配位化学论文设计---分子轨道理论

合集下载

分子轨道理论的发展及其应用

分子轨道理论的发展及其应用

分子轨道理论的发展及其应用北京师范大学段天宇学号201111151097摘要:分子轨道理论是目前发展最成熟,应用最广泛的化学键理论之一。

本文简述了分子轨道理论的基本思想及发展历程,列举了其在配位化学、矿物学、气体吸附领域的应用实例,并对其前景作出展望。

0 前言化学键是化学学科领域中最为重要的概念之一。

通常,化学键被定义为存在于分子或晶体中或两个或多个原子间的,导致形成相对稳定的分子或晶体的强相互作用。

从二十世纪初期至今,科学家们为了解释化学键现象相继提出了价键理论、分子轨道理论、配位场理论等化学键理论。

其中分子轨道理论(Molecular Orbital Theory)具有容易计算、计算结果得到实验支持的优势,并不断得到完善与拓展,因而自二十世纪五十年代以来,已经逐渐确立了其主导地位[1]。

目前,作为相对最为成熟的化学键理论,分子轨道理论的应用已经涵盖了化学研究的几乎全部领域中。

1 分子轨道理论发展1926至1932年,Mulliken和Hund分别对分子中的电子状态进行分类,得出选择分子中电子量子数的规律,提出了分子轨道理论[2]-[3]。

分子轨道理论认为,电子是在整个分子中运动,而不是定域化的。

他们还提出了能级相关图和成键、反键轨道等重要概念。

1929年,Lennard-Jones提出原子轨道线性组合(Linear Combination of Atomic Orbitals)的理论[4]。

后来,原子轨道线性组合的思想被应用于分子轨道理论中,成为分子轨道理论的基本原理。

这一原理指出,原子轨道波函数通过线性组合,即各乘以某一系数相加得到分子轨道波函数。

这种组合要遵循三个基本原则,即:组合成分子轨道的原子轨道必须对称性匹配;组成分子轨道的原子轨道须能级相近;原子轨道达到最大程度重叠以降低组成分子轨道的能量。

其中,最重要的是对称性匹配原则,对称性相同的原子轨道组合成能量低于自身的成键分子轨道,对称性相反的原子轨道组合成高于自身的反键分子轨道。

浅谈配位化学理论

浅谈配位化学理论

摘要: (2)关键词: (2)Abstract: . (2)Keywords: (2)1.价键理论(Valence Bond Theory ) (2)2.晶体场理论CFT(Crystal Field Theory) (3)3.分子轨道理论((Molecular Orbital Theory) (4)4.配位场理论LFT (Ligand Field Theory) (4)5.经典配位化学的产生和发展 (5)6.配位化学新的发展及应用趋势 (6)7.配位化学近几年的研究热点 (6)8.结语 (6)参考文献 (6)浅谈配位化学理论摘要:自从1893年瑞士化学家维尔纳创立配位化学已来,配位化学理论得到不断发展,逐渐完善。

经过化学家们100多年的努力,由传统经典的配合物,发展到今天的配位超分子化合物,并显示出结构和功能上的优越特性,成为现代无机化学的一个发展方向。

本论文先对各配位理论进行简要的介绍,然后再总结其中的规律,最后根据发展的规律对未来的发展进行展望。

关键词:配位化学晶体场理论配位Abstract:since 1893,the Swiss chemist Werner has founded the coordination chemistry,coordination chemistry theory of continuous development,and gradually improve. After100years of efforts of chemists,from the traditional classic complexes,to today's development of supramolecular coordination compounds,and show the structural and functional superiority,becomes the modern inorganic chemistry is a direction of development. This paper first on the coordination theory was briefly introduced, and then summarizes the laws, according to the law of the development of the future development prospect.Keywords: Coordination chemistry Crystal field theory coordinatio n在阐明配位化合物结构的理论中,较重要的有价键理论、晶体场理论、分子轨道理论和配位场理论等,下面概述这些理论的基本内容:1.价键理论(Valence Bond Theory )价键理论是在Pauling 离子晶体电价规则基础上发展起来的, 它继承了电价规则中/原子的价分配在原子所连诸键上0的基本概念, 同时允许原子所连诸键的键价做不均匀的分配。

