孪生素数猜想证明

合集下载

孪生素数猜想证明

孪生素数猜想证明

Bounded gaps between primesYitang ZhangAbstractIt is proved that(p n+1−p n)<7×107,lim infn→∞where p n is the n-th prime.Our method is a refinement of the recent work of Goldston,Pintz and Yildirim on the small gaps between consecutive primes.A major ingredient of the proof is a stronger version of the Bombieri-Vinogradov theorem that is applicable when the moduli are free from large prime divisors only(see Theorem2below),but it is adequate for our purpose.Contents1.Introduction22.Notation and sketch of the proof33.Lemmas74.Upper bound for S1165.Lower bound for S222binatorial arguments247.The dispersion method278.Evaluation of S3(r,a)299.Evaluation of S2(r,a)3010.A truncation of the sum of S1(r,a)3411.Estimation of R1(r,a;k):The Type I case3912.Estimation of R1(r,a;k):The Type II case4213.The Type III estimate:Initial steps4414.The Type III estimate:Completion48References5511.IntroductionLet p n denote the n-th prime.It is conjectured thatlim infn→∞(p n+1−p n)=2.While a proof of this conjecture seems to be out of reach by present methods,recently Goldston,Pintz and Yildirim[6]have made significant progress toward the weaker con-jecturelim infn→∞(p n+1−p n)<∞.(1.1) In particular,they prove that if the primes have level of distributionϑ=1/2+ for an (arbitrarily small) >0,then(1.1)will be valid(see[6,Theorem1]).Since the result ϑ=1/2is known(the Bombieri-Vinogradov theorem),the gap between their result and (1.1)would appear to be,as said in[6],within a hair’s breadth.Until very recently,the best result on the small gaps between consecutive primes was due to Goldston,Pintz andYildirim[7]that giveslim infn→∞p n+1−p n√log p n(log log p n)2<∞.(1.2)One may ask whether the methods in[6],combined with the ideas in Bombieri,Fried-lander and Iwaniec[1]-[3]which are employed to derive some stronger versions of the Bombieri-Vinogradov theorem,would be good enough for proving(1.1)(see Question1 on[6,p.822]).In this paper we give an affirmative answer to the above question.We adopt the following notation of[6].LetH={h1,h2,...,h k}(1.3) be a set composed of distinct non-negative integers.We say that H is admissible if νp(H)<p for every prime p,whereνp(H)denotes the number of distinct residue classes modulo p occupied by the h i.Theorem 1.Suppose that H is admissible with k0≥3.5×106.Then there are infinitely many positive integers n such that the k0-tuple{n+h1,n+h2,...,n+h k}(1.4) contains at least two primes.Consequently,we havelim infn→∞(p n+1−p n)<7×107.(1.5) The bound(1.5)results from the fact that the set H is admissible if it is composed of k0distinct primes,each of which is greater than k0,and the inequalityπ(7×107)−π(3.5×106)>3.5×106.2This result is,of course,not optimal.The condition k 0≥3.5×106is also crude and there are certain ways to relax it.To replace the right side of (1.5)by a value as small as possible is an open problem that will not be discussed in this paper.2.Notation and sketch of the proofNotationp −a prime number.a ,b ,c ,h ,k ,l ,m −integers.d ,n ,q ,r −positive integers.Λ(q )−the von Mangoldt function.τj (q )−the divisor function,τ2(q )=τ(q ).ϕ(q )−the Euler function.µ(q )−the M¨o bius function.x −a large number.L =log x .y,z −real variables.e (y )=exp {2πiy }.e q (y )=e (y/q ).||y ||−the distance from y to the nearest integer.m ≡a (q )−means m ≡a (mod q ).¯c /d −means a/d (mod 1)where ac ≡1(mod d ).q ∼Q −means Q ≤q <2Q .ε−any sufficiently small,positive constant,not necessarily the same in each occur-rence.B −some positive constant,not necessarily the same in each occurrence.A −any sufficiently large,positive constant,not necessarily the same in each occur-rence.η=1+L −2A .κN −the characteristic function of [N,ηN )∩Z . ∗l (mod q )−a summation over reduced residue classes l (mod q ).C q (a )−the Ramanujan sum∗l (mod q )e q (la ).We adopt the following conventions throughout our presentation.The set H given by(1.3)is assumed to be admissible and fixed.We write νp for νp (H );similar abbreviations will be used in the sequel.Every quantity depending on H alone is regarded as a constant.For example,the absolutely convergent productS = p1−νp p 1−1p −k 03is a constant.A statement is valid for any sufficiently smallεand for any sufficiently large A whenever they are involved.The meanings of“sufficiently small”and“sufficiently large”may vary from one line to the next.Constants implied in O or ,unless specified,will depend on H,εand A at most.Wefirst recall the underlying idea in the proof of[6,Theorem1]which consists in evaluating and comparing the sumsS1=n∼xλ(n)2(2.1)andS2=n∼x k0i=1θ(n+h i)λ(n)2,(2.2)whereλ(n)is a real function depending on H and x,andθ(n)=log n if n is prime, 0otherwise.The key point is to prove,with an appropriate choice ofλ,thatS2−(log3x)S1>0.