备战中考数学考点提升训练——专题四十七:平面直角坐标系

合集下载

中考数学试题考点分类平面直角坐标系(含答案)

中考数学试题考点分类平面直角坐标系(含答案)

中考数学试题考点分类平面直角坐标系(含答案)————————————————————————————————作者:————————————————————————————————日期:平面直角坐标系考点1:特殊点坐标的特点1.在x轴上的点的_____坐标为__________,在y轴上的点的_____坐标为__________。

2.在第一象限内的点的横坐标为______,纵坐标为______.在第二象限内的点的横坐标为______,纵坐标为______.在第三象限内的点的横坐标为______,纵坐标为______.在第四象限内的点的横坐标为______,纵坐标为______.1.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限2.在平面直角坐标系中,点(1,3)位于第________象限。

3.在平面直角坐标系中,点P(-2,2x+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.若点P(a,a-2)在第四象限,则a的取值范围是().A.-2<a<0 B.0<a<2 C.a>2 D.a<0考点2:轴对称的坐标1、关于x轴对称:两个点关于x轴对称,横坐标不变,纵坐标变相反。

即A(a,b)关于x轴对称的点的坐标为(____,____)。

2、关于y轴对称:两个点关于y轴对称,纵坐标不变,横坐标变相反。

即A(a,b)关于y轴对称的点的坐标为(____,____)。

3、关于原点对称:两个点关于原点对称,横坐标变相反,纵坐标变相反。

即A(a,b)关于原点对称的点的坐标为(____,____)。

1.点M(-2,1)关于x轴对称的点的坐标是().A.(-2,-1)B.(2,1)C.(2,-1)D.(1,-2)2.点P(-3,2)关于x轴对称的点P`的坐标是.3.在平面直角坐标系中,点A(2,3)与点B关于x轴对称,则点B的坐标为().A.(3, 2)B.(-2,-3)C.(-2, 3)D.(2,-3)4.平面直角坐标系中,与点(2,-3)关于原点中心对称的点是().A.(-3,2)B.(3,-2)C.(-2,3)D.(2,3)5.点P(1,2)关于原点的对称点P′的坐标为___________.6.如图,矩形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将矩形OABC绕点O旋转180°,旋转后的图形为矩形OA 1B1C1,那么点B1的坐标为( ).A. (2,1)B.(-2,l)C.(-2,-l)D.(2,-1)7.若点A(2,a)关于x轴的对称点是B(b,-3)则ab的值是.8.在平面直角坐标系中,点A(1,2)关于y轴对称的点为点B(a,2),则a=.9.在平面直角坐标系中,点P(2,3)与点P (2a+b,a+2b)关于原点对称,则a-b的值为_________考点3:考平移后点的坐标1.将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(____,____)(或(_____,____));2.将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(____,_____)(或(____,____)).1.在平面直角坐标系中,将点(-2,-3)向上平移3个单位,则平移后的点的坐标为_______.2.如图,在平面直角坐标系中,点P(-1,2)向右平移3个单位长度后的坐标是()A.(2,2)B.(-4,2)C.(-1,5)D.(-1,-1)3.将点P(-2,1)先向左平移1个单位长度,再向上平移2个单位长度得到点P/,则点P/的坐标为。

初中数学平面直角坐标系提高题与常考题和培优题(含解析)-

初中数学平面直角坐标系提高题与常考题和培优题(含解析)-

初中数学直角坐标系提高题与常考题和培优题(含解析)一.选择题(共12小题)1.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.42.如图,在平面直角坐标系中,点P的坐标为()A.(3,﹣2)B.(﹣2,3)C.(﹣3,2)D.(2,﹣3)3.已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在()A.第一象限B.第二象限C.第三象限D.第四象限4.已知点A(﹣1,0)和点B(1,2),将线段AB平移至A′B′,点A′于点A对应,若点A′的坐标为(1,﹣3),则点B′的坐标为()A.(3,0) B.(3,﹣3)C.(3,﹣1)D.(﹣1,3)5.对于任意实数m,点P(m﹣2,9﹣3m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限6.如图为A、B、C三点在坐标平面上的位置图.若A、B、C的x坐标的数字总和为a,y坐标的数字总和为b,则a﹣b之值为何?()A.5 B.3 C.﹣3 D.﹣57.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A.(2,﹣3)B.(2,3) C.(3,2) D.(3,﹣2)8.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b 的值为()A.2 B.3 C.4 D.59.如图,小手盖住的点的坐标可能是()A.(6,﹣4)B.(5,2) C.(﹣3,﹣6)D.(﹣3,4)10.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)11.在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b′),给出下列定义:若b′=,则称点Q为点的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(﹣2,5)的限变点的坐标是(﹣2,﹣5),如果一个点的限变点的坐标是(,﹣1),那么这个点的坐标是()A.(﹣1,) B.(﹣,﹣1)C.(,﹣1) D.(,1)12.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3);②g(a,b)=(b,a).如:g(1,3)=(3,1);③h(a,b)=(﹣a,﹣b).如,h(1,3)=(﹣1,﹣3).按照以上变换有:f(g(h(2,﹣3)))=f(g(﹣2,3))=f(3,﹣2)=(﹣3,﹣2),那么f(g(h(﹣3,5)))等于()A.(﹣5,﹣3)B.(5,3) C.(5,﹣3)D.(﹣5,3)二.填空题(共13小题)13.点P(3,﹣2)到y轴的距离为个单位.14.点P(x﹣2,x+3)在第一象限,则x的取值范围是.15.线段AB的长为5,点A在平面直角坐标系中的坐标为(3,﹣2),点B的坐标为(3,x),则点B的坐标为.16.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于.17.将点A(1,﹣3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到的点A′的坐标为.18.已知点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,则点P坐标为.19.如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图,若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,﹣1),表示桃园路的点的坐标为(﹣1,0),则表示太原火车站的点(正好在网格点上)的坐标是.20.定义:直线l1与l2相交于点O,对于平面内任意一点P1点P到直线l1与l2的距离分别为p、q则称有序实数对(p,q)是点P的“距离坐标”.根据上述定义,“距离坐标”是(3,2)的点的个数有个.21.在平面直角坐标系中,小明玩走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位,…,依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第8步时,棋子所处位置的坐标是;当走完第2016步时,棋子所处位置的坐标是.22.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为.23.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P60的坐标是.24.在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一条长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣….的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是.25.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的运动规律,经过第2016次运动后,动点P的坐标是.三.解答题(共15小题)26.在如图所示的直角坐标系中描出下列各点:A(﹣2,0),B(2,5),C(﹣,﹣3)27.在如图中,确定点A、B、C、D、E、F、G的坐标.请说明点B和点F有什么关系?28.求图中四边形ABCD的面积.29.在平面直角坐标系中,点A(2m﹣7,m﹣5)在第四象限,且m为整数,试求的值.30.如图,一个小正方形网格的边长表示50米.A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校.(1)以学校为坐标原点,向东为x轴正方向,向北为y轴正方向,在图中建立直角坐标系:(2)B同学家的坐标是;(3)在你所建的直角坐标系中,如果C同学家的坐标为(﹣150,100),请你在图中描出表示C同学家的点.31.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中B→C (,),C→(+1,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(3)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记作什么?32.如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求点C到x轴的距离;(2)求△ABC的面积;(3)点P在y轴上,当△ABP的面积为6时,请直接写出点P的坐标.33.已知:A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.34.已知:如图,在平面直角坐标系xOy中,A(4,0),C(0,6),点B在第一象限内,点P从原点O出发,以每秒2个单位长度的速度沿着长方形OABC移动一周(即:沿着O→A→B→C→O的路线移动).(1)写出B点的坐标();(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.35.如图,某校七年级的同学从学校O点出发,要到某地P处进行探险活动,他们先向正西方向走8千米到A处,又往正南方向走4千米到B处,又折向正东方向走6千米到C处,再折向正北方向走8千米到D处,最后又往正东方向走2千米才到探险处P,以点O为原点,取O点的正东方向为x轴的正方向,取O点的正北方向为y轴的正方向,以2千米为一个长度单位建立直角坐标系.(1)在直角坐标系中画出探险路线图;(2)分别写出A、B、C、D、P点的坐标.36.已知:P(4x,x﹣3)在平面直角坐标系中.(1)若点P在第三象限的角平分线上,求x的值;(2)若点P在第四象限,且到两坐标轴的距离之和为9,求x的值.37.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.已知点A(1,2),B(﹣3,1),P(0,t).(1)若A,B,P三点的“矩面积”为12,求点P的坐标;(2)直接写出A,B,P三点的“矩面积”的最小值.38.如图,在平面直角坐标系中,原点为O,点A(0,3),B(2,3),C(2,﹣3),D(0,﹣3).点P,Q是长方形ABCD边上的两个动点,BC交x轴于点M.点P从点O出发以每秒1个单位长度沿O→A→B→M的路线做匀速运动,同时点Q 也从点O出发以每秒2个单位长度沿O→D→C→M的路线做匀速运动.当点Q 运动到点M时,两动点均停止运动.设运动的时间为t秒,四边形OPMQ的面积为S.(1)当t=2时,求S的值;(2)若S<5时,求t的取值范围.39.问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|;【应用】:(1)若点A(﹣1,1)、B(2,1),则AB∥x轴,AB的长度为.(2)若点C(1,0),且CD∥y轴,且CD=2,则点D的坐标为.【拓展】:我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:图1中,点M(﹣1,1)与点N(1,﹣2)之间的折线距离为d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)如图1,已知E(2,0),若F(﹣1,﹣2),则d(E,F);(2)如图2,已知E(2,0),H(1,t),若d(E,H)=3,则t=.(3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,则d (P,Q)=.40.小明在学习了平面直角坐标系后,突发奇想,画出了这样的图形(如图),他把图形与x轴正半轴的交点依次记作A1(1,0),A2(5,0),…A n,图形与y轴正半轴的交点依次记作B1(0,2),B2(0,6),…B n,图形与x轴负半轴的交点依次记作C1(﹣3,0),C2(﹣7,0),…C n,图形与y轴负半轴的交点依次记作D1(0,﹣4),D2(0,﹣8),…D n,发现其中包含了一定的数学规律.请根据你发现的规律完成下列题目:(1)请分别写出下列点的坐标:A3,B3,C3,D3;(2)请分别写出下列点的坐标:A n,B n,C n,D n;(3)请求出四边形A5B5C5D5的面积.初中数学直角坐标系提高题与常考题和培优题(含解析)参考答案与试题解析一.选择题(共12小题)1.(2017•河北一模)已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.4【分析】直接利用x轴上点的纵坐标为0,进而得出答案.【解答】解:∵点P(x+3,x﹣4)在x轴上,∴x﹣4=0,解得:x=4,故选:D.【点评】此题主要考查了点的坐标,正确把握x轴上点的坐标性质是解题关键.2.(2016•柳州)如图,在平面直角坐标系中,点P的坐标为()A.(3,﹣2)B.(﹣2,3)C.(﹣3,2)D.(2,﹣3)【分析】根据平面直角坐标系以及点的坐标的定义写出即可.【解答】解:点P的坐标为(3,﹣2).故选A.【点评】本题考查了点的坐标,熟练掌握平面直角坐标系中点的表示是解题的关键.3.(2016•临夏州)已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据y轴的负半轴上点的横坐标等于零,纵坐标小于零,可得m的值,根据不等式的性质,可得到答案.【解答】解:由点P(0,m)在y轴的负半轴上,得m<0.由不等式的性质,得﹣m>0,﹣m+1>1,则点M(﹣m,﹣m+1)在第一象限,故选:A.【点评】本题考查了点的坐标,利用点的坐标得出不等式是解题关键.4.(2017•禹州市一模)已知点A(﹣1,0)和点B(1,2),将线段AB平移至A′B′,点A′于点A对应,若点A′的坐标为(1,﹣3),则点B′的坐标为()A.(3,0) B.(3,﹣3)C.(3,﹣1)D.(﹣1,3)【分析】根据平移的性质,以及点A,B的坐标,可知点A的横坐标加上了4,纵坐标减小了1,所以平移方法是:先向右平移4个单位,再向下平移1个单位,根据点B的平移方法与A点相同,即可得到答案.【解答】解:∵A(﹣1,0)平移后对应点A′的坐标为(1,﹣3),∴A点的平移方法是:先向右平移2个单位,再向下平移3个单位,∴B点的平移方法与A点的平移方法是相同的,∴B(1,2)平移后B′的坐标是:(3,﹣1).故选:C.【点评】本题考查了坐标与图形的变化﹣平移,解决问题的关键是运用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.5.(2016•乌鲁木齐)对于任意实数m,点P(m﹣2,9﹣3m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据点所在象限中横纵坐标的符号即可列不等式组,若不等式组无解,则不能在这个象限.【解答】解:A、当点在第一象限时,解得2<m<3,故选项不符合题意;B、当点在第二象限时,解得m<3,故选项不符合题意;C、当点在第三象限时,,不等式组无解,故选项符合题意;D、当点在第四象限时,解得m>0,故选项不符合题意.故选C.【点评】本题考查了点的坐标,理解每个象限中点的坐标的符号是关键.6.(2016•台湾)如图为A、B、C三点在坐标平面上的位置图.若A、B、C的x 坐标的数字总和为a,y坐标的数字总和为b,则a﹣b之值为何?()A.5 B.3 C.﹣3 D.﹣5【分析】先求出A、B、C三点的横坐标的和为﹣1+0+5=4,纵坐标的和为﹣4﹣1+4=﹣1,再把它们相减即可求得a﹣b之值.【解答】解:由图形可知:a=﹣1+0+5=4,b=﹣4﹣1+4=﹣1,a﹣b=4+1=5.故选:A.【点评】考查了点的坐标,解题的关键是求得a和b的值.7.(2016•滨州)如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A.(2,﹣3)B.(2,3) C.(3,2) D.(3,﹣2)【分析】由题目中A点坐标特征推导得出平面直角坐标系y轴的位置,再通过C、D点坐标特征结合正五边形的轴对称性质就可以得出E点坐标了.【解答】解:∵点A坐标为(0,a),∴点A在该平面直角坐标系的y轴上,∵点C、D的坐标为(b,m),(c,m),∴点C、D关于y轴对称,∵正五边形ABCDE是轴对称图形,∴该平面直角坐标系经过点A的y轴是正五边形ABCDE的一条对称轴,∴点B、E也关于y轴对称,∵点B的坐标为(﹣3,2),∴点E的坐标为(3,2).故选:C.【点评】本题考查了平面直角坐标系的点坐标特征及正五边形的轴对称性质,解题的关键是通过顶点坐标确认正五边形的一条对称轴即为平面直角坐标系的y 轴.8.(2016•菏泽)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.9.(2016•盐城校级一模)如图,小手盖住的点的坐标可能是()A.(6,﹣4)B.(5,2) C.(﹣3,﹣6)D.(﹣3,4)【分析】先判断手所在的象限,再判断象限横纵坐标的正负即可.【解答】解:因为小手盖住的点在第四象限,第四象限内点的坐标横坐标为正,纵坐标为负,且横坐标的绝对值大于纵坐标的绝对值.故只有选项A符合题意,故选:A.【点评】解答此题的关键是熟记平面直角坐标系中各个象限内点的坐标符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).10.(2016•安顺)如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)【分析】直接利用平移中点的变化规律求解即可.【解答】解:由题意可知此题规律是(x+2,y﹣3),照此规律计算可知顶点P(﹣4,﹣1)平移后的坐标是(﹣2,﹣4).故选A.【点评】本题考查了图形的平移变换,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.11.(2016•临澧县模拟)在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b′),给出下列定义:若b′=,则称点Q为点的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(﹣2,5)的限变点的坐标是(﹣2,﹣5),如果一个点的限变点的坐标是(,﹣1),那么这个点的坐标是()A.(﹣1,) B.(﹣,﹣1)C.(,﹣1) D.(,1)【分析】根据新定义的叙述可知:这个点和限变点的横坐标不变,当横坐标a≥1时,这个点和限变点的纵坐标不变;当横坐标a<1时,纵坐标是互为相反数;据此可做出判断.【解答】解:∵>1∴这个点的坐标为(,﹣1)故选C.【点评】本题考查了点的坐标和对新定义的阅读理解,准确找出这个点与限变点的横、纵坐标与a的关系即可.12.(2016•高新区一模)在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3);②g(a,b)=(b,a).如:g(1,3)=(3,1);③h(a,b)=(﹣a,﹣b).如,h(1,3)=(﹣1,﹣3).按照以上变换有:f(g(h(2,﹣3)))=f(g(﹣2,3))=f(3,﹣2)=(﹣3,﹣2),那么f(g(h(﹣3,5)))等于()A.(﹣5,﹣3)B.(5,3) C.(5,﹣3)D.(﹣5,3)【分析】根据f(a,b)=(﹣a,b).g(a,b)=(b,a).h(a,b)=(﹣a,﹣b),可得答案.【解答】解:f(g(h(﹣3,5)))=f(g(3,﹣5)=f(﹣5,3)=(5,3),故选:B.【点评】本题考查了点的坐标,利用f(a,b)=(﹣a,b).g(a,b)=(b,a).h (a,b)=(﹣a,﹣b)是解题关键.二.填空题(共13小题)13.(2017春•海宁市校级月考)点P(3,﹣2)到y轴的距离为3个单位.【分析】求得3的绝对值即为点P到y轴的距离.【解答】解:∵|3|=3,∴点P(3,﹣2)到y轴的距离为3个单位,故答案为:3.【点评】本题主要考查了点的坐标的几何意义:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.14.(2016•衡阳)点P(x﹣2,x+3)在第一象限,则x的取值范围是x>2.【分析】直接利用第一象限点的坐标特征得出x的取值范围即可.【解答】解:∵点P(x﹣2,x+3)在第一象限,∴,解得:x>2.故答案为:x>2.【点评】此题主要考查了点的坐标,正确得出关于x的不等式组是解题关键.15.(2017•涿州市一模)线段AB的长为5,点A在平面直角坐标系中的坐标为(3,﹣2),点B的坐标为(3,x),则点B的坐标为(3,3)或(3,﹣7).【分析】由线段AB的长度结合点A、B的坐标即可得出关于x的含绝对值符号的一元一次方程,解之即可得出x值,由此即可得出点B的坐标.【解答】解:∵线段AB的长为5,A(3,﹣2),B(3,x),∴|﹣2﹣x|=5,解得:x1=3,x2=﹣7,∴点B的坐标为(3,3)或(3,﹣7).故答案为:(3,3)或(3,﹣7).【点评】本题考查了坐标与图形性质、两点间的距离公式以及含绝对值符号的一元一次方程,根据两点间的距离公式找出关于x的含绝对值符号的一元一次方程是解题的关键.16.(2016•黔南州)在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于(﹣3,4).【分析】根据三种变换规律的特点解答即可.【解答】解:○(Ω(3,4))=○(3,﹣4)=(﹣3,4).故答案为:(﹣3,4).【点评】本题考查了点的坐标,读懂题目信息,理解三种变换的变换规律是解题的关键.17.(2016•广安)将点A(1,﹣3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到的点A′的坐标为(﹣2,2).【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可.【解答】解:∵点A(1,﹣3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到点A′,∴点A′的横坐标为1﹣3=﹣2,纵坐标为﹣3+5=2,∴A′的坐标为(﹣2,2).故答案为(﹣2,2).【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.18.(2016•鞍山二模)已知点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,则点P坐标为(﹣1,﹣1).【分析】根据第三象限点的坐标性质得出a的取值范围,进而得出a的值,即可得出答案.【解答】解:∵点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,∴,解得:2<a<3.5,故a=3,则点P坐标为:(﹣1,﹣1).故答案为:(﹣1,﹣1).【点评】此题主要考查了点的坐标,正确得出a的取值范围是解题关键.19.(2016•山西)如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图,若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,﹣1),表示桃园路的点的坐标为(﹣1,0),则表示太原火车站的点(正好在网格点上)的坐标是(3,0).【分析】根据双塔西街点的坐标可知:1号线起点所在的直线为x轴,根据桃园路的点的坐标可知:2号线起点所在的直线为y轴,建立平面直角坐标系,确定太原火车站的点的坐标.【解答】解:由双塔西街点的坐标为(0,﹣1)与桃园路的点的坐标为(﹣1,0)得:平面直角坐标系,可知:太原火车站的点的坐标是(3,0);故答案为:(3,0)【点评】本题考查了利用坐标确定位置,解题的关键就是确定坐标原点和x、y 轴的位置.20.(2016•厦门校级模拟)定义:直线l1与l2相交于点O,对于平面内任意一点P1点P到直线l1与l2的距离分别为p、q则称有序实数对(p,q)是点P的“距离坐标”.根据上述定义,“距离坐标”是(3,2)的点的个数有4个.【分析】首先根据“距离坐标”的含义,可得“距离坐标”是(3,2)到直线l1与l2的距离分别为3、2,然后根据到直线l1的距离是3的点在与直线l1平行且与l1的距离是3的两条平行线上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线上,一共有4个交点,所以“距离坐标”是(3,2)的点的个数有4个,据此解答即可.【解答】解:“距离坐标”是(3,2)到直线l1与l2的距离分别为3、2,因为到直线l1的距离是3的点在与直线l1平行且与l1的距离是3的两条平行线上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线上,一共有4个交点,所以“距离坐标”是(3,2)的点的个数有4个.故答案为:4.【点评】此题主要考查了点的“距离坐标”的含义以及应用,考查了分析推理能力,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:“距离坐标”是(3,2)到直线l1与l2的距离分别为3、2.21.(2016•汕头校级自主招生)在平面直角坐标系中,小明玩走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位,…,依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第8步时,棋子所处位置的坐标是(9,2);当走完第2016步时,棋子所处位置的坐标是(2016,672).【分析】设走完第n步时,棋子所处的位置为点P n(n为自然数),根据走棋子的规律找出部分点P n的坐标,根据坐标的变化找出变化规律“P3n+1(3n+1,n),P3n+2(3n+3,n),P3n+3(3n+3,n+1)”,依此规律即可得出结论.【解答】解:设走完第n步时,棋子所处的位置为点P n(n为自然数),观察,发现规律:P1(1,0),P2(3,0),P3(3,1),P4(4,1),…,∴P3n+1(3n+1,n),P3n+2(3n+3,n),P3n+3(3n+3,n+1).∵8=3×2+2,∴P8(9,2).∵2016=3×671+3,∴P 2016(2016,672).故答案为:(9,2);(2016,672).【点评】本题考查了规律型中的点的坐标变化,解题的关键是找出变化规律“P 3n +1(3n +1,n ),P 3n +2(3n +3,n ),P 3n +3(3n +3,n +1)”.本题属于中档题,难度不大,解决该题型题目时,根据点的变化找出变化规律是关键.22.(2016•岳阳)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P 1,P 2,P 3,…,均在格点上,其顺序按图中“→”方向排列,如:P 1(0,0),P 2(0,1),P 3(1,1),P 4(1,﹣1),P 5(﹣1,﹣1),P 6(﹣1,2)…根据这个规律,点P 2016的坐标为 (504,﹣504) .【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第四象限的角平分线上,被4除余1的点在第三象限的角平分线上,被4除余2的点在第二象限的角平分线上,被4除余3的点在第一象限的角平分线上,点P 2016的在第四象限的角平分线上,且横纵坐标的绝对值=2016÷4,再根据第四项象限内点的符号得出答案即可.【解答】解:由规律可得,2016÷4=504,∴点P 2016的在第四象限的角平分线上,∵点P 4(1,﹣1),点P 8(2,﹣2),点P 12(3,﹣3),∴点P 2016(504,﹣504),故答案为(504,﹣504).【点评】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,所在正方形,然后就可以进一步推得点的坐标.23.(2016•三明)如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P60的坐标是(20,0).【分析】根据图形分别求出n=3、6、9时对应的点的坐标,可知点P3n(n,0),将n=20代入可得.【解答】解:∵P3(1,0),P6(2,0),P9(3,0),…,∴P3n(n,0)当n=20时,P60(20,0),故答案为:(20,0).【点评】本题考查了点的坐标的变化规律,仔细观察图形,分别求出n=3、6、9时对应的点的对应的坐标是解题的关键.24.(2016•金华模拟)在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一条长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣….的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是(0,﹣2).【分析】根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2016÷10=201…6,∴细线另一端在绕四边形第202圈的第6个单位长度的位置,即CD中间的位置,点的坐标为(0,﹣2),故答案为:(0,﹣2).【点评】本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD 一周的长度,从而确定2016个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.25.(2016•乐亭县一模)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的运动规律,经过第2016次运动后,动点P的坐标是(2016,0).【分析】观察动点P运动图象可知,运动次数为偶数时,P点在x轴上,比较其横坐标与运动次数发现规律,根据规律即可解决问题.【解答】解:结合图象可知,当运动次数为偶数次时,P点运动到x轴上,且横坐标与运动次数相等,∵2016为偶数,∴运动2016次后,动点P的坐标是(2016,0).故答案为:(2016,0).【点评】本题考查了点的坐标以及数的变化,解题的关键是发现“当运动次数为偶数次时,P点运动到x轴上,且横坐标与运动次数相等”这已变化规律.本题属于基础题,难度不大,解题时可先看求什么?根据所求再去寻找规律能够简化很多.三.解答题(共15小题)26.(2016春•黄埔区期末)在如图所示的直角坐标系中描出下列各点:A(﹣2,0),B(2,5),C(﹣,﹣3)【分析】根据平面直角坐标系中点的表示方法找出各点的位置即可.【解答】解:如图所示.【点评】本题考查了点坐标,熟练掌握平面直角坐标系中的点的表示方法是解题的关键.27.(2016秋•商河县校级月考)在如图中,确定点A、B、C、D、E、F、G的坐标.请说明点B和点F有什么关系?【分析】从图形中找到各点对应的横纵坐标,从而进行求解.【解答】解:各点的坐标为:A(﹣4,4)、B(﹣3,0)、C(﹣2,﹣2)、D(1,﹣4)、E(1,﹣1)、F(3,0)、G(2,3),点B和点F关于y轴对称,且关于原点对称.【点评】本题考查了在平面直角坐标系中确定点的坐标,是一道简单的基础题.28.(2017春•滨海县月考)求图中四边形ABCD的面积.【分析】由图可得:四边形ABCD的面积=矩形EFGH的面积﹣△AEB的面积﹣△AHD的面积﹣△BFC的面积﹣△CGD的面积,即可解答.【解答】解:如图,S四边形ABCD=S矩形EFGH﹣S△AEB﹣S△AHD﹣S△BFC﹣S△CDG==25.【点评】本题考查了坐标与图形性质,解决本题的关键是结合图形四边形ABCD 的面积=矩形EFGH的面积﹣△AEB的面积﹣△AHD的面积﹣△BFC的面积﹣△CGD的面积.29.(2016春•垦利县期末)在平面直角坐标系中,点A(2m﹣7,m﹣5)在第四象限,且m为整数,试求的值.【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列不等式组求出m 的取值范围,再根据m是整数解答即可.【解答】解:∵点A(2m﹣7,m﹣5)在第四象限,∴解得:.∵m为整数,∴m=4.∴.【点评】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).。