我的配位化学论文

我的配位化学论文

亚铜离子配合物的稳定性及应用近年来.由于金属配合物在日常生活和工业上都有广泛的应用,尤其过渡金属对探索和研究药物分子抗菌、抗肿瘤的作用机制具有重要意义。

在催化、光学材料以及电学材料等方面具有新型功能的金属配合物的研究也受到人们的广泛关注。

通过这一个学期的学习,我对配位化学的基础知识有了很大程度的了解。

在即将走完配位化学的课堂学习历程时,我就亚铜离子配合物的的稳定性及应用进行整理。

亚铜离子的化合价为+1,与铜离子相比较为稳定,但由于离子半径过大,不能存在于水溶液中,在酸性条件下自我岐化,生成Cu2+和Cu单质亚铜离子和铜离子可以相互转化:一般亚铜在固相或高温下稳定(亚铜离子在水相中会发生歧化),二价铜在水相中最稳定(因为二价水合铜的水和能特别大,因而亚铜容易歧化转变成稳定的二价铜)。

在溶液中稳定亚铜的另一途径是形成配合物。

如果非氧化性酸中的因此与亚铜离子有较强的配位能力,则可以提高铜的还原性(降低铜的电极电位),进而生成亚铜配离子。

亚铜离子在遇到强酸时会自我氧化生成铜离子和铜单质,现象为生成红色沉淀和蓝色溶液。

一价铜Cu(I)化合物通常不稳定,易被氧化成二价铜Cu(II)化合物。

从电子结构来看,单质铜为全满和半充满状态3d铒s9,失去一个电子而形成3d9489的全满和全空状态,均为较稳定的状态;而Cu(II)的电子结构为3d94so,3d9既非全满亦非半充满或全空状态,因此,Cu(D应该比较稳定。

实际在形成配合物时,由于Cu(II)的极化力比Cu(I)大,能与配体形成稳定的配位键,一般形成配位键的数目亦较多,使体系能量降低较多,因而通常更多地却是形成较为稳定的Cu(II)配合物。

相反,Cu(I)所带的电荷比Cu(II)的少,半径比Cu(II)的大,因而其成键能力弱于Cu(II),所以获得较为稳定的Cu(I)的配合物也因此成为人们研究的焦点。

铜的配合物常常具有一定的催化活性。

而亚铜化合物纳米材料的合成与应用研究正得到人们的青睐旧。

什么是分子轨道理论

什么是分子轨道理论

什么是分子轨道理论
分子轨道理论(Molecular Orbital Theory,简称MO理论)是1932年由美国化学家马利肯(R.S.Mulliken)及德国物理学家洪特(F.Hund)提出的一种描述多原子分子中电子所处状态的方法。

该理论认为原子形成分子后,电子不再属于个别的原子轨道,而是属于整个分子的分子轨道,分子轨道是多中心的。

分子轨道由原子轨道组合而成,形成分子轨道时遵从能量近似原则、对称性一致(匹配)原则、最大重叠原则,即通常说的“成键三原则”。

在分子中电子填充分子轨道的原则也服从能量最低原理、泡利不相容原理和洪特规则。

以上信息仅供参考,建议查阅化学专业书籍文献或咨询化学专业人士获取更全面更准确的信息。

分子轨道理论

分子轨道理论
一起满足18电子规则,具有反磁性。
M
Cr
Mn
Fe
Co
Ni
价电子数 需要电子数
6 12
7 11
8 10
9 9
10 8
Ni(CO)4
形成的羰基配
位化合物
Cr(CO)6 Mn2(CO)10
Fe(CO)5 Co2(CO)8