(2.3) This implies,for sufficiently large x,that there is a n∼x such that the tuple(1.4) contains at least two primes.In[6]the functionλ(n)mainly takes the formλ(n)=1(k0+l0)!d|P(n)d≤Dµ(d)logDdk0+l0,l0>0,(2.4)where D is a power of x andP(n)=k0j=1(n+h j).Let∆(γ;d,c)=n∼xn≡c(d)γ(n)−1ϕ(d)n∼x(n,d)=1γ(n)for(d,c)=1,andC i(d)={c:1≤c≤d,(c,d)=1,P(c−h i)≡0(mod d)}for1≤i≤k0.4The evaluations of S1and S2lead to a relation of the formS2−(log3x)S1=(k0T∗2−LT∗1)x+O(x L k0+2l0)+O(E)for D<x1/2−ε,where T∗1and T∗2are certain arithmetic sums(see Lemma1below),andE=1≤i≤k0d<D2|µ(d)|τ3(d)τk0−1(d)c∈C i(d)|∆(θ;d,c)|.Let >0be a small constant.IfD=x1/4+ (2.5) and k0is sufficiently large in terms of ,then,with an appropriate choice of l0,one can prove thatk0T∗2−LT∗1L k0+2l0+1.(2.6)In this situation the error E can be efficiently bounded if the primes have level of distri-butionϑ>1/2+2 ,but one is unable to prove it by present methods.On the other hand,for D=x1/4−ε,the Bombieri-Vinogradov theorem is good enough for bounding E, but the relation(2.6)can not be valid,even if a more general form ofλ(n)is considered (see Soundararajan[12]).Ourfirst observation is that,in the sums T∗1and T∗2,the contributions from the termswith d having a large prime divisor are relatively small.Thus,if we impose the constraint d|P in(2.4),where P is the product of the primes less than a small power of x,the resulting main term is still L k0+2l0+1with D given by(2.5).Our second observation,which is the most novel part of the proof,is that with D given by(2.5)and with the constraint d|P imposed in(2.4),the resulting error1≤i≤k0d<D2d|Pτ3(d)τk0−1(d)c∈C i(d)|∆(θ;d,c)|(2.7)can be efficiently bounded.This is originally due to the simple fact that if d|P and d is not too small,say d>x1/2−ε,then d can be factored asd=rq(2.8) with the range for rflexibly chosen(see Lemma4below).Thus,roughly speaking,the characteristic function of the set{d:x1/2−ε<d<D2,d|P}may be treated as a well factorable function(see Iwaniec[10]).The factorization(2.8)is crucial for bounding the error terms.It suffices to prove Theorem1withk0=3.5×1065which is henceforth assumed.Let D be as in(2.5)with=1 1168.Let g(y)be given byg(y)=1(k0+l0)!logDyk0+l0if y<D,andg(y)=0if y≥D,wherel0=180.WriteD1=x ,P=p<D1p,(2.9)D0=exp{L1/k0},P0=p≤D0p.(2.10)In the case d|P and d is not too small,the factor q in(2.8)may be chosen such that (q,P0)=1.This will considerably simplify the argument.We chooseλ(n)=d|(P(n),P)µ(d)g(d).(2.11)In the proof of Theorem1,the main terms are not difficult to handle,since we deal with afixed H.This is quite different from[6]and[7],in which various sets H are involved in the argument to derive results like(1.2).By Cauchy’s inequality,the error(2.7)is efficiently bounded via the followingTheorem2.For1≤i≤k0we haved<D2 d|Pc∈C i(d)|∆(θ;d,c)| x L−A.(2.12)The proof of Theorem2is described as follows.First,applying combinatorial argu-ments(see Lemma6below),we reduce the proof to estimating the sum of|∆(γ;d,c)| with certain Dirichlet convolutionsγ.There are three types of the convolutions involved in the argument.Writex1=x3/8+8 ,x2=x1/2−4 .(2.13) In thefirst two types the functionγis of the formγ=α∗βsuch that the following hold.(A1)α=(α(m))is supported on[M,ηj1M),j1≤19,α(m) τj1(m)L.6(A2)β=(β(n))is supported on[N,ηj2N),j2≤19,β(n) τj2(n)L,x1<N<2x1/2.For any q,r and a satisfying(a,r)=1,the following”Siegel-Walfisz”assumption is satisfied.n≡a(r) (n,q)=1β(n)−1ϕ(r)(n,qr)=1β(n) τ20(q)N L−200A.(A3)j1+j2≤20,[MN,η20MN)⊂[x,2x).We say thatγis of Type I if x1<N≤x2;we say thatγis of Type II if x2<N<2x1/2.In the Type I and II estimates we combine the dispersion method in[1]with the factorization(2.8)(here r is close to N in the logarithmic scale).Due to the fact that the modulo d is at most slightly greater than x1/2in the logarithmic scale,after reducing the problem to estimating certain incomplete Kloosterman sums,we need only to save a small power of x from the trivial estimates;a variant of Weil’s bound for Kloosterman sums(see Lemma11below)will fulfill it.Here the condition N>x1,which may be slightly relaxed,is essential.We say thatγis of Type III if it is of the formγ=α∗κN1∗κN2∗κN3such thatαsatisfies(A1)with j1≤17,and such that the following hold.(A4)N3≤N2≤N1,MN1≤x1.