锂电池论文

合集下载

近期锂电火灾事故分析论文

近期锂电火灾事故分析论文

近期锂电火灾事故分析论文近年来,随着移动电子设备的普及和电动汽车市场的迅速成长,锂电池作为目前最常见的储能装置,其使用范围也变得越来越广泛。

然而,与此同时,锂电池火灾事故也频频发生,给人们的生命财产带来了巨大的危害。

本文将以近期发生的一起锂电池火灾事故为例,对该事故进行分析,并就锂电池火灾问题提出改进建议。

一、事故概述某市某手机厂家生产的新款手机在市场上获得了不错的销售成绩,然而,在不久前,该手机突然发生火灾事故。

据调查得知,火灾起因是手机使用的锂电池爆炸引发的。

当时该手机正处于充电状态,突然发生了爆炸,引发了火灾。

虽然火灾及时被扑灭,但是由于火灾引发的烟雾严重,导致了厂房内部的电子设备和仓库存货遭受了不同程度的损失,造成了数百万元的经济损失。

幸运的是,由于事发时正值非工作时间,没有人员在火灾中受伤。

二、事故原因分析1. 锂电池设计缺陷由于锂电池的工作原理决定了它需要具有高能量密度,而高能量密度往往也伴随着高风险。

在一些情况下,锂电池缺乏理想的电池管理系统(BMS)或错误的制造工艺可能导致锂电池内部发生短路或者过热,从而引发火灾。

2. 充电过程问题在这起事故中,手机处于充电状态。

虽然锂电池具有较高的充放电效率,但是过度充电或者充电过程中温度升高都有可能导致锂电池过热、起火甚至爆炸。

3. 厂家监管不到位对于相关生产企业而言,严格控制锂电池的制造工艺和质量检验至关重要,然而,一些小型手机厂家往往在制造和监管上存在着不到位的情况,导致了锂电池质量参差不齐。

4. 缺乏相应的安全防范措施事故发生后,对于厂房内部的安全防范措施调查发现,虽然厂房内设置了一部分灭火器材,但是对于高风险的锂电池火灾并没有采取更为有效的措施,例如设置自动报警系统、灭火系统等。

三、应对措施1. 完善锂电池设计和制造工艺在设计和制造锂电池时,厂家应该加强与研发团队的沟通,确保锂电池具备良好的安全性能。

此外,需要建立完善的BMS监控系统,及时发现和处理锂电池的异常情况。

锂离子电池研究本科毕业论文

锂离子电池研究本科毕业论文

摘要随着电力行业的高速发展,锂离子电池的研究已成为当代的热点研究课题。

研究锂离子电池,最主要的是对正极材料的研究,因为锂离子电池由于受到技术制约而使其性能得不到充分发挥。

锂离子电池在实际应用中有着循环使用寿命较长、首次充放电比容量高、对环境无污染等优点,已经成为21世纪绿色电源的首选。

目前常用的正极材料主要是LiCoO2,由于LiCoO2合成简单,充放电电压平稳,已经广泛用于各个领域,但是LiCoO2中钴材料价格较贵,毒性较大对环境污染严重,实际容量只有理论容量的二分之一,导致它的使用受到严重限制。

这就迫使研究者寻找新型的正极材料来代替LiCoO2。

LiNi1/3Co1/3Mn1/3O2正极材料价格低,热稳定性高,循环稳定性能良好,是目前高容量电极材料发展的主要方向。

本文将采用共沉淀法和溶胶-凝胶法制备锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2,然后利用XRD、SEM、充放电及循环性能测试对其进行结构、形貌研究并测试其电化学性能。

共沉淀法制备材料能有效节省材料的制备时间,选择合适的沉淀体系,加入一定量表面活性剂,严格控制反应体系PH在11,配锂量要大于一般的固相反应。

当配锂量在1.1时,前驱体经过500 ℃预处理,然后在850 ℃下焙烧20 h可得到粒径均匀,分散性好的细小颗粒;溶胶-凝胶法制备材料时,通过控制合适的络合剂、易分解的金属离子盐以及反应过程中的温度、时间、PH等条件,找到溶胶-凝胶法制备材料的最佳工艺条件。