e
g
配位 体群 轨道
反键MO
s
d
△ 非键MO σ
eg t1u
金属 a1g 络合物
成键 MO 配位体
分子轨道理论不像晶体场理论那样只考虑静电作用,也考虑 到了d轨道的能级分裂。
在晶体场理论中: 其差别在于: 分子轨道理论中:
E
0
eg
Et Et
2g
E
0
e g
2g
⑴ [FeF6]3-
中心金属和配位体之间σ配键和反馈∏键的形成是同时进 行的,而且σ配键的形成增加了中心原子的负电荷,对反馈 ∏键的形成更加有利,反馈∏键的形成则可减少中心原子的 负电荷,对σ配键的形成更加有利。两者互相促进,互相加 强,这就是协同效应。
大多数羰基配位化合物具有如下特点:
每个金属原子的价电子数和它周围配位体提供的价电子数加在
dx2-y2 dz2
eg Δ
这种π型轨道的形 成,使得体系的分裂能 Δ增大。 故,此类配合物常 是低自旋构型。 配体的π 空轨道
Δ=10 Dq
E0 3d
中央原子 轨道
t2g
dxy dxz dyz
t2g
受配位场微扰 d轨道分裂 分子轨道
例如,CN-、CO、NH3、NO2- 等就属于此类配体,其造