(A5)[MN1N2N3,η20MN1N2N3)⊂[x,2x).The Type III estimate essentially relies on the Birch-Bombieri result in the appendix to[5](see Lemma12below),which is employed by Friedlander and Iwaniec[5]and by Heath-Brown[9]to study the distribution ofτ3(n)in arithmetic progressions.This result in turn relies on Deligne’s proof of the Riemann Hypothesis for varieties overfinitefields (the Weil Conjecture)[4].We estimate each∆(γ;d,c)directly.However,if one applies the method in[5]alone,efficient estimates will be valid only for MN1 x3/8−5 /2−ε. Our argument is carried out by combining the method in[5]with the factorization(2.8) (here r is relatively small);the latter will allow us to save a factor r1/2.In our presentation,all theα(m)andβ(n)are real numbers.3.LemmasIn this section we introduce a number of prerequisite results,some of which are quoted from the literature directly.Results given here may not be in the strongest forms,but they are adequate for the proofs of Theorem1and Theorem2.Lemma1.Let 1(d)and 2(d)be the multiplicative functions supported on square-free integers such that1(p)=νp, 2(p)=νp−1.7LetT∗1=d0d1d2µ(d1d2) 1(d0d1d2)d0d1d2g(d0d1)g(d0d2)andT∗2=d0d1d2µ(d1d2) 2(d0d1d2)ϕ(d0d1d2)g(d0d1)g(d0d2).We haveT∗1=1(k0+2l0)!2l0l0S(log D)k0+2l0+o(L k0+2l0)(3.1)andT∗2=1(k0+2l0+1)!2l0+2l0+1S(log D)k0+2l0+1+o(L k0+2l0+1).(3.2)Proof.The sum T∗1is the same as the sum T R(l1,l2;H1,H2)in[6,(7.6)]with H1=H2=H(k1=k2=k0),l1=l2=l0,R=D,so(3.1)follows from[6,Lemma3];the sum T∗2is the same as the sum˜T R(l1,l2;H1,H2,h0)in[6,(9.12)]withH1=H2=H,l1=l2=l0,h0∈H,R=D, so(3.2)also follows from[6,Lemma3].2Remark.A generalization of this lemma can be found in[12].Lemma2.LetA1(d)=(r,d)=1µ(r) 1(r)rg(dr)andA2(d)=(r,d)=1µ(r) 2(r)ϕ(r)g(dr).Suppose that d<D and|µ(d)|=1.Then we haveA1(d)=ϑ1(d)l0!SlogDdl0+O(L l0−1+ε)(3.3)andA2(d)=ϑ2(d)(l0+1)!SlogDdl0+1+O(L l0+ε),(3.4)whereϑ1(d)andϑ2(d)are the multiplicative functions supported on square-free integerssuch thatϑ1(p)=1−νpp−1,ϑ2(p)=1−νp−1p−1−1.8Proof.Recall that D 0is given by (2.10).Since 1(r )≤τk 0(r ),we have triviallyA 1(d ) 1+ log(D/d ) 2k 0+l 0,so we may assume D/d >exp {(log D 0)2}without loss of generality.Write s =σ+it .Forσ>0we have(r,d )=1µ(r ) 1(r )r1+s =ϑ1(d,s )G 1(s )ζ(1+s )−k 0whereϑ1(d,s )=p |d1−νpp 1+s−1,G 1(s )= p 1−νpp 1+s1−1p 1+s −k 0.It follows thatA 1(d )=12πi(1/L )ϑ1(d,s )G 1(s )ζ(1+s )k 0(D/d )s dss k 0+l 0+1.Note that G 1(s )is analytic and bounded for σ≥−1/3.We split the line of integration into two parts according to |t |≤D 0and |t |>D 0.By a well-known result on the zero-free region for ζ(s ),we can move the line segment {σ=1/L ,|t |≤D 0}toσ=−κ(log D 0)−1,|t |≤D 0 ,where κ>0is a certain constant,and apply some standard estimates to deduce thatA 1(d )=12πi |s |=1/L ϑ1(d,s )G 1(s )ζ(1+s )k 0(D/d )s ds s k 0+l 0+1+O (L −A).Note that ϑ1(d,0)=ϑ1(d )andϑ1(d,s )−ϑ1(d )=ϑ1(d,s )ϑ1(d )l |dµ(l ) 1(l )l(1−l −s ).If |s |≤1/L ,then ϑ1(d,s ) (log L )B ,so that,by trivial estimation,ϑ1(d,s )−ϑ1(d ) L ε−1.On the other hand,by Cauchy’s integral formula,for |s |≤1/L we haveG 1(s )−S 1/L .It follows that12πi |s |=1/L ϑ1(d,s )G 1(s )ζ(1+s )k 0(D/d )s ds s k 0+l 0+1−12πi ϑ1(d )S|s |=1/L(D/d )s ds s l 0+1 L l 0−1+ε.9This leads to(3.3).The proof of(3.4)is analogous.We have only to note thatA2(d)=12πi(1/L)ϑ2(d,s)G2(s)ζ(1+s)k0−1(D/d)s dss k0+l0+1withϑ2(d,s)=p|d1−νp−1(p−1)p s−1,G2(s)=p1−νp−1(p−1)p s1−1p1+s1−k0,and G2(0)=S.2Lemma3.We haved<x1/4 1(d)ϑ1(d)d=(1+4 )−k0k0!S−1(log D)k0+O(L k0−1)(3.5)andd<x1/4 2(d)ϑ2(d)ϕ(d)=(1+4 )1−k0(k0−1)!S−1(log D)k0−1+O(L k0−2),(3.6)Proof.Noting thatϑ1(p)/p=1/(p−νp),forσ>0we have∞ d=1 1(d)ϑ1(d)d1+s=B1(s)ζ(1+s)k0,whereB1(s)=p1+νp(p−νp)p s1−1p1+sk0.Hence,by Perron’s formula,d<x1/4 1(d)ϑ1(d)d=12πi1/L+iD01/L−iD0B1(s)ζ(1+s)k0x s/4sds+O(D−1L B).Note that B1(s)is analytic and bounded forσ≥−1/3.Moving the path of integration to[−1/3−iD0,−1/3+iD0],we see that the right side above is equal to1 2πi|s|=1/LB1(s)ζ(1+s)k0x s/4sds+O(D−1L B).Since,by Cauchy’s integral formula,B1(s)−B1(0) 1/L for|s|=1/L,andB1(0)=ppp−νp1−1pk0=S−1,10it follows thatd<x1/4 1(d)ϑ1(d)d=1k0!S−1L4k0+O(L k0−1).This leads to(3.5)since L/4=(1+4 )−1log D by(2.5).The proof of(3.6)is analogous.We have only to note that,forσ>0,∞ d=1 2(d)ϑ2(d)ϕ(d)p s=B2(s)ζ(1+s)k0−1withB2(s)=p1+νp−1(p−νp)p s1−1p1+sk0−1,and B2(0)=S−1.2Recall that D1and P are given by(2.9),and P0is given by(2.10).Lemma4.Suppose that d>D21,d|P and(d,P0)<D1.For any R∗satisfyingD21<R∗<d,(3.7)there is a factorization d=rq such that D−11R∗<r<R∗and(q,P0)=1.Proof.Since d is square-free and d/(d,P0)>D1,we may write d/(d,P0)asd (d,P0)=nj=1p j with D0<p1<p2<...