中考数学平面直角坐标系专题训练题

中考数学平面直角坐标系专题训练题

中考复习数学专题训练:《平面直角坐标系》解答题专项培优(三)1.已知平面直角坐标系中有一点P(2m+1,m﹣3).(1)若点P在第四象限,求m的取值范围;(2)若点P到y轴的距离为3,求点P的坐标.2.已知:点P(2﹣a,3),且点P到x轴、y轴的距离相等.求:点P的坐标.3.在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),则称点Q是点P的“a级关联点”(其中a为常数,且a≠0),例如,点P(1,4)的“2级关联点”为Q(2×1+4,1+2×4),即Q(6,9).(1)若点P的坐标为(﹣1,5),则它的“3级关联点”的坐标为;(2)若点P的“5级关联点”的坐标为(9,﹣3),求点P的坐标;(3)若点P(m﹣1,2m)的“﹣3级关联点”P′位于坐标轴上.求点P′的坐标.4.已知点P(8﹣2m,m﹣1).(1)若点P在x轴上,求m的值.(2)若点P到两坐标轴的距离相等,求P点的坐标.5.在平面直角坐标系中,已知点M(m﹣1,2m+3)(1)若点M在y轴上,求m的值.(2)若点M在第一、三象限的角平分线上,求m的值.6.在平面直角坐标系中,一只蚂蚁从原点O出发,按向上、向右、向下、向右……的方向依次不断移动,每次移动一个单位长度,其行走路线如图.(1)填写下列各点的坐标:A1(,),A3(,),A12(,);(2)写出点A n的坐标(n是4的倍数);(3)写出A 2016和点A 2017的坐标,并指出蚂蚁从点A 2016到点A 2017的移动方向.7.综合与实践问题背景:(1)已知A (1,2),B (3,2),C (1,﹣1),D (﹣3,﹣3).在平面直角坐标系中描出这几个点,并分别找到线段AB 和CD 中点P 1、P 2,然后写出它们的坐标,则P 1 ,P 2 .探究发现:(2)结合上述计算结果,你能发现若线段的两个端点的坐标分别为(x 1,y 1),(x 2,y 2),则线段的中点坐标为 .拓展应用:(3)利用上述规律解决下列问题:已知三点E (﹣1,2),F (3,1),G (1,4),第四个点H (x ,y )与点E 、点F 、点G 中的一个点构成的线段的中点与另外两个端点构成的线段的中点重合,求点H 的坐标.8.如图,学校植物园的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中,已知小正方形的边长为1米,则A 1的坐标为(2,2)、A 2的坐标为(5,2)(1)A 3的坐标为 ,A n 的坐标(用n 的代数式表示)为 .(2)2020米长的护栏,需要两种正方形各多少个?9.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.(1)填写下列各点的坐标:A 4 ,A 8 ;(2)写出点A 4n 的坐标(n 为正整数) ;(3)蚂蚁从点A 2014到点A 2017的移动方向 .10.如图,在直角坐标系的坐标轴上按如下规律取点:A 1在x 轴正半轴上,A 2在y 轴正半轴上,A 3在x 轴负半轴上,A 4在y 轴负半轴上,A 5在x 轴正半轴上,…,且OA 1+1=OA 2,OA 2+1=OA 3,OA 3+1=OA 4…,设A 1,A 2,A 3,A 4…,有坐标分别为(a 1,0),(0,a 2),(a 3,0),(0,a 4)…,s n =a 1+a 2+a 3+…+a n .(1)当a 1=1时,求a 5的值;(2)若s 7=1,求a 1的值;(3)当a 1=1时,直接写出用含k (k 为正整数)的式子表示x 轴负半轴上所取点坐标.11.如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A (1,2),解答以下问题:(1)请在图中建立适当的直角坐标系,并写出图书馆(B )位置的坐标;(2)若体育馆位置坐标为C (﹣3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC ,求△ABC 的面积.12.国庆假期期间,笑笑所在的学习小组组织了到方特梦幻王国的游园活动,笑笑和乐乐对着景区示意图(如图所示)讨论景点位置:(图中小正方形边长代表100m)笑笑说:“西游传说坐标(300,300).”乐乐说:“华夏五千年坐标(﹣100,﹣400).”若他们二人所说的位置都正确(1)在图中建立适当的平面直角坐标系xOy;(2)用坐标描述其他地点的位置.13.如图所示的是某市市政府周边的一些建筑,以市政府为坐标原点,建立平面直角坐标系(每个小方格的边长为1).(1)请写出商会大厦和医院的坐标;(2)王老师在市政府办完事情后,沿(2,0)→(2,﹣1)→(2,﹣3)→(0,﹣3)→(0,﹣1)→(﹣2,﹣1)的路线逛了一下,然后到汽车站坐车回家,写出他路上经过的地方.14.如图(小方格的边长为1),这是某市部分简图.(1)请你根据下列条件建立平面直角坐标系(在图中直接画出):①火车站为原点;②宾馆的坐标为(2,2).(2)市场、超市的坐标分别为、;(3)请将体育场、宾馆和火车站看作三点,用线段连起来,得△ABC,然后将此三角形向下平移4个单位长度,再画出平移后的△A′B′C′(在图中直接画出);(4)根据坐标情况,求△ABC的面积.15.如图,这是某市部分简图,为了确定各建筑物的位置:(图中小正方形的边长代表100m 长)(1)请你以火车站为原点建立平面直角坐标系.(2)写出市场、超市、医院的坐标.16.在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P,Q两点为“等距点”.下图中的P,Q两点即为“等距点”.(1)已知点A的坐标为(﹣3,1),①在点E(0,3),F(3,﹣3),G(2,﹣5)中,为点A的“等距点”的是;②若点B的坐标为B(m,m+6),且A,B两点为“等距点”,则点B的坐标为;(2)若T1(﹣1,﹣k﹣3),T2(4,4k﹣3)两点为“等距点”,求k的值.17.在平面直角坐标系xOy中,对任意两点P1(x1,y1),P2(x2,y2),如果|x1﹣x2|+|y1﹣y2|=d,则称P1与P2互为“d﹣距点”.例如:点P1(3,6),p2(1,7),由d=|3﹣1|+|6﹣7|=3,可得P1与P2互为“3﹣距点”.(1)在点D(﹣2,﹣2),E(5,﹣1),F(0,4)中,原点O的“4﹣距点”是(填字母);(2)已知点A(2,1),点B(0,b),过点B平行于x轴的直线l.①当b=3时,直线l上的点A的“2﹣距点”的坐标为;②若直线l上存在点A的“2﹣距点”,在坐标系中画出这些A的“2﹣距点”组成的图形,并写出b的取值范围.18.已知M(3|a|﹣9,4﹣2a)在y轴负半轴上,直线MN∥x轴,且线段MN长度为4.(1)求点M的坐标;(2)求(2﹣a)2020+1的值;(3)求N点坐标.19.如图1,在平面直角坐标系中,点A、B、C、D均在坐标轴上,AB∥CD.(1)求证:∠ABO+∠CDO=90°;(2)如图2,BM平分∠ABO交x轴于点M,DN平分∠CDO交y轴于点N,求∠BMO+∠OND 的值.20.在平面直角坐标系中,已知点M (m ﹣1,2m +3).(1)若点M 在y 轴上,求m 的值.(2)若点N (﹣3,2),且直线MN ∥y 轴,求线段MN 的长.21.阅读一段文字,再回答下列问题:已知在平面内两点的坐标为P 1(x 1,y 1),P 2(x 2,y 2),则该两点间距离公式为P 1P 2=,同时,当两点在同一坐标轴上或所在直线平行于x 轴、平行于y 轴时,两点间的距离公式可化简成|x 1﹣x 2|和|y 1﹣y 2|(1)若已知两点A (3,3),B (﹣2,﹣1),试求A ,B 两点间的距离;(2)已知点M ,N 在平行于y 轴的直线上,点M 的纵坐标为7,点N 的纵坐标为﹣2,试求M ,N 两点间的距离;(3)已知一个三角形各顶点的坐标为A (﹣1,),B (,),C (,),你能判定这三点是否共线?若共线请说明理由,若不共线请求出图形的面积.22.先阅读下列一段文字,再回答后面的问题:已知在平面直角坐标系内两点P 1(x 1,y 1),P 2(x 2,y 2),其两点间的距离P 1P 2=,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2﹣x 1|或|y 2﹣y |.(1)已知A (1,3),B (﹣3,﹣5),试求A ,B 两点间的距离;(2)已知线段MN ∥y 轴,MN =4,若点M 的坐标为(2,﹣1),试求点N 的坐标;(3)已知一个三角形各顶点坐标为D (0,6),E (﹣3,2),F (3,2),你能判定此三角形的形状吗?说明理由.23.在平面直角坐标系中,有A (﹣2,a +1),B (a ﹣1,4),C (b ﹣2,b )三点.(1)当AB ∥x 轴时,求A 、B 两点间的距离;(2)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标.24.在平面直角坐标系中,有A (﹣2,a +2),B (a ﹣3,4)C (b ﹣4,b )三点.(1)当AB ∥x 轴时,求A 、B 两点间的距离;(2)当CD ⊥x 轴于点D ,且CD =3时,求点C 的坐标.25.如图①,我们在“格点”直角坐标系上可以清楚看到:要找AB 或DE 的长度,显然是转化为求Rt △ABC 或Rt △DEF 的斜边长.下面:以求DE 为例来说明如何解决:从坐标系中发现:D (﹣7,5),E (4,﹣3).所以DF =|5﹣(﹣3)|=8,EF =|4﹣(﹣7)|=11,所以由勾股定理可得:DE ==. 下面请你参与:(1)在图①中:AC = ,BC = ,AB = .(2)在图②中:设A (x 1,y 1),B (x 2,y 2),试用x 1,x 2,y 1,y 2表示AC = ,BC = ,AB = .(3)(2)中得出的结论被称为“平面直角坐标系中两点间距离公式”,请用此公式解决如下题目:已知:A (2,1),B (4,3),C 为坐标轴上的点,且使得△ABC 是以AB 为底边的等腰三角形.请求出C 点的坐标.参考答案1.解:(1)由题知,解得:﹣<m <3;(2)由题知|2m +1|=3,解得m =1或m =﹣2.当m =1时,得P (3,﹣2);当m =﹣2时,得P (﹣3,﹣5).综上,点P 的坐标为(3,﹣2)或(﹣3,﹣5).2.解:∵点P(2﹣a,3)到x轴、y轴的距离相等.∴|2﹣a|=3,∴2﹣a=±3,∴a=5或a=﹣1,∴点P的坐标(﹣3,3)或(3,3).3.解:(1)3×(﹣1)+5=2;﹣1+3×5=14,∴若点P的坐标为(﹣1,5),则它的“3级关联点”的坐标为(2,14).故答案为:(2,14);(2)设点P的坐标为(a,b),由题意可知,解得:,∴点P的坐标为(2,﹣1);(3)∵点P(m﹣1,2m)的“﹣3级关联点”为P′(﹣3(m﹣1)+2m,m﹣1+(﹣3)×2m),①P′位于x轴上,∴m﹣1+(﹣3)×2m=0,解得:m=,∴﹣3(m﹣1)+2m=4,∴P′(4,0).②P′位于y轴上,∴﹣3(m﹣1)+2m=0,解得:m=3∴m﹣1+(﹣3)×2m=﹣16,∴P′(0,﹣16).综上所述,点P′的坐标为(4,0)或(0,﹣16).4.解:(1)∵点P(8﹣2m,m﹣1)在x轴上,∴m﹣1=0,解得:m=1;(2)∵点P 到两坐标轴的距离相等,∴|8﹣2m |=|m ﹣1|,∴8﹣2m =m ﹣1或8﹣2m =1﹣m ,解得:m =3或m =7,∴P (2,2)或(﹣6,6).5.解:(1)由题意得:m ﹣1=0,解得:m =1;(2)由题意得:m ﹣1=2m +3,解得:m =﹣4.6.解:(1)∵蚂蚁每次移动1个单位,∴OA 1=1,OA 3=1,OA 12=6,∴A 1(0,1),A 3(1,0),A 12(6,0);故答案为:0,1;1,0,6,0;(2)根据(1)OA n =n ÷2=,∴点A 4n 的坐标(,0);(3)∵2016÷4=504,∴从点A 2016到点A 2018的移动方向:点A 2016在x 轴上,向上移动一个到A 2017,∴A 2016(1008,0),A 2017(1008,1).7.解:(1)如图:A (1,2),B (3,2),C (1,﹣1),D (﹣3,﹣3).在平面直角坐标系中描出它们如下:线段AB 和CD 中点P 1、P 2的坐标分别为(2,2)、(﹣1,﹣2)故答案为:(2,2)、(﹣1,﹣2).(2)若线段的两个端点的坐标分别为(x1,y1),(x2,y2),则线段的中点坐标为.故答案为:.(3)∵E(﹣1,2),F(3,1),G(1,4),∴EF、FG、EG的中点分别为:(1,)、(2,)、(0,3)∴①HG过EF中点(1,)时,=1,=解得:x=1,y=﹣1,故H(1,﹣1);②EH过FG中点(2,)时,=2,=解得:x=5,y=3,故H(5,3);③FH过EG的中点(0,3)时,=0,=3解得:x=﹣3,y=5,故H(﹣3,5).∴点H的坐标为:(1,﹣1),(5,3),(﹣3,5).8.解:(1)∵A1的坐标为(2,2)、A2的坐标为(5,2),∴A1,A2,A3,…,A n各点的纵坐标均为2,∵小正方形的边长为1,∴A1,A2,A3,…,A n各点的横坐标依次大3,∴A3(5+3,2),A n(,2),即A3(8,2),A n(3n﹣1,2),故答案为(8,2);(3n﹣1,2);(2)∵2020÷3=673…1,∴需要小正方形674个,大正方形673个.9.解:(1)由图可知,A4,A8,A12都在x轴上,∵小蚂蚁每次移动1个单位,∴OA4=2,OA8=4,∴A 4(2,0),A 8(4,0),故答案为:(2,0);(4,0);(2)根据(1)OA 4n =4n ÷2=2n ,∴点A 4n 的坐标(2n ,0);故答案为:(2n ,0);(3)∵2014÷4=503…2,∴2014除以4余数为2,∴从点A 2014到点A 2017的移动方向与从点A 2到A 5的方向一致为:向下,向右,再向上. 故答案为:向下,向右,再向上.10.解:(1)当a 1=1时,a 2=1+1=2,a 3=﹣(2+1)=﹣3,a 4=﹣(3+1)=﹣4,a 5=4+1=5;(2)∵a 2=a 1+1,a 3=﹣(a 1+2),a 4=﹣(a 1+3),a 5=a 1+4,a 6=a 1+5,a 7=﹣(a 1+6), ∴s 7=a 1+a 2+…+a 7=a 1﹣1,当s 7=1时,则a 1﹣1=1,∴a 1=2;(3)∵当a 1=1时,则a 3=﹣3,a 7=﹣7,a 11=﹣11,…∴a 4k ﹣1=﹣(4k ﹣1)=﹣4k +1∴A 4k ﹣1(﹣4k +1,0).11.解:(1)建立直角坐标系如图所示:图书馆(B)位置的坐标为(﹣3,﹣2);(2)标出体育馆位置C如图所示,观察可得,△ABC中BC边长为5,BC边上的高为4,所以△ABC的面积为==10.12.解:(1)如图所示:(2)太空飞梭(0,0),秦岭历险(0,400),魔幻城堡(400,﹣200),南门(0,﹣500),丛林飞龙(﹣200,﹣100).13.解:(1)由图可得:商会大厦的坐标为(﹣1,2),医院的坐标为(3,1).(2)路上经过的地方为:大剧院,体育公园,购物广场.14.解:(1)如图,(2)市场的坐标为(4,3),超市的坐标为(2,﹣3);(3)如图;(4)△ABC面积=3×6﹣×2×2﹣×4×3﹣×1×6=18﹣2﹣6﹣3=7.故答案为(4,3),(2,﹣3).15.解:(1)建立平面直角坐标系如图所示;(2)市场(400,300),医院(﹣200,﹣200),超市(200,﹣300).16.解:(1)①∵点A (﹣3,1)到x 、y 轴的距离中最大值为3,∴与A 点是“等距点”的点是E 、F .②当点B 坐标中到x 、y 轴距离其中至少有一个为3的点有(3,9)、(﹣3,3)、(﹣9,﹣3),这些点中与A 符合“等距点”的是(﹣3,3).故答案为①E 、F ;②(﹣3,3);(2)T 1(﹣1,﹣k ﹣3),T 2(4,4k ﹣3)两点为“等距点”,①若|4k ﹣3|≤4时,则4=﹣k ﹣3或﹣4=﹣k ﹣3解得k =﹣7(舍去)或k =1.②若|4k ﹣3|>4时,则|4k ﹣3|=|﹣k ﹣3|解得k =2或k =0(舍去).根据“等距点”的定义知,k =1或k =2符合题意.即k 的值是1或2.17.解:(1)∵|﹣2﹣0|+|﹣2﹣0|=4,|5﹣0|+|﹣1﹣0|=6,|0﹣0|+|4﹣0|=4, ∴原点O 的“4﹣距点”是点D 、点F .故答案为:D 、F ;(2)①∵点B (0,b ),l 为过点B 平行于x 轴的直线,∴当b =3时,l 为直线y =3,设直线l 上的点A (2,1)的“2﹣距点”的坐标为(x ,3),则有:|2﹣x |+|1﹣3|=2,解得:x =2,∴直线l 上的点A (2,1)的“2﹣距点”的坐标为(2,3);故答案为:(2,3);②由①知当直线l经过点(2,3)时,b=3;∵A(2,1),l为过点B平行于x轴的直线,∴当直线l经过点(2,﹣1)时,b=﹣1,∴若直线l上存在点A的“2﹣距点”,则b的取值范围是﹣1≤b≤3.如图所示:18.解:(1)∵M在y轴负半轴上,∴3|a|﹣9=0,且4﹣2a<0,∴a=±3,且a>2,∴a=3.∴4﹣2a=﹣2,M(0,﹣2);(2)∵a=3,∴(2﹣a)2020+1=(2﹣3)2020+1=1+1=2;(3)∵直线MN∥x轴,M(0,﹣2),∴设N(x,﹣2),又∵线段MN长度为4,∴MN=|x﹣0|=|x|=4,∴x=±4,∴N(4,﹣2)或(﹣4,﹣2).19.(1)证明:∵AB∥CD,∴∠ABO=∠DCO,∵∠DCO+∠CDO=90°;∴∠ABO+∠CDO=90°;(2)∵BM平分∠ABO,DN平分∠CDO,∴∠MBO=∠ABO,∠NDO=∠CDO,∴∠MBO+∠NDO=(∠ABO+∠CDO)=45°,∴∠BMO+∠OND=135°.20.解:(1)由题意得:m﹣1=0,解得:m=1;(2)∵点N(﹣3,2),且直线MN∥y轴,∴m﹣1=﹣3,解得m=﹣2.∴M(﹣3,﹣1),∴MN=2﹣(﹣1)=3.21.解:(1)∵点A(3,3),B(﹣2,﹣1),∴AB==,即A,B两点间的距离是;(2)∵点M,N在平行于y轴的直线上,点M的纵坐标为7,点N的纵坐标为﹣2,∴MN=|﹣2﹣7|=9,即M,N两点间的距离是9;(3)这三点不共线,该三角形为直角三角形.理由:∵一个三角形各顶点的坐标为A(﹣1,),B(,),C(,),∴AB==,AC==,BC==,∵AB2+AC2=()2+()2=()2=BC2,∴△ABC是直角三角形,=AB•AC=××=.∴S△ABC22.解:(1)A,B两点间的距离==4;(2)∵线段MN∥y轴,∴M、N的横坐标相同,设N(2,t),∴|t+1|=4,解得t=3或﹣5,∴N点坐标为(2,3)或(2,﹣5);(3)△DEF为等腰三角形.理由如下:∵D(0,6),E(﹣3,2),F(3,2),∴DE==5,DF==5,EF==6,∴DE=DF,∴△DEF为等腰三角形.23.解:(1)∵AB∥x轴,∴A、B两点的纵坐标相同.∴a+1=4,解得a=3.∴A、B两点间的距离是|(a﹣1)+2|=|3﹣1+2|=4.(2)∵CD⊥x轴,∴C、D两点的横坐标相同.∴D(b﹣2,0).∵CD=1,∴|b|=1,解得b=±1.当b=1时,点C的坐标是(﹣1,1).当b=﹣1时,点C的坐标是(﹣3,﹣1).24.解:(1)∵AB∥x轴,∴A点和B的纵坐标相等,即a+2=4,解得a=2,∴A(﹣2,4),B(﹣1,4),∴A、B两点间的距离为﹣1﹣(﹣2)=1;(2)∵当CD⊥x轴于点D,CD=3,∴|b|=3,解得b=3或b=﹣3,∴当b=3时,b﹣4=﹣1;当b=﹣3时,b﹣4=﹣7,∴C点坐标为(﹣1,3)或(﹣7,﹣3).25.解:(1)AC=4,BC=3,AB==5;(2)结合图形可得:AC=y1﹣y2,BC=x1﹣x2,AB=.(3)若点C在x轴上,设点C的坐标为(x,0),则AC=BC,即=,解得:x=5,即点C的坐标为(5,0);若点C在y轴上,设点C的坐标为(0,y),则AC=BC,即=,解得:y=5,即点C的坐标为(0,5).综上可得点C的坐标为(5,0)或(0,5).故答案为:4,3,5;y1﹣y2,x1﹣x2,A.。