分子轨道 自旋

分子轨道 自旋

分子轨道自旋全文共四篇示例,供读者参考第一篇示例:分子轨道理论是化学领域中的重要概念之一,它是描述分子内原子间相互作用的数学模型。

自旋是分子轨道理论中的一个关键概念,它是描述电子的自旋角动量的物理量。

在氢原子中,自旋仅有两种取值,即↑和↓,代表电子自旋的两种可能方向。

在不同的原子核和分子体系中,电子自旋可能会受到各种不同因素的影响,如磁场和电场等。

自旋是电子的一种内禀属性,类似于电子的电荷和质量。

自旋量子数通常用s表示,且只能取正或负1/2,分别代表自旋向上和自旋向下。

电子的自旋会影响其在能级分布和轨道排布中的行为。

在分子轨道理论中,自旋也会影响分子中电子的排布和结构。

分子轨道是描述分子中电子排布的特殊函数,它是由原子轨道线性组合而成的。

当原子轨道线性叠加时,会形成新的分子轨道,这些分子轨道会影响分子的能量以及物理性质。

自旋在分子轨道形成的过程中也必不可少,因为它会影响不同自旋的电子在不同分子轨道内的分布。

分子轨道可以分为成键轨道和反键轨道两类。

成键轨道是由原子轨道的正交化组合形成的,其电子密度较高且能量较低,代表了分子中的稳定化学键。

相反,反键轨道是由原子轨道的反向叠加组成,其电子密度较低且能量较高,代表了分子中的不稳定区域。

自旋会影响成键轨道和反键轨道中的电子排布,从而影响分子的化学性质和反应。

自旋也在分子的磁性和电性质中起着重要作用。

在分子中,不同自旋的电子会相互作用,产生自旋耦合效应。

这种自旋耦合会影响分子中电子的运动以及分子的磁性质。

自旋还可以影响分子中的能级结构和电子传递速率,从而影响分子的导电性和光电性。

分子轨道理论和自旋是化学研究中的重要内容,它们可以帮助我们更好地理解分子结构和化学键的形成。

在未来,随着研究的不断深入,我们对分子轨道和自旋的理解将会不断完善,为化学领域的发展和应用带来新的突破和进展。

【这里文章提供了自旋和分子轨道的基本概念和关系,介绍了它们在分子结构和性质中的作用,同时展望了未来的研究方向和发展趋势。

配合物分子轨道理论

配合物分子轨道理论

情形1
t2g
t1u t1g
t2u
t1u
eg
a1g
共有6个型配体轨道 f 和12个型配体轨道 f f 和 f 形成Oh点群可约表示的基,组合形成群轨道
Z
建立坐标系
y3
x3 z3
x5 z5
y4
z4
x4 x2
y5
z1
z2
y1
x1 z6
y2
Y
y6
X
x6
C4 C3
i)中央离子右手系,配体左手系 ii)配体的z轴指向金属离子,x,y
的正方向指向主坐标系的正方向
iii)1, 2,3在正轴,4,5,6在负轴
对 和 进行可约表示分解
=a1g +eg +t1u =t1g t1u t2g t2u
Oh Eˆ 8Cˆ3 3Cˆ2 6Cˆ4 6Cˆ2' iˆ 8Sˆ6 3ˆh 6Sˆ4 6ˆv
C2 6 0 2 2 0 0 0 4 0 2 12 0 4 0 0 0 0 0 0 0
T2u
py2 px3 px5 py6 2 px1 py3 py4 px6 2 py1 px2 px4 py5 2
(6) 配合物的 型分子轨道作用
M a1g t1u eg t2g
t1g t1u t2g t2u
配体的t1g 和t2u 为非键轨道(不与金属轨道作用)
第19讲 金属配合物:分子轨道理论
1.基本思想
(1)中心离子的AO与配体的(AO或MO)根据对称性匹配,相互作用形成配 合物的成键或反键分子轨道
(2)MO的构成:金属、配体的外层轨道对配合物MO有重要贡献;例对第 一系列过渡金属元素,参与配合物MO的原子轨道有3d,4s,4p

分子轨道理论

分子轨道理论

分子轨道理论简介一种化学键理论,是原子轨道理论对分子的自然推广。

其基本观点是:物理上存在单个电子的自身行为,只受分子中的原子核和其他电子平均场的作用,以及泡利不相容原理的制约;数学上则企图将难解的多电子运动方程简化为单电子方程处理。

因此,分子轨道理论是一种以单电子近似为基础的化学键理论。

描写单电子行为的波函数称轨道(或轨函),所对应的单电子能量称能级。

对于任何分子,如果求得了它的系列分子轨道和能级,就可以像讨论原子结构那样讨论分子结构,并联系到分子性质的系统解释。

有时,即便根据用粗糙的计算方案所得到的部分近似分子轨道和能级,也能分析出很有用处的定性结果。

理论⒈原子在形成分子时,所有电子都有贡献,分子中的电子不再从属于某个原子,而是在整个分子空间范围内运动。

在分子中电子的空间运动状态可用相应的分子轨道波函数ψ(称为分子轨道)来描述。

分子轨道和原子轨道的主要区别在于:⑴在原子中,电子的运动只受1个原子核的作用,原子轨道是单核系统;而在分子中,电子则在所有原子核势场作用下运动,分子轨道是多核系统。

分子轨道理论⑵原子轨道的名称用s、p、d…符号表示,而分子轨道的名称则相应地用σ、π、δ…符号表示。

⒉分子轨道可以由分子中原子轨道波函数的线性组合(linearcombinationofatomicorbitals,LCAO)而得到。

有几个原子轨道就可以可组合成几个分子轨道,其中有一部分分子轨道分别由对称性匹配的两个原子轨道叠加而成,两核间电子的概率密度增大,其能量较原来的原子轨道能量低,有利于成键,称为成键分子轨道(bondingmolecularorbital),如σ、π轨道(轴对称轨道);同时这些对称性匹配的两个原子轨道也会相减形成另一种分子轨道,结果是两核间电子的概率密度很小,其能量较原来的原子轨道能量高,不利于成键,称为反键分子轨道(antibondingmolecularorbital),如σ*、π*轨道(镜面对称轨道,反键轨道的符号上常加"*"以与成键轨道区别)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