<p n<D1,n≥2.By(3.7),there is a n <n such that(d,P0)nj=1p j<R∗and(d,P0)n +1j=1p j≥R∗.The assertion follows by choosingr=(d,P0)nj=1p j,q=nj=n +1p j,and noting that r≥(1/p n +1)R∗.2Lemma5.Suppose that1≤i≤k0and|µ(qr)|=1.There is a bijectionC i(qr)→C i(r)×C i(q),c→(a,b)11such that c(mod qr)is a common solution to c≡a(mod r)and c≡b(mod q).Proof.By the Chinese remainder theorem.2The next lemma is a special case of the combinatorial identity due to Heath-Brown[8].Lemma6Suppose that x1/10≤x∗<ηx1/10.For n<2x we haveΛ(n)=10j=1(−1)j−110jm1,...,m j≤x∗µ(m1)...µ(m j)n1...n j m1...m j=nlog n1.The next lemma is a truncated Poisson formula.Lemma7Suppose thatη≤η∗≤η19and x1/4<M<x2/3.Let f be a function of C∞(−∞,∞)class such that0≤f(y)≤1,f(y)=1if M≤y≤η∗M,f(y)=0if y/∈[(1−M−ε)M,(1+M−ε)η∗M],andf(j)(y) M−j(1−ε),j≥1,the implied constant depending onεand j at most.Then we havem≡a(d)f(m)=1d|h|<Hˆf(h/d)ed(−ah)+O(x−2)for any H≥dM−1+2ε,whereˆf is the Fourier transform of f,i.e.,ˆf(z)=∞−∞f(y)e(yz)dy.Lemma8.Suppose that1≤N<N <2x,N −N>xεd and(c,d)=1.Then for j,ν≥1we haveN≤n≤N n≡c(d)τj(n)νN −Nϕ(d)L jν−1,the implied constant depending onε,j andνat most.Proof.See[11,Theorem1].2The next lemma is(essentially)contained in the proof of[5,Theorem4].Lemma9Suppose that H,N≥2,d>H and(c,d)=1.Then we haven≤N (n,d)=1minH,||c¯n/d||−1(dN)ε(H+N).(3.8)12Proof.We may assume N≥H without loss of generality.Write{y}=y−[y]and assumeξ∈[1/H,1/2].Note that{c¯n/d}≤ξif and only if bn≡c(mod d)for some b∈(0,dξ],and1−ξ≤{c¯n/d}if and only if bn≡−c(mod d)for some b∈(0,dξ],Thus, the number of the n satisfying n≤N,(n,d)=1and||c¯n/d||≤ξis bounded byq≤dNξq≡±c(d)τ(q) dεN1+εξ.Hence,for any interval I of the formI=(0,1/H],I=[1−1/H,1),I=[ξ,ξ ]or I=[1−ξ ,1−ξ]with1/H≤ξ<ξ ≤1/2,ξ ≤2ξ,the contribution from the terms on the left side of (3.8)with{c¯n/d}∈I is dεN1+ε.This completes the proof.2Lemma10.Suppose thatβ=(β(n))satisfies(A2)and R≤x−εN.Then for any q we haver∼R 2(r)∗l(mod r)n≡l(r)(n,q)=1β(n)−1ϕ(r)(n,qr)=1β(n)2 τ(q)B N2L−100A.Proof.Since the inner sum is ϕ(r)−1N2L B by Lemma8,the assertion follows by Cauchy’s inequality and[1,Theorem0].2Lemma11Suppose that N≥1,d1d2>10and|µ(d1)|=|µ(d2)|=1.Then we have, for any c1,c2and l,n≤N (n,d1)=1 (n+l,d2)=1ec1¯nd1+c2(n+l)d2(d1d2)1/2+ε+(c1,d1)(c2,d2)(d1,d2)2Nd1d2.(3.9)Proof.Write d0=(d1,d2),t1=d1/d0,t2=d2/d0and d=d0t1t2.LetK(d1,c1;d2,c2;l,m)=n≤d(n,d1)=1(n+l,d2)=1ec1¯nd1+c2(n+l)d2+mnd.We claim that|K(d1,c1;d2,c2;l,m)|≤d0|S(m,b1;t1)S(m,b2;t2)|(3.10) for some b1and b2satisfying(b i,t i)≤(c i,d i),(3.11)13where S(m,b;t)denotes the ordinary Kloosterman sum.Note that d0,t1and t2are pairwise coprime.Assume thatn≡t1t2n0+d0t2n1+d0t1n2(mod d)andl≡t1t2l0+d0t1l2(mod d2).The conditions(n,d1)=1and(n+l,d2)=1are equivalent to(n0,d0)=(n1,t1)=1and(n0+l0,d0)=(n2+l2,t2)=1 respectively.Letting a i(mod d0),b i(mod t i),i=1,2be given bya1t21t2≡c1(mod d0),a2t1t22≡c2(mod d0),b1d20t2≡c1(mod t1),b2d2t1≡c2(mod t2),so that(3.11)holds,by the relation1 d i ≡¯tid0+¯dt i(mod1)we havec1¯n d1+c2(n+l)d2≡a1¯n0+a2(n0+l0)d0+b1¯n1t1+b2(n2+l2)t2(mod1).Hence,c1¯n d1+c2(n+l)d2+mnd≡a1¯n0+a2(n0+l0)+mn0d0+b1¯n1+mn1t1+b2(n2+l2)+m(n2+l2)t2−ml2t2(mod1).From this we deduce,by the Chinese remainder theorem,thatK(d1,c1;d2,c2;l,m)=e t2(−ml2)S(m,b1;t1)S(m,b2;t2)n≤d0(n,d0)=1(n+l0,d0)=1e da1¯n+a2(n+l0)+mn,whence(3.10)follows.By(3.10)with m=0and(3.11),for any k>0we havek≤n<k+d(n,d1=1 (n+l,d2)=1ec1¯nd1+c2d2≤(c1,d1)(c2,d2)d0.14It now suffices to prove(3.9)on assuming N≤d−1.By standard Fourier techniques, the left side of(3.9)may be rewritten as−∞<m<∞u(m)K(d1,c1;d2,c2;l,m)withu(m) minNd,1|m|,dm2.(3.12)By(3.10)and Weil’s bound for Kloosterman sums,wefind that the left side of(3.9)isd0|u(0)|(b1,t1)(b2,t2)+(t1t2)1/2+εm=0|u(m)|(m,b1,t1)1/2(m,b2,t2)1/2.This leads to(3.9)by(3.12)and(3.11).2 Remark.In the case d2=1,(3.9)becomesn≤N (n,d1)=1e d1(c1¯n) d1/2+ε1+(c1,d1)Nd1.(3.13)This estimate is well-known(see[2,Lemma6],for example),and it willfind application somewhere.Lemma12.LetT(k;m1,m2;q)=l(mod q)∗t1(mod q)∗t2(mod q)e q¯lt1−(l+k)t2+m1¯t1−m2¯t2,whereis restriction to(l(l+k),q)=1.Suppose that q is square-free.Then we haveT(k;m1,m2;q) (k,q)1/2q3/2+ε.Proof.By[5,(1.26)],it suffices to show thatT(k;m1,m2;p) (k,p)1/2p3/2.In the case k≡0(mod p),this follows from the Birch-Bombieri result in the appendix to[5](the proof is straightforward if m1m2≡0(mod p));in the case k≡0(mod p),this follows from Weil’s bound for Kloosterman sums.2154.Upper bound for S1Recall that S1is given by(2.1)andλ(n)is given by(2.11).The aim of this section is to establish an upper bound for S1(see(4.20)below).Changing the order of summation we obtainS1=d1|Pd2|Pµ(d1)g(d1)µ(d2)g(d2)n∼xP(n)≡0([d1,d2])1.By the Chinese remainder theorem,for any square-free d,there are exactly 1(d)distinct residue classes(mod d)such that P(n)≡0(mod d)if and only if n lies in one of these classes,so the innermost sum above is equal to1([d1,d2])[d1,d2]x+O( 1([d1,d2])).It follows thatS1=T1x+O(D2+ε),(4.1)whereT1=d1|Pd2|Pµ(d1)g(d1)µ(d2)g(d2)[d1,d2]1([d1,d2]).Note that 1(d)is supported on square-free integers.Substituting d0=(d1,d2)and rewriting d1and d2for d1/d0and d2/d0respectively,we deduce thatT1=d0|Pd1|Pd2|Pµ(d1d2) 1(d0d1d2)d0d1d2g(d0d1)g(d0d2).