实验表明,采用适当的反应过程和适宜的PH(6-6.3)值可以得到颗粒细小、均匀且分散性良好的粉状材料,使用这种粉体材料经过500 ℃预处理,然后在850 ℃下焙烧20 h 可以得到粒径在100~300 nm,均匀分布的粉末颗粒。

首次充放电实验表明,这种材料具有良好的循环稳定性能和较高的容量。

关键字:锂离子电池;正极材料;共沉淀;溶胶-凝胶法;LiNi1/3Co1/3Mn1/3O2AbstractWith the high-speed development of the power industry, the research of lithium ion battery has become a hot research topic in the contemporary. Research on lithium ion batteries, the most important is the study of the anode materials, because of the lithium ion batteries due to technical constraints and make not give full play to its performance. In actual application of lithium ion battery has a first charge and discharge cycle a lo ng service life, the advantages of high specific capacity, on the environment pollution-free, has become a 21st century green power of choice. The positive materials of the commonly used at present is mainly LiCoO2, as a result of LiCoO2 synthesis is simple, stable charge and discharge voltage, has been widely used in every field, but in the LiCoO2 cobalt material price is more expensive, bigger toxicity to environment pollution is serious, the actual capacity is only half of the theory of capacity, led to its use is limited by serious. This forces the researchers looking for new to replace the LiCoO2 cathode material. LiNi1/3Co1/3Mn1/3O2 cathode material price is low, high thermal stability, stable cycle performance is good, is currently the main development direction of high capacity electrode materials.This thesis will use the coprecipitation method and sol-gel method of lithium ion battery cathode material LiNi1/3Co1/3Mn1/3O2, then using XRD, SEM, charge-discharge and cycle performance test research on the structure, morphology and test their electrochemical performance.Coprecipitation preparation material can effectively save the preparation time, select the appropriate system of precipitation, surface active agent was added into, strict control of reaction system PH in 11, with lithium content than ordinary solid phase reaction. Precursor when the amount of lithium in 1.1 after 500 ℃preprocessing, and then roasting 20 h under 850 ℃can get uniform particle size, good dispersion tiny particles; Sol-gel method materials, by controlling the appropriate complexing agent and metal ion salt and easy decomposition reaction conditions, such as temperature, time and PH on the find material optimum process conditions of sol-gel method. Experiments show that the proper reaction process and the suitable PH value (6-6.3) can be particles small, uniform and good dispersancy powder materials, the use of this powder materials after 500 ℃preprocessing, and then roasting 20 h under 850 ℃can get grain size in 100 ~ 300 nm, uniform distribution of powder particles. The first charge and discharge experiments show that the material has good cycle stability performance and higher capacity.Key Words:Lithium-ion battery, Cathode material,Coprecipitation,Sol-Gel method, LiNi1/3Co1/3Mn1/3O2目录摘要 (I)Abstract (II)1 绪论............................................................................................................................- 1 -1.1 研究背景.........................................................................................................- 1 -1.2 锂离子电池概述.............................................................................................- 1 -1.2.1 锂离子电池的发展历程......................................................................- 1 -1.2.2 锂离子的应用及前景..........................................................................- 2 -1.2.3 锂离子电池的结构和工作原理..........................................................- 2 -1.2.4 锂离子电池的特点..............................................................................- 4 -1.3 锂离子电池正极材料.....................................................................................- 4 -1.3.1 氧化镍锂(LiNiO2)正极材料 ...............................................................- 5 -1.3.2 氧化钴锂(LiCoO2)正极材料...............................................................- 5 -1.3.3 氧化锰锂(LiMnO2)正极材料..............................................................- 6 -1.3.4 橄榄石结构(LiMPO4)正极材料..........................................................- 7 -1.3.5 尖晶石锰酸锂(LiMn2O4)正极材料.....................................................- 7 -2 实验条件与测试方法................................................................................................- 8 -2.1 化学试剂及主要设备.....................................................................................- 8 -2.1.1 化学试剂..............................................................................................- 8 -2.1.2 主要设备..............................................................................................- 9 -2.2 电极的制备和电池的组装.............................................................................- 9 -2.2.1 电极的制备..........................................................................................- 9 -2.2.2 电池的组装........................................................................................- 10 -2.3 主要测试方法................................................................... 错误!未定义书签。