配位化学论文分子轨道理论的发展及其应用160113004 2013级化教一班马慧敏一、前言价建理论、分子轨道理论和配位场理论是三种重要的化学键理论。

三、四十年代,价键理论占主要的地位。

五十年代以来由于分子轨道理论容易计算且得到实验(光电能谱)的支持,取得了巨大的发展,逐渐占优势。

价建理论不但在理论化学上有重要的意义(下文中将详细介绍)。

在应用领域也有重要的发展,如分子轨道理论计算有机化合物的吸收光谱用于染料化学;前线分子轨道理论在选矿中的研究等等。

二、简介1、分子轨道理论产生和发展在分子轨道理论出现以前,价键理论着眼于成键原子间最外层轨道中未成对的电子在形成化学键时的贡献,能成功地解释了共价分子的空间构型,因而得到了广泛的应用。

但如能考虑成键原子的内层电子在成键时贡献,显然更符合成键的实际情况。

1932年,美国化学家 Mulliken RS和德国化学家HundF 提出了一种新的共价键理论——分子轨道理论(molecular orbital theory),即MO法。

该理论注意了分子的整体性,因此较好地说明了多原子分子的结构。

目前,该理论在现代共价键理论中占有很重要的地位。

以下是各个年代提出的关于分子轨道理论的一些重要理论和方法,是分子轨道理论发展过程中的几个里程碑!1926-1932年,在讨论分子光谱时,Mulliken和Hund提出了分子轨道理论。

认为:电子是在整个分子轨道中运动,不是定域化的。

他们还提出能级图、成键、反键轨道等重要的概念。

1931-1933年,Hukel提出了一种简单的分子轨道理论,用于讨论共轭分子的性质,相当成功。

1950年,Boys用Guass函数研究原子轨道,解决了多中心积分问题,是今天广为利用的自洽场分子轨道理论的基础,在量子化学的研究中占有重要地位。

1951年,Roothaan在Hartree-Fock方程的基础上,把分子轨道写成原子轨道的线性组合,得到Roothaan方程。

1952年,福井谦一提出前线分子轨道理论,用以讨论分子的化学活性和分子间相互作用等,可以解释许多实验结果。

1965年,Woodward和Hoffman提出分子轨道对称守恒原理,发展成讨论基元反应发生可能性的重要规则。

用于指导某些复杂化合物分子的合成。

2、分子轨道理论的含义和一些重要分子轨道的构成方法1)分子轨道理论的含义分子轨道理论(Molecular orbital theory),简称MO理论,是处理双原子分子及多原子分子结构的一种有效的近似方法,是化学键理论的重要内容。

它与价键理论不同,后者着重于用原子轨道的重组杂化成键来理解化学,而前者则注重于分子轨道的了解,认为:原子在形成分子时,所有电子都有贡献,分子中的电子不再从属于某个原子,而是在整个分子空间范围内运动。

[1]其基本观点是:物理上存在单个电子的自身行为,只受分子中的原子核和其他电子平均场的作用,以及泡利不相容原理的制约;数学上则企图将难解的多电子运动方程简化为单电子方程处理。