(4.2)We need to estimate the difference T1−T∗1.We haveT∗1=Σ1+Σ31,whereΣ1=d0≤x1/4d1d2µ(d1d2) 1(d0d1d2)d0d1d2g(d0d1)g(d0d2),Σ31=x1/4<d0<Dd1d2µ(d1d2) 1(d0d1d2)d0d1d2g(d0d1)g(d0d2).In the case d0>x1/4,d0d1<D,d0d2<D and|µ(d1d2)|=1,the conditions d i|P,i=1,2 are redundant.Hence,T1=Σ2+Σ32,16whereΣ2=d0≤x1/4d0|Pd1|Pd2|Pµ(d1d2) 1(d0d1d2)d0d1d2g(d0d1)g(d0d2),Σ32=x1/4<d0<Dd0|Pd1d2µ(d1d2) 1(d0d1d2)d0d1d2g(d0d1)g(d0d2).It follows that|T1−T∗1|≤|Σ1|+|Σ2|+|Σ3|,(4.3)whereΣ3=x1/4<d0<Dd0 Pd1d2µ(d1d2) 1(d0d1d2)d0d1d2g(d0d1)g(d0d2).First we estimateΣ1.By M¨o bius inversion,the inner sum over d1and d2inΣ1is equal to1(d0) d0(d1,d0)=1(d2,d0)=1µ(d1) 1(d1)µ(d2) 1(d2)d1d2g(d0d1)g(d0d2)q|(d1,d2)µ(q)=1(d0)d0(q,d0)=1µ(q) 1(q)2q2A1(d0q)2.It follows thatΣ1=d0≤x1/4(q,d0)=11(d0)µ(q) 1(q)2d0q2A1(d0q)2.(4.4)The contribution from the terms with q≥D0above is D−10L B.Thus,substitutingd0q=d,we deduce thatΣ1=d<x1/4D0 1(d)ϑ∗(d)dA1(d)2+O(D−1L B),(4.5)whereϑ∗(d)=d0q=dd0<x1/4q<D0µ(q) 1(q)q.By the simple boundsA1(d) L l0(log L)B(4.6) which follows from(3.3),ϑ∗(d) (log L)B17andx1/4≤d<x1/4D0 1(d)dL k0+1/k0−1,(4.7)the contribution from the terms on the right side of(4.5)with x1/4≤d<x1/4D0is o(L k0+2l0).On the other hand,assuming|µ(d)|=1and noting thatq|d µ(q) 1(q)q=ϑ1(d)−1,(4.8)for d<x1/4we haveϑ∗(d)=ϑ1(d)−1+Oτk0+1(d)D−1,so that,by(3.3),ϑ∗(d)A1(d)2=1(l0!)2S2ϑ1(d)logDd2l0+Oτk0+1(d)D−1L B+O(L2l0−1+ε).Inserting this into(4.5)we obtainΣ1=1(l0!)2S2d≤x1/41(d)ϑ1(d)dlogDd2l0+o(L k0+2l0).(4.9)Together with(3.5),this yields|Σ1|≤δ1k0!(l0!)2S(log D)k0+2l0+o(L k0+2l0),(4.10)whereδ1=(1+4 )−k0.Next we estimateΣ2.Similar to(4.4),we haveΣ2=d0≤x1/4d0|P(q,d0)=1q|P1(d0)µ(q) 1(q)2d0q2A∗1(d0q)2.whereA∗1(d)=(r,d)=1r|Pµ(r) 1(r)g(dr)r.In a way similar to the proof of(4.5),we deduce thatΣ2=d<x1/4D0d|P 1(d)ϑ∗(d)dA∗1(d)2+O(D−1L B).(4.11) 18Assume d|P.By M¨o bius inversion we haveA∗1(d)=(r,d)=1µ(r) 1(r)g(dr)rq|(r,P∗)µ(q)=q|P∗1(q)qA1(dq),whereP∗=D1≤p<Dp.Noting thatϑ1(q)=1+O(D−11)if q|P∗and q<D,(4.12) by(3.3)we deduce that|A∗1(d)|≤1l0!Sϑ1(d)logDdl0q|P∗q<D1(q)q+O(L l0−1+ε).(4.13)If q|P∗and q<D,then q has at most292prime factors.In addition,by the prime number theorem we haveD1≤p<D 1p=log293+O(L−A).(4.14)It follows thatq|P∗q<D 1(q)q≤1+292ν=1((log293)k0)νν!+O(L−A)=δ2+O(L−A),say.Inserting this into(4.13)we obtain|A∗1(d)|≤δ2l0!Sϑ1(d)logDdl0+O(L l0−1+ε).Combining this with(4.11),in a way similar to the proof of(4.9)we deduce that|Σ2|≤δ22(l0!)2S2d<x1/41(d)ϑ1(d)dlogDd2l0+o(L k0+2l0).Together with(3.5),this yields|Σ2|≤δ1δ22k0!(l0!)2S(log D)k0+2l0+o(L k0+2l0).(4.15) 19We now turn toΣ3.In a way similar to the proof of(4.5),we deduce thatΣ3=x1/4<d<D 1(d)˜ϑ(d)dA1(d)2,(4.16)where˜ϑ(d)=d0q=dx1/4<d0d0 P µ(q) 1(q)q.By(4.6)and(4.7),wefind that the contribution from the terms with x1/4<d≤x1/4D0 in(4.16)is o(L k0+2l0).Now assume that x1/4D0<d<D,|µ(d)|=1and d P.Noting that the conditions d0|d and x1/4<d0together imply d0 P,by(4.8)we obtain˜ϑ(d)=d0q=dx1/4<d0µ(q) 1(q)q=ϑ1(d)−1+Oτk0+1(d)D−1.Together with(3.3),this yields˜ϑ(d)A1(d)2=1(l0!)2S2ϑ1(d)logDd2l0+Oτk0+1(d)D−1L B+O(L2l0−1+ε).Combining these results with(4.16)we obtainΣ3=1(l0!)2S2x1/4D0<d<Dd P1(d)ϑ1(d)dlogDd2l0+o(L k0+2l0).(4.17)By(4.12),(4.14)and(3.5)we havex1/4<d<Dd P 1(d)ϑ1(d)d≤d<D1(d)ϑ1(d)dp|(d,P∗)1≤D1≤p<D1(p)ϑ1(p)pd<D/p1(d)ϑ1(d)d≤(log293)δ1(k0−1)!S−1(log D)k0+o(L k0)Together with(4.17),this yields|Σ3|≤(log293)δ1(k0−1)!(l0!)2S(log D)k0+2l0+o(L k0+2l0).(4.18)20Since1k0!(l0!)2=1(k0+2l0)!k0+2l0k02l0l0,it follows from(4.3),(4.10),(4.15)and(4.18)that|T1−T∗1|≤κ1(k0+2l0)!2l0l0S(log D)k0+2l0+o(L k0+2l0),(4.19)whereκ1=δ1(1+δ22+(log293)k0)k0+2l0k0.Together with(3.1),this implies thatT1≤1+κ1(k0+2l0)!2l0l0S(log D)k0+2l0+o(L k0+2l0).Combining this with(4.1),we deduce thatS1≤1+κ1(k0+2l0)!2l0l0S x(log D)k0+2l0+o(x L k0+2l0).(4.20)We conclude this section by giving an upper bound forκ1.By the inequalityn!>(2πn)1/2n n e−nand simple computation we have1+δ22+(log293)k0<2((log293)k0)292292!2<1292π(185100)584andk0+2l0k0<2k2l0(2l0)!<1√180π(26500)360.It follows thatlogκ1<−3500000log 293292+584log(185100)+360log(26500)<−1200.This givesκ1<exp{−1200}.(4.21)21。