锂电池的充放电系统

锂电池的充放电系统

本科毕业论文(设计、创作)题目:锂电池的充放电系统学生姓名:学号:1002149所在院系:专业:电气工程及其自动化入学时间:2010 年9 月导师姓名:职称/学位:副教授/硕士导师所在单位:完成时间:2014 年 5 月安徽三联学院教务处制锂电池的充放电系统摘要:随着时代的发展,便携化设备应用的越来越广泛,而锂电池则成为便携化设备的主要的电源支持。

锂电池与其他二次电池不同的是更需更安全高效的充电控制要求,因为这些特点让锂电池在实际的使用中有很多不便。

因此,基于特征的锂离子电池的充电和放电特性,锂离子电池充电的充电过程和控制单元的的发展趋势,本文设计出了一款智能充放电系统。

本文设计的控制单元大部分是由基于MAX1898的充电电路和AT89C51的控制单元构造而成。

以LM7805 为MAX1898与AT89C51提供电源支持。

本文还提供了用于锂离子电池的充电和放电控制系统的程序框图和功能。

锂离子充电电池和锂离子电池,微控制器,发电,转换和电压隔离光耦部分,放电特性充电芯片,锂离子电池充电电路设计,锂离子电池的程序设计充电作为主要内容本文。

关键词:单片机、MAX1898、AT89C51Li-ion battery charge and discharge system Abstract:With the progress of the times, portable device applications more widely, and lithium battery becomes more portable equipment's main power supply support. Lithium secondary batteries with other difference is safer and more efficient charging needs control requirements , because these features make lithium batteries have a lot of inconvenience in actual use . Therefore, The body on the characteristics of lithium ion rechargeable electric discharge pool,the development trend of lithium-ion battery charging process and control unit , the paper designed an intelligent charging and discharging system . This design of the control unit is constructed from long MAX1898 -based charging circuit and a control unit from AT89C51 . Provide power supply support for LM7805 MAX1898 with AT89C51. This article also provides a block diagram and function for lithium-ion battery charge and discharge control system.Lithium- ion battery characteristics , charge and discharge characteristics of lithium -ion batteries , the introduction of lithium-ion battery charging circuit design, rechargeable lithium-ion battery is designed to generate part of the program the microcontroller parts, power supply , voltage conversion and opto-isolated part of the charging chip , etc. as the main content of the paper .Key words: SCM,STC89c51, MAX1898目录中文摘要 (1)英文摘要 (1)第1章绪论 (4)1.1 课题研究的背景 (4)第2章电池的充电方法与充电控制技术 (8)2.1 电池的充电方法和充电器 (8)2.1.1 电池的充电方法 (8)2.1.2 充电器的要求和结构 (12)2.1.3 单片机控制的充电器的优点 (13)2.2 充电控制技术 (14)2.2.1 快速充电器介绍 (14)2.2.2 快速充电终止控制方法 (15)第3章锂电池充电器硬件设计 (18)3.1 单片机电路 (18)3.2 电压转换及光耦隔离电路 (21)3.3 电源电路 (23)3.4 充电控制电路 (24)3.4.1 MAX1898充电芯片 (24)3.4.2 充电控制电路的实现 (30)第4章锂电池充电器软件设计 (32)4.1程序功能 (32)4.2 主要变量说明 (32)4.3 程序流程图 (32)第5章结论与展望 (35)致谢 (36)参考文献 (37)附录 (38)第1章绪论1.1课题研究的背景电池可以说是一种由电化学氧化还原转换成电力的化学物质。