2024年中考数学一轮专题特训:平面直角坐标系含参考答案.docx

2024年中考数学一轮专题特训:平面直角坐标系含参考答案.docx

2024年中考数学一轮专题特训:平面直角坐标系一、单选题A .()5,2B .(-3.如图,在平面直角坐标系中,菱形标为(10)-,,120BCD ∠=︒,则点A .()2,2-B .(4.如图,在平面直角坐标系A .4B .55.如图,在平面直角坐标系xOy 中,A.22B.336.如图,在平面直角坐标系中,点边作矩形OABC.动点,E F分别从点,OA BC向终点,A C移动.当移动时间为A.10B.910C 7.如图,平面直角坐标系中,A为第一象限一点,绕O点逆时针旋转30︒,此时点A的对应点1AA.()33,B.(8.如图,在四边形ABCD中,90ADC∠=︒,CD x∥轴,旋转90︒,则第2023次旋转结束时,点A .()8,2B .()8,2-C .()2,8D .()2,8--二、填空题10.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为ABCD 的边AB 在x 11.如图所示,动点反弹时反射角等于入射角,当点13.如图,在平面直角坐标系中,点子跳蚤从坐标原点O出发,第一次跳跃到点对称;第二次跳跃到点14.如图,菱形ABCD的顶点B在x轴上,的坐标为(0,1),则点D的坐标为P x y 15.在平面直角坐标系中,点(),P'叫做点P的和谐点.已知点P这样由1P依次得到2P、3P、4P…三、解答题17.在平面直角坐标系中,ABC 是等腰直角三角形,且90ACB ∠=︒,AC BC =,顶点A 、C 分别在y 轴、x 轴上.(1)如图,已知点()0,2A -,()1,0C ,点B 在第四象限时,则点B 的坐标为_________________;(2)如图,点C 、A 分别在x 轴、y 轴负半轴上,BC 边交y 轴于点D ,AB 边交x 轴于点E ,若AD 平分BAC ∠,点B 坐标为(),m n .探究线段AD 、OC 、OD 之间的数量关系.请回答下列问题:①写出点C 的坐标为_____________,点A 的坐标为_____________,点D 的坐标为_____________;②直接写出线段AD 、OC 、OD 之间的数量关系:_______________.18.如图,ABC 三个顶点的坐标分别为()4,1A -,()3,3B -,()1,2C -.(1)作出ABC 关于y 轴对称的A B C ''' ,并写出A '的坐标;(2)求出ABC 的面积;(3)在x 轴上画出点P ,使PA PC +最小,并写出点P 的坐标.(不写作法,保留作图痕迹)19.如图,在平面直角坐标系xOy 中,点A ,B 的坐标分别为()0,2A ,()8,8B ,点(),0C m 为x 轴正半轴上一个动点.(1)当4m =时,写出线段,AC BC 的长;(2)求ABC 的面积(用含m 的代数式表示);(3)当点C 运动时,是否存在ABC 为直角三角形(不以点C 为直角顶点)?如果存在,请求出这个三角形的面积;如果不存在,请说明理由.20.如图,ABC 在正方形网格中,若点(4,7)A -,点(6,1)B -,解答下列问题:(1)直接在图中画出直角坐标系,并写出点C 的坐标;(2)在图中作出ABC 关于x 轴对称的111A B C △;(3)在y 轴上找一点P ,使得PA PC +的值最小,并求出此时PA PC +的值.21.在平面直角坐标系中,()5,0A -,()0,5B ,点C 为x 正半轴上一动点,过点A 作AD BC ⊥交y 轴于点E .(1)如图①,若()3,0C ,求点E 的坐标;(2)如图②,若点C 在x 轴正半轴上一动点,且5OC <,其它条件不变,连接DO ,求证:DO 平分ADC ∠.22.如图①,在ABC 中,90ACB ∠=︒,CB CA =,直线ED 经过点C ,过点A 作AD ED ⊥于点D ,过点B 作BE ED ⊥于点E ,易证明BEC CDA ≌,我们将这个模型称为“一线三直角”.接下来我们就利用这个模型来解决一些问题:(1)如图②,将一块三角板ACB 放置在平面直角坐标系中,90ACB ∠=︒,AC BC =,点A 的坐标为()0,2,点C 的坐标为()1,0-,点B 在第二象限,求点B 的坐标;(2)如图③,在平面直角坐标系中,90ACB ∠=︒,AC BC =,点C 的坐标为()0,1-,点A 的坐标为()2,0,求点B 的坐标.参考答案:∵点A 的坐标为()9,0,点C 的坐标为()0,3∴()9,3B ,2239310AC =+=则9OA =,9BC OA ==∵菱形的边长为2,ABC ∠∴2CO DC ==,DCE ∠在Rt CDE △中,CE DE=∴2222CE DE CD +==【点睛】本题主要考查了平面直角坐标系中求点的坐标,性质是解题的关键.15.()4,1-【分析】利用点(),P x y 的和谐点的定义分别写出点次函数解析式,利用待定系数法求得该直线方程是1y x =+;最后,利用等腰直角三角形的性质推知点1n B -的坐标,然后将其横坐标代入直线方程1y x =+求得相应的y 值,从而得到点n A 的坐标,再将8n =代入即可得出答案.【详解】解:如图, 点1B 的坐标为(1,0),点2B 的坐标为(3,0),11OB ∴=,23OB =,则122B B =.11A B O 是等腰直角三角形,1190A OB ∠=︒,111OA OB ∴==.∴点1A 的坐标是(0,1).同理,在等腰直角221A B B △中,21290A B B ∠=︒,21122A B B B ==,则2(1,2)A .点1A 、2A 均在一次函数y kx b =+的图象上,∴12b k b=⎧⎨=+⎩,解得11k b =⎧⎨=⎩,∴该直线方程是1y x =+.点3A ,2B 的横坐标相同,都是3,∴当3x =时,4y =,即3(3,4)A ,则324A B =,3(7,0)B ∴.同理,4(15,0)B ,⋯(21,0)n n B -,∴当121n x -=-时,112112n n y --=-+=,即点n A 的坐标为11(21,2)n n ---.8A ∴的坐标为:()818121,2---即()127,128故答案为:()127,128.【点睛】本题考查了一次函数图象上点的坐标特点,涉及到的知识点有待定系数法求一次函数解析式,一次函数图象上点的坐标特征以及等腰直角三角形的性质.解答该题的难点是找出点n B 的坐标的规律.17.(1)()3,1-;(2)①()0n -,,()0,m n --,()0,m n -;②22AD OC OD=+【分析】(1)过B 点作x 轴垂线,垂足为D ,由题意可证得()AAS OCA DBC ≌,故2CD OA ==,1BD OC ==,3OD OC CD =+=,即可知B 点坐标为()3,1-;(2)过B 点作x 轴垂线,垂足为F ,连接DE ,①由题意可证得()AAS OCA FBC ≌,故可求ACE △为等腰三角形,则可证得()AAS ODE FEB ≌,便可知OC n =,OA OF OC m n =+=+,DO OF OE m n =-=-,即点C 的坐标为()0n -,,点A 的坐标为()0,m n --,点D 的坐标为()0,m n -;②由①问知2AD OD AO m n m n m =+=-++=,OC n =,OD m n =-,故有22AD OC OD =+.【详解】(1)解:过B 点作x 轴垂线,垂足为D ,由题意知2AO =,1OC =,AC BC =,90COA BDC ∠=∠=︒∵90OCA OAC ∠+∠=︒,90OCA DCB ∠+∠=︒,∴OAC BCD ∠=∠,在OCA 和DBC △中有90OAC BCD COA BDC AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()AAS OCA DBC ≌∴2CD OA ==,1BD OC ==,3OD OC CD =+=,故B 点坐标为()3,1-;故答案为:()3,1-;(2)过B 点作x 轴垂线,垂足为F ,连接DE ,∵点B 坐标为(),m n ,且点B 在第一象限∴0m >,0n >,BF n =,OF m =,①由题意知BC AC =,90COA BFC ∠=∠=︒,∵90BCF OAC ∠+∠=︒,90OCA OAC ∠+∠=︒,∴OAC BCF∠=∠在OCA 和FBC 中有90OAC BCF COA BFC AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()AAS OCA FBC ≌∴BF CO =,OA CF=∵BF n =,OF m =,故OC n =,OA OF OC m n =+=+,∵AD 平分BAC∠∴OAC OAE∠=∠∴OCA OAC OEA OAE∠+∠=∠+∠∴AC AE=【点睛】本题考查作图-轴对称变换,轴对称最短问题等知识,解题的关键是周围轴对称变换的性质,学会利用轴对称解决最短问题.19.(1)25AC =,45BC =(2)38ABC S m =+ (3)存在m 的值为32或14,使ABC 为直角三角形,其面积分别为【分析】(1)过点BE x ⊥作轴于E ,由A ,4OC =,再由勾股定理可求解;(2)分两种情况讨论,由面积关系可求解;(3)分三种情况讨论,由勾股定理可求解.【详解】(1)解:如图,过点B 作BE x ⊥∵()0,2A ,()8,8B ,()4,0C ,∴8BE =,8OE =,2AO =,4OC =,(2)解:当点C 在线段∵()0,2A ,()8,8B ,(C ∴8BE =,8OE =,AO ∴()1S AO BE =⨯+⨯点(2,4)C -.(2)如图,111A B C △即为所求.(3)如图,作点C 关于y 轴的对称点C ',连接此时PA PC +最小,此时2236PA PC PA PC AC ''+=+==+=【点睛】本题考查了勾股定理,坐标与图形,画轴对称图形,熟练掌握轴对称的性质是解题的关键.21.(1)(0,3)(2)见详解【分析】(1)证明AOE BOC △△≌,由全等三角形的性质可得(2)过点O 作OM DA ⊥于点M ,过点O 作∵AOE BOC △△≌,∴AE BC =,AOE BOC S S =△△,∴1122AE OM BC ON ⨯=⨯,∴OM ON =,证明AOE BOC △△≌是解题关键.22.(1)(3,1)B -(2)(1,1)B -【分析】(1)过点B 作BD ⊥x 轴于点D ,由“一线三直角”得CBD ACO ≌△△,则1BD OC ==,2CD OA ==,即可求解.(2)过点B 作BE y ⊥轴于点E ,证CEB AOC ≌△△,得1BE OC ==,2CE OA ==,则1OE CE OC =-=,即可求解.【详解】(1)过点B 作BD x ⊥轴于点D ,则90BDC COA ∠=∠=︒,如图2所示:∵点A 的坐标为(0,2),点C 的坐标为(1,0)-,∴=2OA ,1OC =,∵ABC 是等腰直角三角形,∴90ACB ∠=︒,=AB BC ,由“一线三直角”,得CBD ACO ≌△△(AAS)∴1BD OC ==,2CD OA ==,∴3OD OC CD =+=,∴点B 的坐标为(3,1)-.(2)如图3,过点B 作BE y ⊥轴于点E ,∵点C 坐标为(0,1)-,点A 的坐标为(2,0),∴1OC =,=2OA ,∵90BEC AOC ACB ∠=∠=∠=︒,∴ACO CBE ∠=∠,∵CB CA =,∴CEB AOC ≌△△(AAS),∴1BE OC ==,2CE OA ==,∴1OE CE OC =-=,∴点B 坐标为(1,1)-.【点睛】此题考查了全等三角形的判定与性质、坐标与图形的性质等知识,解题的关键是正确作出辅助线构造全等三角形.。

中考数学专题练习 平面直角坐标系(解析版)

中考数学专题练习 平面直角坐标系(解析版)