孪生素数猜想

孪生素数猜想

孪生素数猜想1849年,波林那克提出孪生素数猜想(the conjecture of twin primes),即猜测存在无穷多对孪生素数。

孪生素数即相差2的一对素数。

例如3和5 ,5和7,11和13,…,10016957和10016959等等都是孪生素数。

孪生素数是有限个还是有无穷多个?这是一个至今都未解决的数学难题.一直吸引着众多的数学家孜孜以求地钻研.早在20世纪初,德国数学家兰道就推测孪生素数有无穷多.许多迹象也越来越支持这个猜想.最先想到的方法是使用欧拉在证明素数有无穷多个所采取的方法.设所有的素数的倒数和为:s=1/2+1/3+1/5+1/7+1/11+...如果素数是有限个,那么这个倒数和自然是有限数.但是欧拉证明了这个和是发散的,即是无穷大.由此说明素数有无穷多个.1919年,挪威数学家布隆仿照欧拉的方法,求所有孪生素数的倒数和:b=(1/3+1/5)+(1/5+1/7)+(1/11+1/13)+...如果也能证明这个和比任何数都大,就证明了孪生素数有无穷多个了.这个想法很好,可是事实却违背了布隆的意愿.他证明了这个倒数和是一个有限数,现在这个常数就被称为布隆常数:b=1.90216054...布隆还发现,对于任何一个给定的整数m,都可以找到m个相邻素数,其中没有一个孪生素数.1966年,中国数学家陈景润在这方面得到最好的结果:存在无穷多个素数p,使p+2是不超过两个素数之积。

若用p(x)表示小于x的孪生素数对的个数.下表是1011以下的孪生素数分布情况:x p(x)1000 3510000 205100000 12241000000 816910000000 58980100000000 4403121000000000 342450610000000000 27412679100000000000 224376048迄今为止在证明孪生素数猜想上的成果大体可以分为两类。

第一类是非估算性的结果,这一方面迄今最好的结果是一九六六年由已故的我国数学家陈景润(顺便说一下,美国数学学会在介绍Goldston 和Yildirim 成果的简报中提到陈景润时所用的称呼是“伟大的中国数学家陈”) 利用筛法(sieve method) 所取得的。