锂离子电池论文

锂离子电池论文

现代社会对于能源的需求日益增加。

20世纪,能源的主要攻击来源是化石燃料(包括煤、石油、天然气),化石燃料不仅用于热力发电,而且也可以用快速交通领域。

2008年的石油危机以及全球的气候变化,打破了人们对石油依赖的现状,从而确定了新的的技术发展方向,促使太阳能、风能、核能等可替代能源转化为电能。

另一项需要同为发展的技术是把能源以便携的的方式进行储存。

便携式储能可以满足储能可以满足世界各国人们日益增长的通过高速通信和交通进行练习和交往的需求。

由高能量密度电池组成的便携式能源不仅让个人通信、娱乐和计算机设备变得可能,而且可以应用在医学植入装置(如起搏器)中。

近年来,这种便携式能源以对电池在交通领域的应用产生影响。

因此,电池科技的发展是将化石燃料转向可替代能源的关键环节,尤其是新兴的纳米技术使得制备更高能量的密度的电池和更长寿命的充电电池成为可能。

正是基于对高能量密度存储设备的要求,因此,我们很有必要对锂离子电池进入更深一步的实验。

[1]高能量密度锂离子电池:材料、工程及应用(美)K.E.Aifantis (美)S.A.Hackney (英)R.V.Kumar 编著赵铭姝宋晓平郑青阳翻译机械工业出版社。

【精编范文】锂电池的论文-word范文模板(16页)

【精编范文】锂电池的论文-word范文模板(16页)

【精编范文】锂电池的论文-word范文模板(16页)本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==锂电池的论文篇一:锂电池论文锂离子电池的原理与应用王明浩(重庆大学材料科学与工程学院201X级装饰1班)摘要简要综述了锂离子电池的发展历程,原理,应用及前景,侧重于基本原理以及与生活密切相关的应用.关键字锂离子电池电池应用锂电池的产生自从1958年美国加州大学的一位研究生提出了锂,钠等活泼金属做电池负极的设想后,人类开始了对锂电池的研究.而从1971年日本松下公司的福田雅太郎发明锂氟化碳电池并使锂电池实现应用化商品化开始,锂电池便以其比能量[1]高,电池电压高,工作温度范围宽,储存寿命长等优点,广泛应用宇军事和民用小型电器中,如移动电话,便携式计算机,摄像机,照相机等.锂电池的简单介绍锂电池是一类以金属锂或含锂物质作负极的化学电源的总称.由于锂的标准电极电位负值较大(相对标准氢电极电位为-3.05V)而且理论比容量[2]高达3.88Ah/g.因此,与常规电池相比,具有电压高(3V左右),比能量大(200-450Wh/kg),可反复充放电(5000次以上),无记忆效应,无污染,工作环境宽等特点.已实用化的锂电池有Li-MnO2,Li—I2,Li-CuO,Li-SOCl2,Li-(CFx)n,Li-SO2,Li-Ag2CrO4等.而当这里的锂电极用碳代替时,便成了最新式的锂离子蓄电池.锂离子电池的研究始于20世纪80年代.1990年日本Nagoura等人研制成以石油焦为负极,以LiCoO2为正极的锂离子电池:LiC6|LiClO4-PC+EC|LiCoO2. 同年.Moli和sony两大电池公司宣称将推出以碳为负极的锂离子电池.1991年,日本索尼能源技术公司与电池部联合开发了一种以聚糖醇热解碳(PFA)为负极的锂离子电池.1993年,美国Bellcore(贝尔电讯公司)首先报道了采用PVDF工艺制造成聚合物锂离子电池(PLIB)。