平面直角坐标系1.已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A.B.C.D.2.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()A.(13,13)B.(﹣13,﹣13) C.(14,14)D.(﹣14,﹣14)3.坐标平面上,在第二象限内有一点P,且P点到x轴的距离是4,到y轴的距离是5,则P点坐标为何()A.(﹣5,4)B.(﹣4,5)C.(4,5)D.(5,﹣4)4.在平面直角坐标系中,点P(﹣1,3)位于()A.第一象限B.第二象限C.第三象限D.第四象限5.在直角坐标系中,点(2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限6.在平面直角坐标系中,点P的坐标为(﹣2,a2+1),则点P所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:①f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);②g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1).按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]等于()A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)8.在平面直角坐标系中,点P(2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限9.在一次“寻宝”人找到了如图所示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都是,则“宝藏”点的坐标是()A.(1,0)B.(5,4)C.(1,0)或(5,4)D.(0,1)或(4,5)10.如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)11.如图,雷达探测器测得六个目标A、B、C、D、E、F出现.按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°).按照此方法在表示目标A、B、D、E的位置时,其中表示不正确的是()A.A(5,30°)B.B(2,90°)C.D(4,240°)D.E(3,60°)12.以百色汽车总站为坐标原点,向阳路为y轴建立直角坐标系,百色起义纪念馆位置如图所示,则其所覆盖的坐标可能是()A.(﹣5,3)B.(4,3)C.(5,﹣3)D.(﹣5,﹣3)13.如图所示,A(﹣,0)、B(0,1)分别为x轴、y轴上的点,△ABC为等边三=S△ABC,则a的值为()角形,点P(3,a)在第一象限内,且满足2S△ABPA.B.C.D.214.如图,在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(﹣3,1)B.(4,1)C.(﹣2,1)D.(2,﹣1)15.如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y轴交于M(0,2),N(0,8)两点,则点P的坐标是()A.(5,3)B.(3,5)C.(5,4)D.(4,5)16.在平面直角坐标系xOy中,已知点P(2,2),点Q在y轴上,△PQO是等腰三角形,则满足条件的点Q共有()A.5个 B.4个 C.3个 D.2个17.如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A.2 B.3 C.4 D.518.如图在平面直角坐标系中,□MNEF的两条对角线ME,NF交于原点O,点F的坐标是(3,2),则点N的坐标是()A.(﹣3,﹣2)B.(﹣3,2)C.(﹣2,3)D.(2,3)19.如图,在平面直角坐标系中,菱形OABC的顶点C的坐标是(3,4),则顶点A、B 的坐标分别是()A.(4,0)(7,4)B.(4,0)(8,4)C.(5,0)(7,4)D.(5,0)(8,4)20.菱形OABC在平面直角坐标系中的位置如图所示,若OA=2,∠AOC=45°,则B点的坐标是()A.(2+,)B.(2﹣,) C.(﹣2+,)D.(﹣2﹣,)21.如图,在平面直角坐标系中,点A、B、C的坐标分别为(1,4)、(5,4)、(1,﹣2),则△ABC外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(1,3)D.(3,1)22.如图所示,一圆弧过方格的格点A、B、C,试在方格中建立平面直角坐标系,使点A的坐标为(﹣2,4),则该圆弧所在圆的圆心坐标是()A.(﹣1,2)B.(1,﹣1)C.(﹣1,1)D.(2,1)23.在平面直角坐标系中,以点(3,2)为圆心、3为半径的圆,一定()A.与x轴相切,与y轴相切B.与x轴相切,与y轴相交C.与x轴相交,与y轴相切D.与x轴相交,与y轴相交24.如图,⊙O的半径为2,点A的坐标为(2,2),直线AB为⊙O的切线,B为切点.则B点的坐标为()A.(﹣,)B.(﹣,1)C.(﹣,)D.(﹣1,)25.如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是()A.2 B.1 C.D.26.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,第2010个正方形的面积为()A.B. C.D.27.在平面直角坐标系中,点P(a﹣1,a)是第二象限内的点,则a的取值范围是.28.在平面直角坐标系中,点A1(1,1),A2(2,4),A3(3,9),A4(4,16),…,用你发现的规律确定点A9的坐标为.29.如果点P(m﹣1,2﹣m)在第四象限,则m的取值范围是.30.在平面直角坐标系中,点A(2,﹣3)位于第象限.平面直角坐标系参考答案与试题解析1.已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;点的坐标.菁优网版权所有【分析】根据第二象限内点的特征,列出不等式组,求得a的取值范围,然后在数轴上分别表示出a的取值范围.【解答】解:∵点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则有解得﹣2<a<1.故选C.【点评】在数轴上表示不等式的解集时,大于向右,小于向左,有等于号的画实心原点,没有等于号的画空心圆圈.第二象限的点横坐标为<0,纵坐标>0.2.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()A.(13,13)B.(﹣13,﹣13) C.(14,14)D.(﹣14,﹣14)【考点】规律型:点的坐标.菁优网版权所有【分析】观察图象,每四个点一圈进行循环,每一圈第一个点在第三象限,根据点的脚标与坐标寻找规律.【解答】解:∵55=4×13+3,∴A55与A3在同一象限,即都在第一象限,根据题中图形中的规律可得:3=4×0+3,A3的坐标为(0+1,0+1),即A3(1,1),7=4×1+3,A7的坐标为(1+1,1+1),A7(2,2),11=4×2+3,A11的坐标为(2+1,2+1),A11(3,3);…55=4×13+3,A55(14,14),A55的坐标为(13+1,13+1);故选C.【点评】本题是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置及所在的正方形,然后就可以进一步推得点的坐标.3.坐标平面上,在第二象限内有一点P,且P点到x轴的距离是4,到y轴的距离是5,则P点坐标为何()A.(﹣5,4)B.(﹣4,5)C.(4,5)D.(5,﹣4)【考点】点的坐标.菁优网版权所有【分析】先根据P在第二象限内判断出点P横纵坐标的符号,再根据点到坐标轴距离的意义即可求出点P的坐标.【解答】解:∵点P在第二象限内,∴点P的横坐标小于0,纵坐标大于0;又∵P到x轴的距离是4,到y轴的距离是5,∴点P的纵坐标是4,横坐标是﹣5;故点P的坐标为(﹣5,4),故选A.【点评】本题考查了平面直角坐标系内点的位置的确定,解答此题的关键是熟记平面直角坐标系中各个象限内点的坐标符号,以及明确点到坐标轴距离的含义.4.在平面直角坐标系中,点P(﹣1,3)位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.菁优网版权所有【分析】应先判断出所求点的横纵坐标的符号,进而判断点所在的象限.【解答】解:因为点P(﹣1,3)的横坐标是负数,纵坐标是正数,所以点P在平面直角坐标系的第二象限.故选B.【点评】解决本题的关键是掌握好四个象限的点的坐标的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.5.在直角坐标系中,点(2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.菁优网版权所有【分析】应先判断出所求的点的横纵坐标的符号,进而判断点所在的象限.【解答】解:因为点P(2,1)的横坐标是正数,纵坐标也是正数,所以点在平面直角坐标系的第一象限.故选A.【点评】解决本题的关键是牢记平面直角坐标系中四个象限的点的坐标的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.6.在平面直角坐标系中,点P的坐标为(﹣2,a2+1),则点P所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.菁优网版权所有【分析】先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可.【解答】解:∵a2为非负数,∴a2+1为正数,∴点P的符号为(﹣,+)∴点P在第二象限.故选:B.【点评】本题考查了象限内的点的符号特点,注意a2加任意一个正数,结果恒为正数.牢记点在各象限内坐标的符号特征是正确解答此类题目的关键.7.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:①f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);②g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1).按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]等于()A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)【考点】点的坐标.菁优网版权所有【专题】压轴题;新定义.【分析】由题意应先进行f方式的运算,再进行g方式的运算,注意运算顺序及坐标的符号变化.【解答】解:∵f(﹣3,2)=(﹣3,﹣2),∴g[f(﹣3,2)]=g(﹣3,﹣2)=(3,2),故选A.【点评】本题考查了一种新型的运算法则,考查了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,关键是明白两种运算改变了哪个坐标的符号.8.在平面直角坐标系中,点P(2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.菁优网版权所有【分析】点P(2,3)的横、纵坐标均为正,可确定在第一象限.【解答】解:点P(2,3)的横、纵坐标均为正,所以点P在第一象限,故选A.【点评】本题主要考查了平面直角坐标系中第二象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.在一次“寻宝”人找到了如图所示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都是,则“宝藏”点的坐标是()A.(1,0)B.(5,4)C.(1,0)或(5,4)D.(0,1)或(4,5)【考点】坐标确定位置.菁优网版权所有【专题】压轴题.【分析】根据两点之间的距离公式,d=,将四个选项代入公式中,观察哪一个等于,再作答.【解答】解:设宝藏的坐标点为C(x,y),根据坐标系中两点间距离公式可知,AC=BC,则(x﹣2)2+(y﹣3)2=(x﹣4)2+(y﹣1)2,化简得x﹣y=1;又因为标志点到“宝藏”点的距离是,所以(x﹣2)2+(y﹣3)2=10;把x=1+y代入方程得,y=0或y=4,即x=1或5,所以“宝藏”C点的坐标是(1,0)或(5,4).故选C.【点评】本题考查了坐标的确定及利用两点的坐标确定两点之间的距离公式,是一道中难度题.10.如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)【考点】坐标确定位置.菁优网版权所有【分析】由“左眼”位置点的坐标为(0,2),“右眼”点的坐标为(2,2)可以确定平面直角坐标系中x轴与y轴的位置,从而可以确定“嘴”的坐标.【解答】解:根据题意,坐标原点是嘴所在的行和左眼所在的列的位置,所以嘴的坐标是(1,0),故选A.【点评】由已知条件正确确定坐标轴的位置是解决本题的关键.11.如图,雷达探测器测得六个目标A、B、C、D、E、F出现.按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°).按照此方法在表示目标A、B、D、E的位置时,其中表示不正确的是()A.A(5,30°)B.B(2,90°)C.D(4,240°)D.E(3,60°)【考点】坐标确定位置.菁优网版权所有【分析】按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别判断各选项即可得解.【解答】解:由题意可知A、B、D、E的坐标可表示为:A(5,30°),故A正确;B(2,90°),故B正确;D(4,240°),故C正确;E(3,300°),故D错误.故选D.【点评】本题考查了学生的阅读理解能力,由已知条件正确确定坐标轴的位置是解决本题的关键.12.以百色汽车总站为坐标原点,向阳路为y轴建立直角坐标系,百色起义纪念馆位置如图所示,则其所覆盖的坐标可能是()A.(﹣5,3)B.(4,3)C.(5,﹣3)D.(﹣5,﹣3)【考点】坐标确定位置.菁优网版权所有【分析】观察图形可知,百色起义纪念馆位置在第四象限,根据第四象限的符号特点进行判断即可.【解答】解:因为第四象限内点的坐标,横坐标为正数,纵坐标为负数,结合各选项符合条件的只有C(5,﹣3).故选C.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).13.如图所示,A(﹣,0)、B(0,1)分别为x轴、y轴上的点,△ABC为等边三=S△ABC,则a的值为()角形,点P(3,a)在第一象限内,且满足2S△ABPA.B.C.D.2【考点】坐标与图形性质;等边三角形的性质;勾股定理.菁优网版权所有【专题】压轴题.【分析】过P点作PD⊥x轴,垂足为D,根据A(﹣,0)、B(0,1)求OA、OB,=S△AOB+S梯形BODP﹣S△ADP,列方程求a.利用勾股定理求AB,可得△ABC的面积,利用S△ABP【解答】解:过P点作PD⊥x轴,垂足为D,由A(﹣,0)、B(0,1),得OA=,OB=1,∵△ABC为等边三角形,由勾股定理,得AB==2,=×2×=,∴S△ABC=S△AOB+S梯形BODP﹣S△ADP又∵S△ABP=××1+×(1+a)×3﹣×(+3)×a,=,=S△ABC,得=,由2S△ABP∴a=.故选C.【点评】本题考查了点的坐标与线段长的关系,不规则三角形面积的表示方法.14.如图,在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(﹣3,1)B.(4,1)C.(﹣2,1)D.(2,﹣1)【考点】坐标与图形性质;平行四边形的性质.菁优网版权所有【专题】压轴题.【分析】所给点的纵坐标与A的纵坐标相等,说明这两点所在的直线平行于x轴,这两点的距离为:1﹣(﹣3)=4;点O和点B的纵坐标相等,这两点所在的直线平行于x 轴,这两点的距离为:3﹣0,相对的边平行,但不相等,所以A选项的点不可能是行四边形顶点坐标.【解答】解:因为经过三点可构造三个平行四边形,即▱AOBC1、▱ABOC2、▱AOC3B.根据平行四边形的性质,可知B、C、D正好是C1、C2、C3的坐标,故选A.【点评】理解平行四边形的对边平行且相等,是判断本题的关键.15.如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y轴交于M(0,2),N(0,8)两点,则点P的坐标是()A.(5,3)B.(3,5)C.(5,4)D.(4,5)【考点】坐标与图形性质;勾股定理;垂径定理.菁优网版权所有【专题】压轴题.【分析】根据已知条件,纵坐标易求;再根据切割线定理即OQ2=OM•ON求OQ可得横坐标.【解答】解:过点P作PD⊥MN于D,连接PQ.∵⊙P与x轴相切于点Q,与y轴交于M(0,2),N(0,8)两点,∴OM=2,NO=8,∴NM=6,∵PD⊥NM,∴DM=3∴OD=5,∴OQ2=OM•ON=2×8=16,OQ=4.∴PD=4,PQ=OD=3+2=5.即点P的坐标是(4,5).故选D.【点评】本题综合考查了图形的性质和坐标的确定,是综合性较强,难度中等的综合题,关键是根据垂径定理确定点P的纵坐标,利用切割线定理确定横坐标.16.在平面直角坐标系xOy中,已知点P(2,2),点Q在y轴上,△PQO是等腰三角形,则满足条件的点Q共有()A.5个 B.4个 C.3个 D.2个【考点】等腰三角形的判定;坐标与图形性质.菁优网版权所有【专题】压轴题.【分析】根据题意,画出图形,由等腰三角形的判定找出满足条件的Q点,选择正确答案.【解答】解:如上图:满足条件的点Q共有(0,2)(0,2)(0,﹣2)(0,4).故选B.【点评】本题考查了等腰三角形的判定及坐标与图形的性质;利用等腰三角形的判定来解决特殊的问题,其关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.17.(2010•荆门)如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A.2 B.3 C.4 D.5【考点】等腰三角形的判定;坐标与图形性质.菁优网版权所有【专题】动点型.【分析】根据题意,结合图形,分两种情况讨论:①OA为等腰三角形底边;②OA为等腰三角形一条腰.【解答】解:如上图:①OA为等腰三角形底边,符合符合条件的动点P有一个;②OA为等腰三角形一条腰,符合符合条件的动点P有三个.综上所述,符合条件的点P的个数共4个.故选C.【点评】本题考查了等腰三角形的判定及坐标与图形的性质;利用等腰三角形的判定来解决实际问题,其关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.18.如图在平面直角坐标系中,□MNEF的两条对角线ME,NF交于原点O,点F的坐标是(3,2),则点N的坐标是()A.(﹣3,﹣2)B.(﹣3,2)C.(﹣2,3)D.(2,3)【考点】平行四边形的性质;坐标与图形性质.菁优网版权所有【分析】要求点N的坐标,根据平行四边形的性质和关于原点对称的规律写出点N的坐标.【解答】解:在▱MNEF中,点F和N关于原点对称,∵点F的坐标是(3,2),∴点N 的坐标是(﹣3,﹣2).【点评】本题考查的是利用平行四边形的性质结合三角形全等来解决有关线段相等的证明.19.如图,在平面直角坐标系中,菱形OABC的顶点C的坐标是(3,4),则顶点A、B 的坐标分别是()A.(4,0)(7,4)B.(4,0)(8,4)C.(5,0)(7,4)D.(5,0)(8,4)【考点】菱形的性质;坐标与图形性质.菁优网版权所有【分析】过C作CE⊥OA,根据勾股定理求出OC的长度,则A、B两点坐标便不难求出.【解答】解:过C作CE⊥OA于E,∵顶点C的坐标是(3,4),∴OE=3,CE=4,∴OC===5,∴点A的坐标为(5,0),5+3=8,点B的坐标为(8,4).故选D.【点评】根据菱形的性质和点C的坐标,作出辅助线是解决本题的突破口.20.菱形OABC在平面直角坐标系中的位置如图所示,若OA=2,∠AOC=45°,则B点的坐标是()A.(2+,)B.(2﹣,) C.(﹣2+,)D.(﹣2﹣,)【考点】菱形的性质;坐标与图形性质;特殊角的三角函数值.菁优网版权所有【分析】过A作AE⊥CO,根据“OA=2,∠AOC=45°”求出OE、AE的长度,点B的坐标便不难求出.【解答】解:如图,过A作AE⊥CO于E,∵OA=2,∠AOC=45°,∴AE=AOsin45°=,OE=AOcos45°=,∴点B的横坐标为﹣(2+),纵坐标为,∴B点的坐标是(﹣2﹣,).故选D.【点评】通过作辅助线求出点A到坐标轴的距离是解本题的突破口.21.如图,在平面直角坐标系中,点A、B、C的坐标分别为(1,4)、(5,4)、(1,﹣2),则△ABC外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(1,3)D.(3,1)【考点】确定圆的条件;坐标与图形性质.菁优网版权所有【专题】压轴题.【分析】根据垂径定理的推论“弦的垂直平分线必过圆心”,作两条弦的垂直平分线,交点即为圆心.【解答】解:根据垂径定理的推论,则作弦AB、AC的垂直平分线,交点O1即为圆心,且坐标是(3,1).故选D.【点评】此题考查了垂径定理的推论,能够准确确定一个圆的圆心.22.如图所示,一圆弧过方格的格点A、B、C,试在方格中建立平面直角坐标系,使点A的坐标为(﹣2,4),则该圆弧所在圆的圆心坐标是()A.(﹣1,2)B.(1,﹣1)C.(﹣1,1)D.(2,1)【考点】确定圆的条件;坐标与图形性质.菁优网版权所有【专题】压轴题;网格型.【分析】连接AB、AC,作出AB、AC的垂直平分线,其交点即为圆心.【解答】解:如图所示,∵AW=1,WH=3,∴AH==;∵BQ=3,QH=1,∴BH==;∴AH=BH,同理,AD=BD,所以GH为线段AB的垂直平分线,易得EF为线段AC的垂直平分线,H为圆的两条弦的垂直平分线的交点,则BH=AH=HC,H为圆心.于是则该圆弧所在圆的圆心坐标是(﹣1,1).故选C.【点评】根据线段垂直平分线上的点到这条线段两端点的距离相等,找到圆的半径,半径的交点即为圆心.23.在平面直角坐标系中,以点(3,2)为圆心、3为半径的圆,一定()A.与x轴相切,与y轴相切B.与x轴相切,与y轴相交C.与x轴相交,与y轴相切D.与x轴相交,与y轴相交【考点】直线与圆的位置关系;坐标与图形性质.菁优网版权所有【分析】由已知点(3,2)可求该点到x轴,y轴的距离,再与半径比较,确定圆与坐标轴的位置关系.设d为直线与圆的距离,r为圆的半径,则有若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.【解答】解:∵点(3,2)到x轴的距离是2,小于半径,到y轴的距离是3,等于半径,∴圆与x轴相交,与y轴相切.故选C.【点评】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.24.如图,⊙O的半径为2,点A的坐标为(2,2),直线AB为⊙O的切线,B为切点.则B点的坐标为()A.(﹣,)B.(﹣,1)C.(﹣,)D.(﹣1,)【考点】切线的性质;坐标与图形性质.菁优网版权所有【专题】压轴题.【分析】先利用切线AC求出OC=2=OA,从而∠BOD=∠AOC=60°,则B点的坐标即可求出.【解答】解:过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,∵⊙O的半径为2,点A的坐标为(2,2),即OC=2,∴AC是圆的切线.∵点A的坐标为(2,2),∴OA==4,∵BO=2,AO=4,∠ABO=90°,∴∠AOB=60°,∵OA=4,OC=2,∴sin∠OAC=,∴∠OAC=30°,∴∠AOC=60°,∠AOB=∠AOC=60°,∴∠BOD=180°﹣∠AOB﹣∠AOC=60°,∴OD=1,BD=,即B点的坐标为(﹣1,).故选D.【点评】本题综合考查了圆的切线长定理和坐标的确定,是综合性较强的综合题,关键是根据切线长定理求出相关的线段,并求出相对应的角度,利用直角三角形的性质求解.25.如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是()A.2 B.1 C.D.【考点】切线的性质;坐标与图形性质;三角形的面积;相似三角形的判定与性质.菁优网版权所有【专题】压轴题;动点型.【分析】由于OA 的长为定值,若△ABE 的面积最小,则BE 的长最短,此时AD 与⊙O 相切;可连接CD ,在Rt △ADC 中,由勾股定理求得AD 的长,即可得到△ADC 的面积;易证得△AEO ∽△ACD ,根据相似三角形的面积比等于相似比的平方,可求出△AOE 的面积,进而可得出△AOB 和△AOE 的面积差,由此得解.【解答】解:若△ABE 的面积最小,则AD 与⊙C 相切,连接CD ,则CD ⊥AD ;Rt △ACD 中,CD=1,AC=OC +OA=3;由勾股定理,得:AD=2;∴S △ACD =AD•CD=; 易证得△AOE ∽△ADC ,∴=()2=()2=,即S △AOE =S △ADC =;∴S △ABE =S △AOB ﹣S △AOE =×2×2﹣=2﹣; 另解:利用相似三角形的对应边的比相等更简单!故选:C .【点评】此题主要考查了切线的性质、相似三角形的性质、三角形面积的求法等知识;能够正确的判断出△BE 面积最小时AD 与⊙C 的位置关系是解答此题的关键.26.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,第2010个正方形的面积为( )A.B.C.D.【考点】相似三角形的判定与性质;坐标与图形性质;勾股定理;正方形的性质.菁优网版权所有【专题】压轴题;规律型.【分析】根据相似三角形的判定原理,得出△AA1B∽△A1A2B1,继而得知∠BAA1=∠B1A1A2;利用勾股定理计算出正方形的边长;最后利用正方形的面积公式计算三个正方形的面积,从中找出规律,问题也就迎刃而解了.【解答】解:设正方形的面积分别为S1,S2 (2010)根据题意,得:AD∥BC∥C1A2∥C2B2,∴∠BAA1=∠B1A1A2=∠B2A2x(同位角相等).∵∠ABA1=∠A1B1A2=90°,∴△BAA1∽△B1A1A2,在直角△ADO中,根据勾股定理,得:AD=,cot∠DAO==,∵tan∠BAA1==cot∠DAO,∴BA1=AB=,∴CA1=+=×,同理,得:C1A2=××,由正方形的面积公式,得:S1=,S2=×,S3=××,由此,可得S n=×(1+)2n﹣2,∴S2010=5×()2×2010﹣2,=5×()4018.故选:D【点评】本题综合考查了相似三角形的判定、勾股定理、正方形的性质等知识点,另外,在解题过程中,要认真挖掘题中隐藏的规律,这样可以降低解题的难度,提高解题效率.27.在平面直角坐标系中,点P(a﹣1,a)是第二象限内的点,则a的取值范围是0<a<1.【考点】点的坐标.菁优网版权所有【分析】已知点P(a﹣1,a)是第二象限内的点,即可得到横纵坐标的符号,即可求解.【解答】解:∵点P(a﹣1,a)是第二象限内的点,∴a﹣1<0且a>0,解得:0<a<1.故答案填:0<a<1.【点评】本题主要考查了平面直角坐标系中第二象限的点的坐标的符号特点,第二象限(﹣,+).28.在平面直角坐标系中,点A1(1,1),A2(2,4),A3(3,9),A4(4,16),…,用你发现的规律确定点A9的坐标为(9,81).【考点】点的坐标.菁优网版权所有【专题】规律型.【分析】首先观察各点坐标,找出一般规律,然后根据规律确定点A9的坐标.【解答】解:设A n(x,y).∵当n=1时,A1(1,1),即x=1,y=12;当n=2时,A2(2,4),即x=2,y=22;当n=3时,A3(3,9),即x=3,y=32;当n=4时,A1(4,16),即x=4,y=42;∴当n=9时,x=9,y=92,即A9(9,81).故答案填(9,81).【点评】解决本题的关键在于总结规律.对于寻找规律的题,应通过观察,发现哪些部分没有变化,哪些部分发生了变化,变化的规律是什么.29.如果点P(m﹣1,2﹣m)在第四象限,则m的取值范围是m>2.【考点】点的坐标;解一元一次不等式组.菁优网版权所有【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【解答】解:∵点P(m﹣1,2﹣m)在第四象限,∴,解得m>2,故m的取值范围是m>2.【点评】本题考查象限点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键.30.在平面直角坐标系中,点A(2,﹣3)位于第四象限.【考点】点的坐标.菁优网版权所有【分析】应先判断出所求的点的横纵坐标的符号,进而判断其所在的象限.【解答】解:因为点A(2,﹣3)的横坐标是正数,纵坐标是负数,所以点A在平面直角坐标系的第四象限.故答案为:四.【点评】解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.。