关于孪生素数猜想的一个证明

关于孪生素数猜想的一个证明
Science & Technology Vision
科技视界
关于孪生素数猜想的一个证明
张跃 渊湖南师范大学物理系袁湖南 长沙 410081冤
揖摘 要铱根据计算机的整数取值有限袁本文提出了一个基本假设遥 在此假设的基础上袁利用 C 语言编程袁证明了院对应于无穷多个素数 p袁 存在无穷多个 p+2 的素数曰即孪生素数猜想遥
3 冷再生混合料性能验证
采用 F2 配方的乳化沥青袁 按照 叶公路沥青路面再生技术规范曳 渊JTG F41-2008冤中规定的方法袁最终结果见表 5尧表 6遥
表 5 最佳乳化沥青用量及含水量试验结果
混合料类 型
最佳乳化 沥青掺量
渊%冤
最佳含水 率渊%冤
毛体积相 对密度渊g/
cm3冤
实测最大理 论相对密度
在假设中袁显然袁R(k+1)劢R(k)袁R(k+1)原R(k)=k+1袁仅仅多一个 k+1 的数字遥 如果计算机对整数的取值范围没有限制袁可以设 k 为任意大 的整数袁但是不会当 k 大到某一整数之后袁j以i袁因为素数 p 有无穷多 个袁可能成为素数的 k+1 的数也有无穷多个袁故 j逸i 的情形有无穷多遥
由于计算机的二进制运算仅与逻辑电路或者布尔代数有关系袁其 运算规则和结果不因计算机的二进制数码的位数多少而引起变化遥 因 此袁可以作以下假设遥
假设院已知计算机限制的整数的最大取值为 n袁p 为无穷多个素数 p1约p2约噎约pn噎的集合遥 任意取一个整数 k渊k约n冤袁命 R(k)={pr+2} (r=1, 噎, i; pi+2臆k)为所有小于或者等于 k 的 i 个 p+2 的素数组成的集合袁 如果 R(k+1)={pt+2}(t=1,噎,j;pj+2臆k+1)为所有小于或者等于 k+1渊k+ 1臆n冤的 j 个 p+2 的素数组成的集合袁且 j逸i 恒成立袁则表明所有 p+2 的素数组成一个无穷集合遥

小于自然数M内孪生素数的对数一一孪生素数猜想证明的应用

小于自然数M内孪生素数的对数一一孪生素数猜想证明的应用

小于自然数M内孪生素数的对数一一孪生素数猜想证明的应用孪生素数都是成对出现的。

给定一个自然数M、在小于M内有多少对孪生素数?(一)本文的计算方法基于孪生素数猜想证明中的以下几条结论:a、任何非1奇数都有奇数核、2n±1两个奇数定义为同核奇数,n即为他们的共同核。

b、同核奇数只可能是三种形态:1、同核的二个奇数皆为合数。

2、同核奇数中一个是合数、另一个是素数。

3、同核的两个奇数都为素数,称为“同核素数〞、也就是学界的孪生素数。

C、根据b、中2、同核奇数中一个是合数另一个是素数得出的推论:单体素数即学界认为除孪生素数外的所有素数、所有单体素数核一定存在于对应的合数核中。

进一步得出的推论是:只要将所有的合数核去除后、则包含在合数核中的单体素数核也同时去除。

d、由c推论:“同核素数”即孪生素数的核一定存在于所有合数核以外的非零自然数N*中,而且有无穷多个。

逻辑如下:非1奇数只可能为合数、单体素数、孪生素数,所以奇合数核也只可能是这三种核;非零自然数N*(1、∞)中每个数均可成为奇数核、全部自然数N*不可能都是合数核、所以自然数N*中去除合数核后、其余的都是孪生素数的核、(因为单体素数的核在去除所有的合数核时也同时被去除)。

一个核产生一对孪生素数。

e、由6列完美等差数列群、可以直接推出、所有素数最终形式为6n±1、孪生素数当然也存在于6n±1之中、6n±1去掉1除以2得出核为3n、即所有孪生素数核一定存在于3n中。

(二)给定一个自然数M、在小于M这个数值内有多少对孪生素数呢?例子:自然教111、小于111的孪生素数有多少对?1、111中有多少奇数核?n=(111-1)/2=55个,加强直观理解、可以验证n=1、2、3、……55、则奇数为3、5、7……111。

2、我们知道所有非零自然数N*都可以成为奇数核,而全部自然数N实质是由3列完美等差数列群组成:3n、3n+1、3n+2(n∈N),分别对这三列等差数列的性质进行研究、可以得出:3n+1、3n+2、(n∈N*)二列无穷等差数列的每个值全部是合数核的值,(参看以前发表的孪生素数猜想证明的文章)。

孪生素数倒数和收敛证明

孪生素数倒数和收敛证明

孪生素数倒数和收敛证明
孪生素数倒数和收敛证明指的是布朗常数。

假如以上的级数发散,则我们立刻就可以证明孪生素数猜想。

Nicely把孪生素数算到10。

1919年,挪威数学家布朗证明了所有孪生素数的倒数之和收敛于一个数学常数,称为布朗常数。

而所有素数的倒数之和则是发散的。

假如以上的级数发散,则我们立刻就可以证明孪生素数猜想。

但由于它收敛,我们就不知道是否有无穷多个孪生素数。

类似地,如果证明了布朗常数是无理数,也立刻就可以证明孪生素数猜想。

但如果它是有理数,则仍然无法知道孪生素数是不是无限的。

除此以外,还有一个四胞胎素数的布朗常数,它是所有的四胞胎素数的倒数之和,记为B4。

孪生素数猜想证明

孪生素数猜想证明

“孪生素数猜想”证明务川自治县实验学校王若仲(王洪)贵州564300摘要:对于“孪生素数猜想”,我们探讨一种简捷的初等证明方法,要证明孪生素数对无穷的情形,我们可以把这样的情形转换到间接地利用奇合数的个数来加以理论分析,从而判定孪生素数对是否无穷。