因此,分子轨道理论是一种以单电子近似为基础的化学键理论。

描写单电子行为的波函数称轨道(或轨函),所对应的单电子能量称能级。

对于任何分子,如果求得了它的系列分子轨道和能级,就可以像讨论原子结构那样讨论分子结构,并联系到分子性质的系统解释。

计算化学中常以原子轨道线性组合近似来计算分子轨道波函数:[2]式中的c ij系数可由将等式代入薛定谔方程以及应用变分原理求得。

简单地讲,该方法意即,分子轨道由原子轨道组合而成。

原子轨道波函数各乘以某一系数相加或相减,得到分子轨道波函数。

组合时原子轨道对分子轨道的贡献体现在系数上,组合前后轨道总数不变。

简单讲,分子轨道就是由一系列遵从能量相近原则、最大重叠原则、对称性匹配原则的原子轨道,通过一定方向重叠而形成的具有不同能量的一系列轨道。

相同相位重叠则能量比形成它的原子轨道能量低,为成键轨道,电子优先占据。

而以相反相位重叠而形成的轨道能量升高,在这些轨道上电子出现的几率小。

形成分子轨道后,所有的电子离域,按照能量最低原则,Hund规则,泡利不相容原则,在分子轨道中排布。

2)常用的构成分子轨道的方法不同形态的原子轨道按照一定的方向重叠,形成具有不同对称性的分子轨道。

各种分子轨道具有不同的对称性,可依此将其分为σ、π与δ三种类型。

上图虚线表示截面,可以看出三种不同轨道对称性的差别:•σ分子轨道:对键轴呈圆柱形对称,成键σ轨道如σg1s 为中心对称,反键σ轨道如σu1s 为中心反对称。

•π分子轨道:对平面xy 反对称,只有一个含键轴的节面,对节面呈反对称性。

•δ分子轨道:通过键轴节面的分子轨道,对两个节面都呈反对称性。

接下来,介绍原子轨道组成分子轨道的最常见的几种类型:最常见的σ分子轨道:可以由能量相近的两个s 轨道,s-p 轨道,p-p 轨道头碰头重叠而成。

如下图所示:常见的∏轨道:两个p 轨道肩并肩重叠形成两个π分子轨道。

其中能量较高的为πp *反键轨道较低的为πp 成键轨道两个s 轨道重叠产生两个σ分子轨道。

能量较高的为σ*反键轨道 能量低的为σ成键轨道两个p 轨道头碰头重叠产生两个σ分子轨道。

能量较高的为σ*反键轨道 能量低的为σ成键轨道s 轨道和Pz 轨道沿z 轴重叠产生两个σ分子轨道。

能量较高的为σ*反键轨道 能量低的为σ成键轨道.d xy与pz轨道对称性匹配,肩并肩重叠形成两个π轨道(如图为成键轨道,反键轨道未画出)两个d xy轨道对称性匹配,肩并肩重叠形成两个π轨道(如图为成键轨道,反键轨道未画出)δ分子轨道:两个d xy轨道沿z轴重叠成δ分子轨道三、分子轨道理论的应用及成就简单分子轨道理论的应用应用简单分子轨道理论,画出分子轨道能级图,确定电子排布,能够利用其进行很多定性和定量的研究。

如计算键级,判断多原子分子是否能稳定结合,研究双原子的成键方式,判断磁性等。

也可以用于计算键长,键解离能,双原子分子的偶极矩等。

例如:1.对于氧气成键状态和顺磁性的解释:对于第二周期同核双原子分子,不考虑s-p杂化时分子轨道能级图如下图所示,能级顺序为2.分子轨道理论在生物无机化学中也有广泛的应用。

生物无机化学主要研究一些金属离子与生物配体(蛋白质、氨基酸、核酸等)配位,形成生物活性物质,而发挥催化、调节等作用。

而分子轨道理论常用于解释一些配位的机理,从而发挥作用。

对于研究配合物的性质,作用机理,以及指导人工合成某些模拟化合物有重要的意义。

N2是生物固氮的原料,与CO是等电子体。

它们具有相似的价电子组态,和成键状态。

然而CO与金属活性中心的配位作用远比N2强。

用分子轨道理论能够解释这一现象。

N 2和CO的分子轨道能级顺序不同于O2,由于它们原子轨道重叠形成的σs, σp轨道的能量相近,对称性匹配,能进一步组合成新的分子轨道,因此能级位置发生变化。

(对第二周期元素:Li, Be, O, F用简单分子轨道能级顺序;N, C, B 需要考虑s-p杂化。

)以下是N2、CO的分子轨道能级图根据能量最低,以及Pauli不相容原则。

O2的12个价电子组态为(σ2s)2(σ2s*)2(σ2pz)2(π2px)2(π2py)2(π2px*)1(π2py*)1,键级=2, 其中6个p电子,形成两个三电子π键。