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数【知识梳理】一、平面直角坐标系1. 坐标平面上的点与 有序实数对 构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征.4. 点P (a ,b )关于x 轴对称的点的坐标为 ;关于y 轴对称的点的坐标为 ;关于原点对称的点的坐标为5.两点之间的距离二、函数的概念1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有 的值与它对应,那么就说x 是自变量,y 是x 的函数.2.自变量的取值范围: (1)使解析式 (2)实际问题具有 意义3.函数的表示方法; (1) (2) (3) 三、一次函数的概念、图象、性质1.正比例函数的一般形式是 ( ),一次函数的一般形式是 (k≠0). 2. 一次函数y kx b =+的图象是经过( , )和( , )两点的一条直线.4.若两个一次函数解析式中,k 相等,表示两直线 ;若两直线垂直,则 。

5.的大小决定直线的倾斜程度,越大,直线越 ;四、反比例函数的概念、图象、性质1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质k >0,b >0k >0,b <0k <0,b >0k <0,21212211P P )0()0()2(y y y P y P -=, ,,,21212211P P )0()0()1(x x x P x P -=, , ,, 3.k 的几何含义:反比例函数y =k x(k≠0)中比例系数k 的几何意义,即过双曲线y =k x(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 。

【例题精讲】 例1.函数22y x =-中自变量x 的取值范围是 ;函数y =x 的取值范围是 .例2.已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = . 例3.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的 坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,点C 的坐标为例4.一次函数y=(3a+2)x -(4-b),求满足下列条件的a 、b 的取值范围。

中考数学总复习《平面直角坐标系压轴题》专题训练(附带答案)

中考数学总复习《平面直角坐标系压轴题》专题训练(附带答案)

