析,得到因子变量和原有变量之间的关系,从而对新的因子变量进行命名。
利用因子旋转方法能使因子变量更具有可解释性。
计算主成分载荷,构建载荷矩阵A 。
),,2,1(1p i pk ki=∑=λλ),,2,1(11p i pk kik k=∑∑==λλ),,2,1,(p j i l a ij i ij ==λ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡m pm p p m m m m pm p p m m l l l l l l l l l a a a a a a a a a A λλλλλλλλλ (211122)211211212111112212111211=⎪⎪⎧+++=+++=p p p p z a z a z a x z a z a z a x 2222121212121111⎪⎪⎧+++=+++=p p pp x l x l x l z x l x l x l z 2222121212121111计算主成分载荷,构建载荷矩阵A 。
载荷矩阵A 中某一行表示原有变量 Xi 与公共因子/因子变量的相关关系。
载荷矩阵A 中某一列表示某一个公共因子/因子变量能够解释的原有变量 Xi 的信息量。
有时因子载荷矩阵的解释性不太好,通常需要进行因子旋转,使原有因子变量更具有可解释性。
因子旋转的主要方法:正交旋转、斜交旋转。
正交旋转和斜交旋转是因子旋转的两类方法。
前者由于保持了坐标轴的正交性,因此使用最多。
正交旋转的方法很多,其中以方差最大化法最为常用。
方差最大正交旋转(varimax orthogonal rotation )——基本思想:使公共因子的相对负荷的方差之和最大,且保持原公共因子的正交性和公共方差总和不变。
可使每个因子上的具有最大载荷的变量数最小,因此可以简化对因子的解释。
斜交旋转(oblique rotation )——因子斜交旋转后,各因子负荷发生了变化,出现了两极分化。
各因子间不再相互独立,而是彼此相关。
各因子对各变量的贡献的总和也发生了改变。
斜交旋转因为因子间的相关性而不受欢迎。
但如果总体中各因子间存在明显的相关关系则应该考虑斜交旋转。
适用于大数据集的因子分析。
无论是正交旋转还是斜交旋转,因子旋转的目的:是使因子负荷两极分化,要么接近于0,要么接近于1。
从而使原有因子变量更具有可解释性。
5.4 计算因子变量得分因子变量确定以后,对于每一个样本数据,我们希望得到它们在不同因子上的具体数据值,即因子得分。
估计因子得分的方法主要有:回归法、Bartlette 法等。