南昌大学锂电池方向论文

南昌大学锂电池方向论文

南昌大学锂电池方向论文锂离子电池在便携式电子领域应用广泛,在新能源汽车、智能电网等领域也具有巨大的应用潜力。

目前,锂离子电池的电极材料多为无机化合物,具有资源依赖性强、环境破坏力大、回收再利用困难等缺点。

区别于无机电极材料,有机材料具有来源丰富、环境友好、回收利用方便以及结构多样性、灵活性和可加工性等独特的优势,是新一代“绿色电源”的新兴研究对象。

有机电极材料具有导电性低、氧化还原位点有限、易溶于有机电解液等一系列缺点,严重影响了电池器件的能量密度、倍率性能、循环寿命等。

针对有机电极材料的以上问题,我们尝试开展了以下工作:1、形貌调控和表面改性是改变聚合物性质特征的常见方法之一。

本论文采用电纺丝技术制备了聚丙烯腈/聚乙二醇纳米纤维,进一步通过低温热处理的气氛调控,制备得到多孔的聚合物纳米纤维。

电化学研究表明,空气气氛处理的纤维材料具有较高的电化学储能性能和良好的循环稳定性(50mA/g的电流密度下,100次循环后其容量保持在418mAh/g)。

谱学研究表明纳米纤维的储锂性能主要得益于表面丰富的C=O和C=N基团。

微观结构分析表明,纳米纤维的多孔结构缩短了Li~+和电子的扩散距离,为电荷转移反应提供较大的电极/电解质界面,进一步提高了材料的可逆容量和循环稳定性。

这一工作为有机聚合物的功能化和形态设计提供了新思路。

2、有机化合物具有氧化还原位点有限(储锂容量有限)、在电解液中易溶(循环稳定性降低)等缺点。

针对此,我们尝试采用过渡金属离子与有机分子的配位能力改善有机化合物的储能性能。

以天然有机物叶酸为例,通过金属离子的参与,制备了一系列叶酸金属配合物(FA-MCs,M=Fe,Co,Ni),并将其应用于锂离子电池的电极材料。

所制备的金属有机配合物具有多电子传递的协同效应,增强了锂离子的存储容量。

此外,金属有机配合物的形成有效抑制了叶酸在有机电解液中的溶解进一步改善了循环稳定性。

其中FA-CoC在电流密度为80mA/g 时,100次循环后其容量保持在220mAh/g。

毕业论文—锂离子电池

毕业论文—锂离子电池

编号:()字号本科生毕业设计(论文)题目:二氧化锰的回收与锰酸锂的制备姓名:陈金学学号:********班级:材料科学与工程学院科学08-1班二〇一二年六月中国矿业大学毕业设计任务书学院材料科学与工程专业年级材料科学2008学生姓名陈金学任务下达日期:2012年2月21日毕业设计日期:2012年2月21日至2012年6月10日毕业设计题目:二氧化锰的回收与锰酸锂的制备毕业设计专题题目:毕业设计主要内容和要求:1、查阅有关文献,撰写一般部分。

2、阅读外文文献,并翻译成中文。

3、提纯工业废料来制取正极材料,制备纽扣电池。

4、高温固相煅烧法合成锰酸锂正极材料,制备纽扣电池。

5、对电池进行电化学性能测试比较。

院长签字:指导教师签字:指导教师评语(①基础理论及基本技能的掌握;②独立解决实际问题的能力;③研究内容的理论依据和技术方法;④取得的主要成果及创新点;⑤工作态度及工作量;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等):成绩:指导教师签字:2012年6月13日评阅教师评语(①选题的意义;②基础理论及基本技能的掌握;③综合运用所学知识解决实际问题的能力;④工作量的大小;⑤取得的主要成果及创新点;⑥写作的规范程度;⑦总体评价及建议成绩;⑧存在问题;⑨是否同意答辩等):成绩:评阅教师签字:2012年6月14 日中国矿业大学毕业设计答辩及综合成绩摘要本文以工厂的废料为原料,采用不同的方法分离出废料中的杂质,评估提纯效果,最终得到有价值的锰氧化物。