中考数学总复习《平面直角坐标系压轴题》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________ 1.如图,在平面直角系中,点A的坐标是(0,4)在x轴上任取一点B连接AB作线段AB的垂直平分线1l过点B作x轴的垂线2l记1l2l的交点为P.设点P的坐x y.标为(,)(1)用含x y二个字母的代数式表示PA的长度.(2)当点B在x轴上移动时点P也随之运动请求出点P的运动路径所对应的函数解析式.2.如图1 在平面直角坐标系中,点B的坐标是(0,2)动点A从原点O出发沿着x轴正方向移动ABP是以AB为斜边的等腰直角三角形(点A B P顺时针方向排列).(1)当点A 与点O 重合时 得到等腰直角OBC △(此时点P 与点C 重合) 则BC =______.当2OA =时 点P 的坐标是______; (2)设动点A 的坐标为(,0)(0)t t ≥.①点A 在移动过程中,作PM y ⊥轴于M PN OA ⊥于N 求证:四边形PMON 是正方形;①用含t 的代数式表示点P 的坐标为:(______ ______);(3)在上述条件中,过点A 作y 轴的平行线交MP 的延长线于点Q 如图2 是否存在这样的点A 使得AQB 的面积是AOB 的面积的3倍?若存在 请求出A 的坐标 若不存在 请说明理由.3.如图,在平面直角坐标系中,点O 是坐标原点 直线3y x分别交x 轴 y 轴于点A B .(1)求ABO ∠的度数;(2)点C 是线段AB 上一点 连接OC 以OC 为直角边作等腰直角OCD 其中OC OD=且点D在第三象限连接AD.设点C的横坐标为t ACD的面积为S 求S与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下点E为x轴正半轴上的一点连接BE点F是BE的中点连∥交x轴于点H若接CF并延长交x轴于点G过点D作DH CFCG DH=求点D的坐标.∠-∠=︒345AEB ADH4.如图,在直角平面坐标系中,ABC的边AB在x轴上且3AB=点A的坐标为-点C的坐标为(2,5).(5,0)(1)求这样的ABC一共几个?并写出符合条件的点B的坐标;(2)试求ABC的面积.5.如图,平面直角坐标系中有点()1,0B 和y 轴上一动点(0,)A a - 其中0a > 以点A 为直角顶点在第四象限内作等腰直角ABC 设点C 的坐标为(,)c d .(1)当2a =时 点C 的坐标为 .(2)动点A 在运动的过程中,试判断+c d 的值是否发生变化 若不变 请求出其值;若发生变化 请说明理由.(3)当3a =时 在坐标平面内是否存在一点P (不与点C 重合) 使PAB 与ABC 全等?若存在 请直接写出点P 的坐标;若不存在 请说明理由.6.如图,在平面直角坐标系中,()2,0A - ()0,3B .(1)如图1 以A 为直角顶点在第二象限内作等腰直角三角形ABE 过点E 作EF x ⊥轴于点F 求点F 的坐标;(2)如图2 点()0,P P y 为y 轴正半轴上一动点 以AP 为直角边作等腰直角三角形APC 点(),C C C x y 在第一象限 90APC ∠=︒ 当点P 运动时 P C y y -的值是否发生变化?若不变 求出其值;若变化 请说明理由.(3)如图3 点P 在y 轴负半轴上 以AP 为直角边作等腰直角三角形APC 90APC ∠=︒ 点C 在第一象限 点H 在AC 延长线上 作HG x ⊥轴于G 当(),2H m 探究线段PH AG OP 之间的数量关系 并证明你的结论.7.已知在平面直角坐标系中,()()4003A B ,,, 以线段AB 为直角边在第一象限内作等腰直角三角形90ABC AB AC BAC =∠=︒,,.(1)直接写出OA OB ⋅的值. (2)求点C 坐标.(3)若点A B ,是x y ,轴正半轴上的动点 BQ AQ ,分别是ABy ∠和BAx ∠的角平分线 交点为Q 求Q ∠的大小.8. 在平面直角坐标系中,点A B ,分别在x 轴负半轴 y 轴正半轴上运动 且满足AB BC = 90ABC ∠=︒ 点C 在第二象限.(1)如图1 当点()()4002A B -,,,时 点C 的坐标为________; (2)以OB 为直角边作等腰直角()90OBD OB BD OBD =∠=︒,△ 如图2 连接AD 和OC 且相交于点P 判断AD 和OC 的数量关系与位置关系 并说明理由;(3)以OB 为直角边作等腰直角()90OBD OB BD OBD =∠=︒,△ 如图3 连接CD 交y 轴于点Q 在点,A B 的运动过程中,判断BQ 与OA 的数量关系 并说明理由.9.在平面直角坐标系中,AOB 为等腰直角三角形 ()4,4A .(1)直接写出B 点坐标;(2)如图2 若C 为x 轴正半轴上一动点 以AC 为直角边作等腰直角ACD =90ACD ∠︒ 连接OD 求AOD ∠度数;(3)如图3 过点A 作y 轴的垂线交y 轴于E F 为x 轴负半轴上一点 G 在EF 的延长线上 以EG 为直角边作等腰Rt EGH 过A 作x 轴的垂线交EH 于点M 连接FM 等式1AM FMOF-=是否成立?若成立 请证明;若不成立 说明理由.10.如图,在平面直角坐标系中,直线24y x =-+交坐标轴于A B 两点 过x 轴负半轴上一点C 作直线CD 交y 轴正半轴于点D 且AOB DOC △≌△.(1)OC =________ OD =________.(2)点()1,M a -是线段CD 上一点 作ON OM ⊥交AB 于点N 连接MN 求点N 的坐标;(3)若()1,E b 为直线AB 上的点 P 为y 轴上的点 请问:直线CD 上是否存在点Q 使得EPQ △是以E 为直角顶点的等腰直角三角形 若存在 请直接写出此时Q 点的坐标;若不存在 请说明理由.象限内作等腰直角ABC则点b点D在第一象限作等腰直角BDE△c ABO,=∠(1)如图1 点A 关于x 轴的对称点为P 点 则点P 的坐标为________ 当PB 最短时 点B 的坐标为________;(结果均用a 表示)(2)如图2 当AB y ⊥轴 且垂足为点A 时 以OA 为边作正方形ABQO M 在x 轴的正半轴 且OM OA < 以OM 为边在x 轴上方作正方形OMNH 连接AN 若6QM = 两个正方形面积之和为20 求AHN 的面积;(3)如图3 当AB y ⊥轴 且垂足为点A 时 点F 在线段OB 上运动(不与端点重合) 点C 是线段BF 的中点 连接AF AC , 以A 为直角顶点 AF 为直角边在第二象限内作等腰Rt EAF △ 连接OE 交AC 于点G 探究线段OE 与AC 的关系 并说明理由.13.如图,在平面直角坐标系中,点A B C 都在坐标轴上 08A BO CO BC ===,.(1)点A 坐标为(______ _______).(2)过点C 作x 轴的垂线l 动点Р从点C 出发 沿着直线①向上运动 若点Р的速度是1个单位/秒 时间是t 连接PA PB , 请用含t 的式子表示PABS.(3)在(2)的条件下 连接AP 以AP 为斜边 在AP 下方作等腰直角APD △ 连接BD 并延长至点Q 连接PO QC , 当点D 为BQ 中点时 请判断PCQ △的形状 并说明理由.14.如图,在平面直角坐标系中,(0,2)A (3,0)B 过点B 作直线ly 轴 点P 是直线l 上的动点 以AP 为边在AP 右上侧作等腰直角APQ △ 使90APQ ∠=︒.(1)如图1当点P 落在点B 时 则点Q 的坐标是________; 学生甲认为点Q 的坐标一定跟点P 有关 于是进行了如下探究:(2)如图2 小聪同学画草图时 让点P 落在1P 2P 3P 不同的特殊位置时(1P 在x 轴上 2P A 与x 轴平行 当Q 落在x 轴上时对应点3P ) 画出了几个点对应的1Q 2Q 3Q 三个不同的位置 发现1Q 2Q 3Q 在同一条直线上 请你根据学生甲的猜测及题目条件 求出点Q 所在直线的解析式;(3)在(2)中,虽然求出了点Q 所在直线的解析式 但是小明同学认为几个特殊点确定解析式是一种猜测 当点P 在l 上运动时 所有的Q 点都在一条直线上吗?就解设了点Q 的坐标为(,)x y 希望用一般推理的方式求出x 和y 满足的关系式 请你帮助小明给出解答.15.在平面直角坐标系中,直线AB 与x 轴交于点()6,0A - 与y 轴交于点B 且45ABO ∠=︒.(1)求点B 坐标和ABO 的面积;(2)如图2 点D 为OA 上的一条延长线的一个动点 以BD 为直角边 以点D 为直角顶点 作等腰三角形BDE 求证AB AE ⊥;(3)如图3 AF 平分OAB ∠ 点M 是射线AF 上一动点 点N 是线段AO 上一动点 判断是否存在这样的点M N 使得OM NM +的值最小 若存在 求出此时点N 的坐标 并加以说明;若不存在 则说明理由.参考答案: 1.(1)解:过点A 作2AH l ⊥于点H 如图所示:①点A 的坐标是(0,4) 点P 的坐标为(,)x y①4OA = ||OB x =①||AH OB x == 4BH OA ==①|4|HP y =-根据勾股定理 得()2222224816PA AH HP x y x y y =+=+-=+-+ 即22816PA x y y =+-+;(2)根据题意 可知点B 坐标为(,0)x①点P 在线段AB 的垂直平分线上①PA PB =①222816y x y y =+-+①2128y x =+ 2.(1)解:①OBC △是等腰直角三角形①,90BC AC C =∠=︒①2OB BC =①点B 的坐标是(0,2)①2OB =①22OB BC ==;①OAB是等腰直角三角形∠=∠OAB①ABP是等腰直角三角形ABP∠=∠∠=∠OBP四边形OAPB==BP OA点P的坐标为①ABP是等腰直角三角形∠=APB90∠=∠MPB在BPM△和APN中∠=∠=︒ANP BMP90≌△△BPM APNPMON是正方形;△△BPM≌①2AN t AN +=-①22t AN -=①22t OM ON +==①点P 的坐标为22,22t t ++⎛⎫⎪⎝⎭;故答案为:22t +;22t +(3)解:存在设点A 的坐标为()(),00m m ≥ 则OA m =①11222AOB S OA OB m m =⨯=⨯=由(2)①得:点P 的坐标为22,22m m ++⎛⎫ ⎪⎝⎭ 则22m OM +=根据题意得:90OMP AOB OAQ ∠=∠=∠=︒①四边形OAQM 是矩形①2,2m MQ OA m AQ OM +====①()2112122224ABQ m S AQ OA m m m +=⨯=⨯=+①AQB 的面积是AOB 的面积的3倍①()21234m m m +=解得:10m =或0(舍去)即存在点()10,0A 使得AQB 的面积是AOB 的面积的3倍. 3.(1)解:在3y x 中,当0x =时 3y = 当0y =时 03x =+ 解得3x =-①()30A -, ()0,3B①3OA OB ==①BAO ABO ∠=∠①90AOB ∠=︒①45BAO ABO ∠=∠=︒.(2)解:如图1 过点C 作CR y ⊥轴于点R .Rt BCR 中,90BCR =︒-∠BR CR t ==-2BC BR =+COD AOB =∠在ACD 中,12S AD =⨯3)解:如图所示①90BOE ∠=︒ BF EF =①OF BF EF ==①FOE FEO ∠=∠设ADH a ∠=①45AEB a ∠=+︒①45FOE FEO a ∠=∠=+︒ 45AHD OAD ADH a ∠=∠-∠=︒- ①DH CG ∥①45CGO AHD a ∠=∠=︒-①454590CFO FOG FGO a a ∠=∠+∠=︒++︒-=︒取OC 的中点K 连接FK 交OB 于点P 过点F 作FL OB ⊥于点L过点K 分别作KM OB ⊥于点M KN FL ⊥交FL 的延长线于点N 连接KL . ①四边形KMLN 是矩形;①90CFO ∠=︒ CK OK =①FK OK CK ==①BF OF = FL OB ⊥①BL OL =①KL BC ∥①45OLK OBC ∠=∠=︒①904545NLK NLO OLK ∠=∠-∠=︒-︒=︒①KM KN =①Rt Rt KOM KFN ≌△△①KOM KFN ∠=∠又①OPK FPL ∠=∠①90KOM OPK KFN FPL ∠+∠=∠+∠=︒①90OKP ∠=︒①FK OC ⊥①CF OF =①45CFK OFK ∠=∠=︒①45OCF ∠=︒①90COD ∠=︒ OC OD =在Rt ODS △中,()22223910()44OS OD DS =-=-= ①点D 的坐标为93,44⎛⎫-- ⎪⎝⎭. 4.1)解:如图所示 符合条件的ABC 有两个 分别为1AB C 2AB C 其中12(2,0)(8,0)B B --、;(2)点C 的坐标为(2,5)115|2(5)|57.522ABC S ∴=⨯---⨯==△. 5.(1)解:如下图 过点C 作CE y ⊥轴于点E 则CEA AOB ∠=∠①ABC 是等腰直角三角形①,90AC BA BAC =∠︒=①90ACE CAE BAO CAE ∠+∠=︒=∠+∠①ACE BAO ∠=∠.在ACE △和BAO 中CEA AOB ACE BAO AC BA ∠=∠⎧⎪∠=∠⎨⎪=⎩①ACE BAO≌(AAS)①(0,1),(0,2)B A-①12BO AE AO CE====,①123OE=+=①2,3C-();(2)解:动点A在运动的过程中,+c d的值不变.理由如下:由(1)知ACE BAO≌①(0,1)B(0,)A a-①1,BO AE AO CE a====①1OE a=+①(,1)C a a--又①点C的坐标为(,)c d①11c d a a+=--=-即+c d的值不变;(3)解:存在一点P使PAB与ABC全等符合条件的点P的坐标是(4,)1-或(3,2)--或(2,1)-分为三种情况讨论:①如下图过点P作PE x⊥轴于点E则90PBA AOB PEB∠=∠=∠=︒①90,90EPB PBE PBE ABO∠+∠=︒∠+∠=︒①EPB ABO∠=∠在PEB△和BOA△中EPB OBAPEB BOAPB BA∠=∠⎧⎪∠=∠⎨⎪=⎩①PEB BOA△≌△(AAS)①1,3PE BO EB AO ====①314OE =+=即点P 的坐标是(4,)1-①如下图 过点C 作CM x ⊥轴于点M 过点P 作PE x ⊥轴于点E则90CMB PEB ∠=∠=︒.