在π2px*和π2py*轨道分别有一个未成对电子,自旋相同。

很好地说明O2分子的顺磁性。

N2的轨道能级图N 2和CO 都是10个价电子, 组态为(1σg )2(2σu )2(1πu )4 (3σg )2.成键情况相似。

在与金属配位时,3σg 上一对电子进入金属的空轨道,形成σ配位键;同时过渡金属的d 电子进入2π反键轨道,形成反馈π键,从而构成σ-π协同配位结构。

同CO 相比,N 2最高占据轨道能量比较低,所以N 2是一个比较差的电子给予体,给出电子形成σ配位键的能力较弱;另一方面,N 2最低未占据空轨道能量比CO 高,所以N 2接受d 电子形成反馈π键的能力也不如CO 强。

因此,N 2分子配合物的稳定性比金属羰基化合物差。

将其应用于生物化学中,探寻能更好的与N 2配位的催化剂,而实现人工固氮,具有远大的应用价值。

Hukel 分子轨道理论的应用(HMO 法) Hukel 分子轨道理论的基本思想是:a) 把电子间的双粒子相互作用近似得用单电子平均位场代替,从而导致分子体系单电子运动方程b)c) 引入Hukel 近似d) 由于π轨道和σ轨道的对称性不同,不能混合,可以将其分别处理。

对于共轭分子将原子核、内层电子、σ电子看作分子骨架,只考虑外部的π电子。

Hukel 分子轨道理论能够很好得解释共轭分子的稳定性。

通过Hukel 分子轨道理论能用两个参数α、β表示分子轨道所对应各个能级的能量。

能够很好得解释共轭分子的稳定性。

通过每个电子的波函数算出分子中每个原子的电荷密度、相邻原子π键级、自由价、定域能、前线轨道指数等参数能够预测共轭分子的化学反应活性,和反应类型。

例如:① 如下图所示利用Hukel 分子轨道理论做出标有电荷密度、相邻原子π键级、自由价的分子图,可以判断甘菊环2、3位置容易发生亲电取代,4,6位置易发生亲核取代。

CO 的轨道能级图适用于第二周期异核双原子分子②HMO理论对于解释环状共轭分子的稳定性有重要的贡献。

证明了4N+2规则:含有4n+2个π电子的单环共轭体系是稳定的,而含有4n个π电子的共轭单环不稳定。

对于含有4n+2个π电子的环状分子,所有的电子都会处于成键轨道;而对于含有4n个π电子的共轭单环,有两个电子会占据二重简并的两个非键轨道,容易发生结构畸变,简并消除,所以是不稳定的。

证明过程在这里就不详细说明了。

③HMO法还可以用于合成一些有趣的共轭大分子。

例如1984年,SYoneda等人合成了一个由由两个三元环两个五元环构成的,容易形成如下图b构型而稳定的有机分子。

用HMO法计算表明:与这个分子相似的n1环与n2环像下图中一样在一个大环上交替出现组成共轭体系,则在n1+n2=4n时,分子稳定。

前线分子轨道理论的应用前线分子轨道理论强调分子的性质,特别是分子与其它分子的相互作用主要是由最高占据轨道HOMO轨道,和最低未占据轨道LOMO轨道所决定的。

前线分子理论指出分子在反应过程中必须遵从一定的原则一个分子的HOME和另一个分子的LOMO轨道必须对称性一致,并且相同相位能够重叠。

含有不同电子数目的单环共轭体系的分子轨道能级图互相作用的HOME和LOMO轨道能量接近。

随两个分子HOME和LOMO轨道发生叠加,电子从一个分子的HOME转移到另一个分子的LOMO轨道,电子转移方向从电负性判断要合理。

利用前线分子轨道理论可以判断化学反应能否发生以及发生的难易程度。

以及反应条件。

前线轨道给出了分子互相作用时,电子流动的简单图像(在满足以上规则的情况下,HOME和LOMO轨道之间能量差小的,是主要电子流动方向)。

相关文档
最新文档