再用提纯的锰氧化物和氢氧化锂在以不同比例、不同温度下煅烧反应,生成尖晶石型锰酸锂Li4Mn5O12和LiMn2O4的锂离子电池正极材料,做成纽扣电池。

在同样条件下,取乙酸锰与氢氧化锂合成的锰酸锂正极材料做得的纽扣电池,进行充放电性能比较。

测试表明,废料中的主要杂质为硫、钾和氟。

且所含主要物质为Mn(OH)2和KMn8O16。

经过水洗处理后可完全去除钴、铬、铜、钠、钙、砷、氟等元素;硫也能有效的降低;但是经过酸洗煅烧后发现,该步骤去除效果不明显。

【精品】锂离子电池的应用与发展

【精品】锂离子电池的应用与发展

目录摘要............................................. 错误!未指定书签。

前言............................................. 错误!未指定书签。

第一章锂离子电池的发展过程....................... 错误!未指定书签。

1.1锂离子电池的由来.......................... 错误!未指定书签。

1.2锂离子电池的发展简史...................... 错误!未指定书签。

1.3我国锂离子电池行业的技术、生产和消费状况.. 错误!未指定书签。

1.3.1我国锂离子电池的研究和生产技术水平... 错误!未指定书签。

1.3.2我国锂离子电池的生产情况和主要生产厂家错误!未指定书签。

1.3.3我国锂离子电池产业发展的策略及应避免的问题错误!未指定书签。

第二章锂离子电池的应用........................... 错误!未指定书签。

2.1电子产品方面的应用........................ 错误!未指定书签。

2.2交通工具方面的应用........................ 错误!未指定书签。

2.2.1电动自行车........................... 错误!未指定书签。

2.2.2电动汽车............................. 错误!未指定书签。

2.3在国防军事方面的应用...................... 错误!未指定书签。

2.4在航空航天方面的应用...................... 错误!未指定书签。

2.5在储能方面的应用.......................... 错误!未指定书签。

2.6在其他方面的应用.......................... 错误!未指定书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锂离子电池的原理与应用
正宗浩浩
摘要简要综述了锂离子电池的发展历程,原理,应用及前景,侧重于基本原理以及与生活密切相关的应用.
关键字锂离子电池电池应用
锂电池的产生
自从1958年美国加州大学的一位研究生提出了锂,钠等活泼金属做电池负极的设想后,人类开始了对锂电池的研究.而从1971年日本松下公司的福田雅太郎发明锂氟化碳电池并使锂电池实现应用化商品化开始,锂电池便以其比能量[1]高,电池电压高,工作温度范围宽,储存寿命长等优点,广泛应用宇军事和民用小型电器中,如移动电话,便携式计算机,摄像机,照相机等.
锂电池的简单介绍
锂电池是一类以金属锂或含锂物质作负极的化学电源的总称.由于锂的标准电极电位负值较大(相对标准氢电极电位为-3.05V)而且理论比容量[2]高达 3.88Ah/g.因此,与常规电池相比,具有电压高(3V左右),比能量大(200-450Wh/kg),可反复充放电(5000次以上),无记忆效应,无污染,工作环境宽等特点.已实用化的锂电池有Li-MnO2,Li—I2,Li-CuO,Li-SOCl2,Li-(CFx)n,Li-SO2,Li-Ag2CrO4等.而当这里的锂电极用碳代替时,便成了最新式的锂离子蓄电池.锂离子电池的研究始于20世纪80年代.1990年日本Nagoura等人研制成以石油焦为负极,以LiCoO2为正极的锂离子电
池:LiC6|LiClO4-PC+EC|LiCoO2. 同年.Moli和sony两大电池公司宣称将推出以碳为负极的锂离子电池.1991年,日本索尼能源技术公司与电池部联合开发了一种以聚糖醇热解碳(PFA)为负极的锂离子电池.1993年,美国Bellcore(贝尔电讯公司)首先报道了采用PVDF工艺制造成聚合物锂离子电池(PLIB)。

发展到今天性能有了极大地提高,被广泛适用于手机、电脑等。

锂离子电池的工作原理
锂离子电池目前有液态锂离子电池(LIB)和聚合物锂离子电池(PLIB)两类.其中,液态锂离子电池是指以Li+嵌入化合物为正负极的二次电池.正极采用锂离子化合物LiCoO2,LiNiO2或LiMn2O4 ,负极采用锂-碳层间化合物LixC6 电解质为溶解有锂盐的LiPF6,LiAsF6等有机溶剂.聚合物锂电池的正极和负极与液态锂离子电池相同.只是原来的液态电解质改为含有锂盐的凝胶聚合物电解质.而目前主要开发的就是这种.当锂离子电池工作时,它的电化学表达式为:Cn|LiClO4-EC+DEC|LiMO2 (+)正极反应:LiMO2 ===Li1-xMO2+xLi+xe 或Li1+yMn2O4 ===Li1+y-xMn2O4+LixCn (-)负极反应:nC+xLi+xe ===LixCn (式中M为Co,Ni,Fe,W等)锂离子电池实际上是一种锂离子浓差电池,正负两极由两种锂离子嵌入化合物组成.充电时,Li+从正极脱嵌经过电解质嵌入负极,负极处于富锂态,正极处于贫锂态,同时电子的补偿电荷从外电路供给到碳负极,保证负极的电荷平衡,放电时则相反,Li+从负极脱嵌,经电解质嵌入正极,从而构成闭合回路。