①CAB PAB △≌△①45,PBA CBA BC BP ∠=∠=︒=①90CBP ∠=︒①90,90MCB CBM CBM PBE ∠+∠=︒∠+∠=︒①MCB PBE ∠=∠在CMB 和BEP △中MCB EBP CMB BEP BC PB ∠=∠⎧⎪∠=∠⎨⎪=⎩①CMB BEP △≌△(AAS )①,PE BM CM BE ==.①3,4),10C B -((,)①2,413PE OE BE BO ==-=-=即点P 的坐标是(3,2)--;①如下图 过点P 作PE x ⊥轴于点E 则90BEP BOA ∠=∠=︒.①CAB PBA △≌△①,90AB BP CAB ABP =∠=∠=︒①90,90ABO PBE PBE BPE ∠+∠=︒∠+∠=︒①ABO BPE ∠=∠.在BOA △和PEB △中ABO BPE BOA PEB BA PB ∠=∠⎧⎪∠=∠⎨⎪=⎩①BOA PEB △≌△(AAS )①1,3PE BO BE OA ====①312OE BE BO =-=-=即点P 的坐标是(2,1)-综上所述 符合条件的点P 的坐标是(4,)1-或(3,2)--或(2,1)-. 6.(1)三角形ABE 是等腰直角三角形AE AB ∴= 90EAB ∠=︒90FAE BAO ∴∠+∠=︒.EF x ⊥轴90EFA ∴∠=︒90AEF FAE ∴∠+∠=︒AEF OAB ∴∠=∠.90AOB ∠=︒EFA AOB ∴∠=∠.在AEF △和BAO 中,,,AEF BAO EFA AOBAE BA ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AEF BAO ∴≌3AF BO ∴==235OF ∴=+=()5,0F ∴-;(2)不变 理由如下:如图2 作CF y ⊥轴于FC y OF ∴=90PFC CFO ∴∠=∠=︒90FPC FCP ∴∠+∠=︒.三角形APC 是等腰直角三角形 90APC ∠=︒ PA PC ∴=90APO OPC ∴∠+∠=︒.APO PCF ∴∠=∠.又90AOP PFC ∠=∠=︒.在AOP 和PFC △中,,,APO PCF AOP PFC PA CP ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AOP PFC ∴△≌△AO PF .2P C y y OP OF PF AO ∴-=-===;(3)AG PH OP =+ 证明如下:在OG 上取一点M 使MG OP = 连接HM 并延长交AP 的延长线于N 如图3所示()2,0A -2AO ∴=HG x ⊥轴于G (),2H m2HG ∴=AO HG ∴=90AOP HGM ∠=∠=︒ MG OP =()SAS APO HMG ∴△≌△PAO MHG ∴∠=∠ AP HM =AMN HMG ∠=∠90ANM HGM ∴∠=∠=︒90APC ∠=︒ PC AP =45PAC ∴∠=︒AHN ∴是等腰直角三角形45PAH MHA ∴∠=∠=︒又AP HM = AH HA =()SAS APH HMA ∴△≌△PH MA ∴=AG AM MG =+AG PH OP ∴=+.7.(1)解:()()4003A B ,,,4∴=OA 3OB =4312OA OB ⋅=⨯=∴;(2)解:如图,作CD x ⊥轴于点D 则90AOB CDA ∠=∠=︒90ACD CAD ∴∠+∠=︒90BAC ∠=︒90CAD BAO ∴∠+∠=︒ACD BAO ∴∠=∠在BAO 和ACD 中90AOB CDA ACD BAOAB CA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()AAS BAO ACD ∴≌3AD OB ∴== 4CD OA ==437OD OA AD ∴=+=+=()74C ∴,;(3)解:如图BQ 平分ABy ∠ AQ 平分BAx ∠12ABQ ABy ∴∠=∠ 12BAQ BAx ∠=∠ABO∠+∴∠=ABy∴∠+ABQ(1180=︒21︒=-180∠+∠Q ABQ ∴∠=Q180 8.(1)解:作①()SAS CBO ABD ≌△△①AD OC = BCO BAD ∠=∠①BCO ABC BAD APC ∠+∠=∠+∠又90ABC ∠=︒①90APC ∠=︒ 即AD OC ⊥;(3)解:2OA BQ = 理由如下:作CF y ⊥轴于点F同理 ()AAS BAO CBF ≌△△ ①CF OB = BF OA =①90OB BD OBD =∠=︒,①=CF BD CF BD ∥①QCF QDB ∠=∠ 90QFC QBD ∠=∠=︒①()ASA QCF QDB ≌△△ ①BQ FQ =①1122BQ BF OA == 即2OA BQ =. 9.(1)解:如图,作AE OB ⊥于点E①()4,4A①4OE =①AOB 为等腰直角三角形 AE OB ⊥①=2=8OB OE①()8,0B ;①ACD 为等腰直角三角形AC DC =即ACF ∠+∠FDC ∠+∠ACF ∠=∠又①DFC ∠①()DFC CEA AAS ≌EC DF = FC =()4,4A4AE OE ===FC OE 即OF +①AOB 为等腰直角三角形45AOB ∠==AOD ∠∠AM FM -①()4,4A ①4AE OE ==又①==90EAN EOF ∠∠︒ AN OF =①()EAN EOF SAS ≌①=OEF AEN ∠∠ EF EN =又①EGH 为等腰直角三角形①45GEH ∠=︒ 即=45OEF OEM ∠+∠︒ ①=45AEN OEM ∠+∠︒又①90AEO ∠=︒①=45=NEM FEM ∠︒∠又①EM EM =①()NEM FEM SAS ≌①MN MF =①==AM MF AM MN AN --①=AM MF OF -即1AM FM OF-=.10.(1)解:把0x =代入24y x =-+得:4y =①点()04B ,①4OB =把0y =代入24y x =-+得:2x =①点()20A ,①2OA =①AOB DOC △≌△①(ASA OBN OCM ≌OM ON =分别过点M N 作ME①OFN OEM ∠=∠①BON COM OM ON ∠=∠=,①()AAS OFN OEM ≌①312OF OE FN EM ====, ①点N 的坐标为312⎛⎫ ⎪⎝⎭,; (3)解:直线CD 上存在点Q 使EPQ △是以E 为直角顶点的等腰三角形. ①()1E b ,为直线AB 上的点①2142b =-⨯+=①()12E ,①当点P 在点B 下方时 如图,连接DE 过点Q 作QM DE ⊥ 交DE 的延长线于M 点①()02D ,①DE y ⊥轴 1DE = 点M 的纵坐标为2 90M EDP ∠=∠=︒ ①EPQ △是以E 为直角顶点的等腰直角三角形①(AAS DEP MQE ≌1MQ DE ==Q 点的纵坐标为3把3y =代入12y x =+点()23Q ,;①()AAS EQM PEN ≌1EM PN ==()12E ,①M 点的纵坐标为1①Q 点的纵坐标为1把1y =代入122y x =+中得:2x =- ①()21Q -,; 综上所述 直线CD 上存在点Q 使得EPQ △是以E 为直角顶点的等腰直角三角形 Q 点的坐标为()23,或()21-,. 11.(1)解:()2430a b -+-= ()240a -≥ 30b -≥ 40a ∴-= 30b -=4a ∴= 3b =()()00A a B b ,、,4∴=OA 3OB =如图,过点C 作CN y ⊥轴于N则90BNC ∠=︒90ABC AOB ∠︒∠==90CBN ABO 90BAO ABO ∠+∠=︒ CBN BAO ∴∠=∠90BNC AOB ∠=∠=︒ BC AB =()AAS BNC AOB ∴≌4BN AO ∴== 3CN BO ==7ON OB BN ∴=+=()37C ∴,故答案为:()37,; (2)证明:如图,过E 作EF x ⊥轴于F 则90EFD ∠=︒a b =OA OB ∴=90AOB ∠=︒OAB ∴是等腰直角三角形45ABO BAO ∴∠=∠=︒BDE 是等腰直角三角形 90BDE ∠=︒BD DE ∴=90EDF BDO ∠+∠=︒ 90DEF EDF ∠+∠=︒ BDO DEF ∴∠=∠90EFD DOB ∠=∠=︒()AAS DEF BDO ∴≌EDF DBO ∴∠=∠ DF OB = EF OD = OB OA =DF OA ∴=DF AD OA OD ∴+=+ 即AF OD =AF EF ∴=AEF ∴是等腰直角三角形45EAF AEF ∴∠=∠=︒45EDF EAF AED AED ∠=∠+∠=︒+∠ 45DBO OBA ABD ABD ∠=∠+∠=︒+∠ ABD AED ∴∠=∠;(3)解:如图,过点D 作DM y ⊥轴于M DH x ⊥轴于H DG BA ⊥交BA 的延长线于G()33D -,3DM DH OM OH ∴====BD 平分ABO ∠ ⊥DM OB DG AB ⊥DM DG ∴=BD BD =()Rt Rt HL BDG BDM ∴≌同理可得:()Rt Rt HL ADH ADG ≌AH AG ∴=OA a = OB b = AB c =a b c OA OB AB ∴-+=-+()()()OH AH BM OM BG AG =+--+-33AH BM BG AG =+-++-6=即6a b c -+=.12.(1)解:①点A 关于x 轴的对称点为P 点 ①点P 的坐标为(0,)a -;由垂线段最短 当PB l ⊥时 PB 最短 过点B 作BD y ⊥轴于D 点 如图①直线l 平分坐标系的第二 四象限①45BOD ∠=︒①PB l ⊥①45BOD OPB ∠=∠=︒①OBP 是等腰直角三角形 OB PB =①BD y ⊥轴 OP a =22⎝⎭a a⎛⎫①()ACF QCB SAS △≌△①QB AF AE == QB AF ∥①180QBA BAF ∠+∠=︒又①90EAF BAO ∠=∠=︒①180BAF EAO ∠+∠=︒①QBA EAO ∠=∠又①BA AO =①(SAS)QBA EAO ≌△△①2OE AQ AC == BAQ AOE ∠=∠①90AOE GAO GAO BAQ ∠+∠=∠+∠=︒ ①90AGO ∠=︒①OE AC ⊥13.(1)OB OC = 8BC =4OB OC ∴==4OA OB ==()0,4A ∴故答案为:0 4;(2)4OC =()4,0C ∴.PC BC ⊥()4,P t ∴4OA OB OC ∴=== PC t =①当08t ≤<时 如图1PAB AOB BCP AOCP S S S S =+-梯形PAB PBC AOB SS S S =--梯形1122BC PC OA OB =⨯-⨯(1118444t =⨯⨯-⨯⨯-PAB S ⎧-⎪=⎨⎪⎩是等腰直角三角形;延长PD 至ADP 是等腰直角三角形AD ∴垂直平分AP AH ∴=90BAC ∠=︒BAH PAC ∴∠=∠在ABH 和ACP △中AH AP BAH CAP AB AC =⎧⎪∠=∠⎨⎪=⎩()SAS ABH ACP ∴≌45ABH ACP ∴∠=∠=︒ BH PC =45ABC ∠=︒∴点H 在BC 上点D 是BD 的中点BD QB ∴=在PDQ 和HDB 中DP DH PDQ HDB BD QD =⎧⎪∠=∠⎨⎪=⎩()SAS PDQ HDB ∴≌PQ BH ∴∥ PQ BH =BH PC =PC PQ ∴=PQ BC ∥ 90BCP ∠=︒90CPQ BCP ∴∠=∠=︒PAQ ∴是等腰直角三角形;14.(1)解:作QG l ⊥于点G①(0,2)A (3,0)B①2AO = 3BO =①AP PQ = 90APQ ∠=︒①90APO APG QPG ∠=︒-∠=∠①APO QPG ≌△△①2QG AO == 3BG BO ==①点Q 的坐标是()53,故答案为:()53,; (2)解:当点Q 在于直线l 上时 如图2223P Q AP OB ===①点2Q 的坐标是()35,由(1)知点1Q 的坐标是()53,设点Q 所在直线的解析式为y kx b =+则5335k b k b +=⎧⎨+=⎩ 解得18k b =-⎧⎨=⎩①点Q 所在直线的解析式为8y x =-+;(3)解:如图,作PM OA ⊥于M QN MP ⊥于N①90APQ ∠=︒①四边形OBPM 是矩形PA PQ = 90APQ ∠=︒①90APM QPN ∠+∠=︒ 90QPN PQN ∠+∠=︒APM PQN ∴∠=∠在PAM △和QPN 中AMP PNQ APM PQN AP PQ ∠=∠⎧⎪∠=∠⎨⎪=⎩PAM QPN ∴≌△△QN PM ∴= AM PN =①点Q 的坐标为(,)x y①MN x = 3PN x =- 3PB y QN y PM y =-=-=- ()2223AM OM PB y =-=-=--①AM PN =①()233y x --=-整理得8y x =-+.15.(1)①()6,0A -①6OA =;①45ABO ∠=︒①6OB OA ==①()0,6B11661822ABO S OA OB ==⨯⨯=. (2)过点E 作EF x ⊥轴①90EDB ∠=︒①90FED ODB FDE ∠=∠=︒-∠①FED ODB EFD DOB ED DB ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS EFD DOB ≌①(ASA AGH AOH ≌6AG AO == OH ①O G 是对称点故OM GM =根据垂线段最短故OM NM +最小①()6,0A -①6OA =;①45ABO ∠=︒①6OB OA == 45BAO ∠=︒ ①45AGN ∠=︒①AN GN =①222236AN GN AN +== 解得32,32AN AN ==-(舍去) ①632ON OA AN =-=-. 故()326,0N -.。