锂离子电池的应用
锂离子电池的一个应用方向是电动汽车.进入20世纪80年代,由于工业的发展,汽车产量巨增,大气污染成分的63%来自燃油汽车,为了根治汽车尾气对环境造成的污染,电动汽车及电动汽用电池的开发研究已经国内外汽车行业发展的新热点,而目前电动汽车商品化的难题主要是电池性能满足不了要求,而且价格高,体积大,质量大,而锂离子电池由于具有比能量高,自放电小,循环寿命长,无记忆效应和对环境污染小等优点,成功晋级为“实现中期目标的电动汽车动力电池”之一。

目前,在锂离子动力电池研究方面领先的厂商有日本Song 德国Va r t a和法国Saft。

锂离子电池的主要的应用领域为便携工电器,如手机,笔记本电脑.目前,移动电话和笔记本电脑两个领域的液态锂离子电池(LIB)用量已占全世界锂离子电池市场的90%,1999年,全世界的移动电话有42%使用LIB电池,笔记本电脑有67%使用LIB电池, 2010年,移动电话和笔记本电脑所用的电池中LIB电池和PLIB电池将会占有71%的市场。

2001年,全球锂电池用量已达6.65亿只,其中,诺基亚,摩托罗拉,爱立信三大厂商共销售锂电池2.1亿只,日本锂电池产值,目前仍占全球的90%以上,日本三洋,松下,索尼是世界前三名的生产厂家,可以说,随着手机和笔记本电脑的普及,锂离子电池已经与我们实现了零距离,而我们越来越关心的是如何判断电池性能的好坏,及如何去保养电池,下面简单谈一下这两个问题。

锂电池的判别
电池性能一般通过以下几个方面来评价:
(1)容量:容量是指在一定放电条件下,可以从电池获得的电量,即电流对时间的积分,一般用mAh或Ah来表示,它直接影响电池的最大工作电流和工作时间.(2)放电特性和内阻:放电特性是指电池在一定的放电制度下,其工作压的平稳性,电压平台的高低以及电流放电性能等,它表明电池带负载能力. (3)贮存性能:贮存一段时间后,电池会因某些因素的影响使性能发生变化,导致电池自放电,电解液泄漏,电池短路等.(4)循环寿命:指二它电池按照一定的制度进行充放电,性能衰减到某一程度时的循环次数.(5)内压和耐过充电性能:如果电池内部压力达不到平衡或平衡压力过高,就会使限位装置开启而引起电池泄气或漏液,从而导致电池失效,如果限压装置失败,则有可能引起电池壳体开裂或爆炸.国际上规定了非常严格的标准,一只含格的锂离子电池在安全性能上应满足以下条件:(1)短路:不起火,不爆炸 (2)过充电:不起火,不爆炸 (3)热箱试验:不起火,不爆炸(150℃恒温10min) (4)针刺:不爆炸(用Ф3㎜针穿透电池) (5)平板冲击:不起火,不爆炸(10㎏角物自1m高处咂向电池) (6)焚烧:不爆炸(煤气火焰烧烤电池)
如何去正确使用锂离子电池.
1,新电池充电方法:电池出厂后,已充电到约50%的电容量,新购的电池可直接使用,电池第1次用完后充足电再用,第2次用完后充足电,这样连续三次后,电池可达到最佳使用状态. 2,防止过效电:单体电池电压降到3V以下,即为过放电,电池不用时,应将电池充电到保
有20%的电容量,再进行防潮包装保存,3—6个月检测电压一次,并进行充电,保证电池电位在安全值3V以上范围内. 3,电池充电必须使用专用充电器. 4,远离高温(高于60℃)低温(低于-20℃)环境,不要接近火源,防止剧裂振动和撞击,不能随意拆卸电池,决不能用榔头敲打新旧的电池.5,参照你以上的使用的说明书,它全给你提供更加详细的使用说明.
结语
锂离子电池,作为一种绿色环保电源,正以其独特魅力,影响着我们的世界,在初步了解它的原理后,我们将来要做的是更好的研究和利用它,我们相信,未来的锂离子电池在我们手中将会取得更加丰硕的成果,
参考文献[1]百度[2]吕鸣祥等编著《化学电源》天津天津大学出版社 1992[3]诺基亚说明书[4]大学化学重庆重庆大学出版社2007。

相关文档
最新文档