2021届初三数学中考复习 平面直角坐标系 专题训练 含答案

2021届初三数学中考复习  平面直角坐标系 专题训练 含答案

2021届初三数学中考复习平面直角坐标系专题训练1. 下列数据不能用有序数对表示的是( )A.4楼,5楼 B.6楼,8号C.3号路,25号 D.东经110°,北纬67°2. 如图,如果四角星的顶点A的位置用(5,8)表示,那么顶点B的位置可以表示为( )A.(2,5) B.(5,2) C.(3,5) D.(5,3)3. 如图,在平面直角坐标系中,点P的坐标为( )A.(3,-2) B.(-2,3) C.(-3,2) D.(2,-3)4.如图是某中学的平面示意图,每个正方形格子的边长为1,如果校门所在位置的坐标为(2,4),小明所在位置的坐标为(-6,-1),那么坐标(-4,3)在示意图中表示的是( )A.图书馆 B.教学楼 C.实验楼 D.食堂5.坐标平面上有一点A,且A点到x轴的距离为3,A点到y轴的距离恰为到x 轴距离的3倍.若A点在第二象限,则A的坐标为( )A.(-9,3) B.(-3,1) C.(-3,9) D.(-1,3)6. 下列选项中,平面直角坐标系的画法正确的是( )7. 点P(-3,-5)所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限8. 已知点M(3,-2)与点M′(x,y)在同一条平行于x轴的直线上,且M′到y 轴的距离等于4,那么点M′的坐标是( )A.(4,2)或(-4,2) B.(4,-2)或(-4,-2)C.(4,-2)或(-5,-2) D.(4,-2)或(-1,-2)9. 过A(4,-3)和B(-4,-3)两点的直线一定( )A.垂直于x轴 B.与y轴相交但不平行于x轴C.平行于x轴 D.与x轴、y轴都不平行10. 如图,在平面直角坐标系中,三角形ABC的顶点都在方格纸的格点上,如果将三角形ABC先向右平移4个单位长度,再向下平移1个单位长度,得到三角形A1B1C1,那么点A的对应点A1的坐标为( )A.(4,3) B.(2,4) C.(3,1) D.(2,5)11.如图为小明家相对于学校的位置,下列描述最正确的是( )A.在距离学校300米处 B.在学校的西北方向C.在西北方向300米处 D.在学校西北方向300米处12.小明从家出发,先向东走350 m到小亮家,然后他们又向南走500 m到了老师家,如果以老师家的位置为平面直角坐标系的坐标原点,向东方向为x轴正方向,向北方向为y轴正方向,那么小明家的位置可记为( ) A.(350,500) B.(-350,-500) C.(350,-500) D.(-350,500) 13.已知点A(-1,0),B(2,0),在y轴上存在一点C,使三角形ABC的面积为6,则点C的坐标为( )A.(0,4) B.(0,2) C.(0,2)或(0,-2) D.(0,4)或(0,-4)14.如图,一只跳蚤在第一象限及x轴、y轴上跳动,第一秒钟,它从原点跳动到(0,1),然后按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第24 s时跳蚤所在位置的坐标是( )A.(0,3) B.(4,0) C.(0,4) D.(4,4)15. 如果P点的坐标为(-3,-4),那么P点横坐标为____,纵坐标为____.16. 已知点P(-11,7),则P点到x轴的距离为____,到y轴的距离为____.17. 点P(x,y)在第二象限,且x2=4,|y|=3.则点P的坐标为_________.18. 点P(5,-3)到x轴的距离为____,到y轴的距离为____.19. 若A(a,-b)是第二象限的一点,则点B(a2,b-1)在第____象限.20. 若点A(3,x+1),B(2y-1,-1)分别在x轴、y轴上,则x2+y2=____.21. 如图,长方形OABC的顶点O在原点,边OA在x轴上,边OC在y轴上,若OA=8,OC=6,则点A的坐标为_________,点B的坐标为__________,点C 的坐标为___________.22. 如图,若点E的坐标为(-2,1),点F的坐标为(1,-1),则点G的坐标为____.23.如图,在平面直角坐标系中,三角形PQR是由三角形ABC经过某种变换后得到的图形,观察点A与点P,点B与点Q,点C与点R的坐标之间的关系,在这种变换下,如果三角形ABC中任意一点M的坐标为(x,y),那么它的对应点N 的坐标是___.24. 如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A,B的坐标:(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,求△A′B′C′的三个顶点坐标.25. 已知点M(3a-2,a+6),分别根据下列条件求出点M的坐标:(1)点M在x轴上;(2)点N的坐标为(2,5),且直线MN∥x轴;(3)点M到x轴、y轴的距离相等.26. 在平面直角坐标系中,一只蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.(1)填写下列各点的坐标:A4______,A8______,A12____;(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到点A101的移动方向.27. 兰和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图(如图),可是她忘记了在图中标出原点和x轴、y轴,只知道游乐园的位置D的坐标为(2,-2),你能帮她求出其他各景点所在位置的坐标吗?28. 年级(2)班的同学到白云公园游玩,张明、王励、李华三位同学和其他同学走散了,同学们已到中心广场,他们三个对着景区示意图在电话中向在中心广场的同学们说他们的位置,张明说他的坐标是(200,-200),王励说他的坐标是(-200,-100),李华说他的坐标是(-300,200).(1)请你据此写出坐标原点的位置;(2)请你写出这三位同学所在的景点.29. △ABC在平面直角坐标系内,A点坐标是(3,4),B点坐标是(1,3),C点坐标是(4,1),平移△ABC得到△A′B′C′,已知A′的坐标是(-2,2).(1)求点B′和C′的坐标;(2)若△ABC内部一点P的坐标是(a,b),则点P的对应点P′的坐标是多少?30. 如图所示,四边形ABCO中,AB∥OC,BC∥AO,A,C两点的坐标分别为(-3,5),(-23,0),A,B两点间的距离等于O,C两点间的距离.(1)点B的坐标为________________;(2)将这个四边形向下平移25个单位长度后得到四边形A′B′C′O′,请你写出平移后四边形四个顶点的坐标.31. 已知点A(-2,3),B(4,3),C(-1,-3).(1)求A,B两点之间的距离;(2)求点C 到x 轴的距离;(3)求三角形ABC 的面积;(4)观察线段AB 与x 轴的关系,若点D 是线段AB 上一点(不与A ,B 重合),则点D 的坐标有什么特点?参考答案:1---14 AAACA BCBCD DDDC15. -3 -416. 7 1117. (-2,3) 18. 3 519. 四20. 5421. (8,0) (8,6) (0,6)22. (1,2)23. (-x ,-y)24. (1) A(2,-1),B(4,3).(2) 解:△A′B′C′的三个顶点坐标分别是A′(0,0),B ′(2,4),C ′(-1,3).25. 解:(1)(-20,0).(2)(-5,5).(3)(10,10)或(-5,5).26. 解:(1) (2,0) (4,0) (6,0)(2)A 4n (2n ,0).(3)向上.27. 解:由题意可知,是以点F 为坐标原点(0,0),射线FA 为y 轴的正半轴建立的平面直角坐标系,则音乐台的位置为A(0,4),湖心亭的位置为B(-3,2),望春亭的位置为C(-2,-2),牡丹园的位置为E(3,3).28. 解:(1)坐标原点为中心广场.(2)张明在游乐园,王励在望春亭,李华在湖心亭.29. 解:(1)A 点坐标是(3,4),A′点坐标是(-2,2),∴平移规律为:向左平移5个单位,向下平移2个单位.∵B 点坐标是(1,3),C 点坐标是(4,1),∴B′(-4,1),C′(-1,-1).(2)∵△ABC 内部一点P 的坐标是(a ,b),∴点P 的对应点P′的坐标是(a -5,b -2).30. (1) (-33,5)(2) 解:∵将四边形ABCD 向下平移23个单位长度后得到四边形A′B′C′O′,∴A ′点的坐标为(-3,-5),点B 的坐标为(-33,-5),C ′点的坐标为(-23,-25),O ′点的坐标为(0,-25).31. 解:(1)A ,B 两点间的距离为4-(-2)=6.(2)点C 到x 轴的距离为3.(3)三角形ABC 的面积为12×6×6=18. (4)AB∥x 轴,若点D 是线段AB 上一点,则点D 的纵坐标等于3,与点A ,B 的纵坐标相同,横坐标大于-2小于4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备战2021中考数学考点提升训练——专题四十七:平面直角坐标系
一、选择题
1.下列表述中,位置确定的是()
A.北偏东30°B.银座电影院第2排
C.淮海路以北,中山路以南D.东经118°,北纬24°
2. 若点P(m,1-2m)的横坐标与纵坐标互为相反数,则点P一定在()
A.第一象限
B.第二象限
C.第三象限
D.第四象限
3. 已知点P(0,a)在y轴的负半轴上,则点Q(-a2-1,-a+1)在 ()
A.第一象限
B.第二象限
C.第三象限
D.第四象限
4.平面直角坐标系中的四边形ABCD,各顶点的横、纵坐标均扩大为原来的2倍,则下列说法正确的是()
A.四边形ABCD的形状改变,面积变为原来的2倍
B.四边形ABCD的形状不变,面积变为原来的2倍
C.四边形ABCD的形状改变,面积变为原来的4倍
D.四边形ABCD的形状不变,面积变为原来的4倍
5.已知平面直角坐标系中点A的坐标为(-4,3),则下列结论正确的是 ()
A.点A到x轴的距离为4
B.点A到y轴的距离为3
C.点A到原点的距离为5
D.点A关于x轴对称的点的坐标为(4,-3)
6. 在平面直角坐标系中,将四边形各点的横坐标都减去2,纵坐标保持不变,所得图形与原图形相比 ()
A .向右平移了2个单位长度
B .向左平移了2个单位长度
C .向上平移了2个单位长度
D .向下平移了2个单位长度
7. 在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为 ( ) A .(2,3) B .(-6,3) C .(-2,7) D .(-2,-1) 8. 平面直角坐标系中,点P (-2,3)关于x 轴对称的点的坐标为( ) A. (-2,-3) B. (2,-3) C. (-3,2) D. (3,-2)
9.已知点(,)P x y 在第四象限,且点Р到x 轴,y 轴的距离分别为2,5.则点Р的坐标为( )
A .()5,2-
B .()2,5-
C .()2,5-
D .()5,2-
10.将点P (2m+3,m-2)向上平移1个单位长度后得到点P',且点P'在x 轴上,那么点P 的坐标是( )
A.(9,1)
B.(5,-1)
C.(7,0)
D.(1,-3)
11.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到
A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( )
A .()2,0-
B .()2,2-
C .()2,0
D .()5,1
12.如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为 ( )
A.(2,2)
B.(2,3)
C.(3,2)
D.(0,3)
13.已知古塔在嘉淇的北偏东30°方向,且距离嘉淇2 km,符合条件的示意图是
( )
14. 如图,学校在李老师家的南偏东30°方向,距离是500 m ,则李老师家在学校的( )
A .北偏东30°方向,相距500 m 处
B .北偏西30°方向,相距500 m 处
C .北偏东60°方向,相距500 m 处
D .北偏西60°方向,相距500 m 处
15.如图,若“帅”的位置用(1,-1)表示,“馬”的位置用(4,-1)表示,则“兵”的位置可表示为( )
A .()1,2-
B .()1,2--
C .()3,2--
D .()3,2- 16.如图,在3×3的正方形网格中有四个格点A ,B ,C ,D ,若以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( )
A.点A
B.点B
C.点C
D.点D
17.如图,将一颗小星星放置在平面直角坐标系中第二象限内的甲位置,先将它绕原点O 旋转180︒到乙位置,再将它向上平移2个单位长到丙位置,则小星星顶点A 在丙位置中的对应点A '
的坐标为( )
A .()3,1-
B .()1,3
C .()3,1
D .()3,1- 二、填空题
1. 若点M (-5,2+b )在x 轴上,则b= ;若点N (3-a ,7+a )在y 轴上,O 为平面直角坐标系的原点,则ON= .
2. 若点A (a-1,a+2)在x 轴上,将点A 向上平移4个单位长度得点B ,则点B 的坐标是 .
3.已知点 P (0,a )在 y 轴的负半轴上,则点 Q (-a 2
-1,-a+1)在第_______象限; 4.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.
5. 如图,用坐标原点O表示学校的位置,用x轴正方向表示正东方向,用y轴正方向表示正北方向.若李威家在王聪家的正西方向、张颜家的正北方向,则李威家的位置用坐标表示是;距离学校最近的是家.
6.如图是一局围棋比赛中的几手棋,为记录棋谱方便,横线用数字表示,纵线用字母表示,这样,黑棋❶的位置可记为(C,4),则白棋⑥的位置可记为.
三、解答题
1. 如图,写出点A,B,C,D,O的坐标
2. 如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(4,0),点C的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O-A-B-C-O 的路线移动(即沿着长方形的边移动一周).
(1)点B的坐标为;
(2)当点P移动了4秒时,求出点P的坐标,并在图中描出此时点P的位置;
(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.
3.△ABC的顶点在如图所示的正方形网格的格点(网格线的交点)上,每个小正方形的边长均为1.
(1)直接写出△ABC各顶点的坐标;
(2)画出△ABC关于x轴对称的图形△A1B1C1,并写出点B1的坐标;
(3)将△ABC先向右平移5个单位长度,再向上平移3个单位长度,画出平移后的图形△A2B2C2,并写出点C2的坐标.
4.嘉琪的爸爸是个工程师,专门搞机械零件研究,几年前他开了家机械制造厂,自己设计,自己加工生产.有一天,他急需一个如图所示的配件,而这种配件又不能自己生产,附近厂家也没有能力生产,只有远在千里之外的一家大型工厂才能铸造生产.他在电话里努力地描述该配件的形状和大小,可对方一点儿也没弄明白,这可急坏了他.嘉琪知道了此事,接过电话,很快将这个零件的形状和尺寸告诉了对方,你认为嘉琪是用的什么方法?并简述说明.
5.△ABC与△A'B'C'在平面直角坐标系中的位置如图所示
(1)分别写出下列各点的坐标:A_______ B_______ C_______
(2)△ABC由△A'B'C'经过怎样的平移得到?
(3)若点P(x,y)是△ABC内部点,则A'B'C' 内部的对应点P'的坐标为
(4)求△ABC的面积。

相关文档
最新文档