关键词:特异奇数;特异奇合数;孪生素数;孪生素数猜想。

引言孪生素数猜想,最初由古希腊数学家欧几里得提出,表述为:在自然数中,存在无穷多个素数p,有(p+2)也是素数。

正文孪生素数的概念:当两个素数的差为2时,这样的两个素数称为孪生素数。

如:3和5,5和7,11和13,17和19,29和31等等。

现在把由全体奇数组成的集合,称为奇数集合。

记为G。

定义1:奇数集合G中(除1外),不能被3整除的整数,称为特异奇数。

如:5,7,11,13,17,19,23,25,29,……。

定义2:由全体特异奇数组成的集合,称为特异奇数集合。

记为G′。

定理1:任一特异奇数均可表为6k+1或6k-1的形式,k∈N,k>0。

证明:因为集合G中能被3整除的整数均可表为3(2m-1)的形式,m∈N,m>0。

则3(2m-1)+2=6m-1,3(2m-1)-2=6(m-1)+1, 对于[6(m-1)+1] ,令 m>1 。

(6m-1)和[6(m-1)+1]均为不能被3整除的奇数,根据定义1,(6m-1)为特异奇数,[6(m-1)+1](m>1)为特异奇数。

故定理1成立。

定义3:我们把既是特异奇数,又是素数的整数,称为特异素数。

如:5,7,11,13,17,19等等。

定义4:我们把既是特异奇数,又是合数的整数,称为特异奇合数。

如:25,35,49,55,77等等。

定理2:对于任一特异奇合数a,a均可表为下列三种形式之一:(1)a=36kh-6k-6h+1,(2)a=36kh+6k+6h+1,(3)a=36kh+6k-6h-1,其中k∈N,h∈N,k>0,h>0。

证明:对于任一特异奇合数a,a总可以分解为两个特异奇数的乘积,我们令a=bc,根据定理1,b=6k+1或6k-1,k∈N,k>0,c=6h +1或6h-1,h∈N,h>0。

孪生素数猜想

孪生素数猜想

研究进展
高斯 欧拉
陈景润
张益唐 是英雄都去敲过门,可惜该问题依旧“没门”!
常见方法
你是不是觉得除了 一个个的找出外, 无从下手!
所以说,还是充充电,补补脑, 爬爬前人的肩膀吧。
常见方法
倒数和: 天才欧拉用下述的公式的发散证明了素数的无穷多。
所以,1919年,挪威数学家布隆仿照欧拉的方法,求 所有孪生素数的倒数和。并希望就此终结该猜想。
孪生素数猜想
千年历程简介
白言(ICIFP) 2018.01.14
目录
猜想来源 猜想内容
研究进展
常见方法 LiKe数列(LiKe级数)
猜想来源
公元前300年:
古希腊数学家欧几 里得猜想:存在无 穷多对素数,他们 只相差2,例如3和 5,5和7,等等。
猜想来源
欧几里得(公元前330年-公元前275年)
感觉好伟大呀,看来能看到 “头” 了。
常见方法
定距离素数对2: 两周后:常数降至6000万; 又两天:降至4200万; 又3天:1300万; 次日:500万; 次日:40万 2014年10月:246, … 可惜到今天也无人把它降到2!!!
看来还是没“头” 了。
常见方法
LiKe数列1: 根据素数新定义:从祖素数2开始,素数倍数后不连续的数即为素数。 易知素数除了2以外全是奇数,所以LiKe认为在奇数数轴上研究素数会有奇效。 在奇数数轴:3,5,7,9,11,13,15,17,19,21,23,25,27,29,31......上, 有无数对相差为2(相连)的数; 假设只有3为素数,去掉其倍数后数轴变为: 3,5,7,11,13,17,19,23,25,29,31......, 只少了一点,但依旧有无穷对素数相差2; 添加5为素数,去掉其倍数后数轴变为 3,5,7,11,13,17,19,23,29,31......, 少的更少,剩下相差为2的素数对肯定是无穷多;等等; 如此可以无穷下去,但少的越来越少,且剩余差值为2的素数对肯定是无穷多。 所以孪生素数肯定是无穷多的。一目了然!!!

孪生素数猜想初等证明详解

孪生素数猜想初等证明详解

孪生素数猜想初等证明详解齐宸孪生素数是指相差2的素数对,例如3和5,5和7,11和13…。

孪生素数猜想正式由希尔伯特在1900年国际数学家大会的报告上第8个问题中提出,可以这样描述:存在无穷多个素数p,使得p + 2是素数。

素数对(p, p + 2)称为孪生素数。

孪生素数由两个素数组成,相差为2。

为了证明孪生素数猜想,无数的数学家曾为之奋斗,但美丽的公主仍然犹抱琵琶半遮面。

1.孪生素数分类及无个位表示方法孪生素数按两个素数个位不同划分3类(不包括10以下的3-5、5-7),分别是:1、孪生素数中两个素数个位为1和3,如11-13,41-43等;2、孪生素数中两个素数个位为7和9,如17-19,107-109等;3、孪生素数中两个素数个位为9和1,如29-31,59-61等。

三类孪生素数中个位为1和3的第一类是我们需要重点研究的,其他两类可以忽略不计。

因为只要第一类孪生素数无限,也就等价于证明了孪生素数猜想。

自有孪生素数概念以来它们就是由两个素数表示的。

若是能简化成一个数字那孪生素数猜想这一世界数学难题也许就向前迈进了一步。

无论这一步是一小步,还是一大步。

但毕竟能将两个素数组成的孪生素数降格成了像素数那样的单个数字。

分析一下个位为1和3的这一类孪生素数,如41-43这对孪生素数。

首先,分别去掉个位1和3后,可以看到剩下了两个数字4和4。

用这两个数字完全可以表示一对孪生素数,当然我们心里要想着在这两个数字后面是有个位1和3的。

其次,这两个去掉个位的数字又是完全相同的,都是一个数字“4”。

这样也就完全可以用一个数字“4”来表示一对孪生素数,也可以说4是一个单数字无个位孪生素数。

当然表面上看只有第一类、第二类孪生素数可以用一个数字表示(实际上第三类也可以)。

为什么一定要去掉个位呢?可将自然数变成互为补集的两类:孪生素数和非孪生素数。

并利用一种简单的筛法,将自然数中的非孪生素数及其补集孪生素数分开。

而且这个筛法所要得到的是非孪生素数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

根据素数定理,以及就平均而言 p k 1 p k ln p k
3

2 [ pk , p k21 ) p 2 p k2 2 p k ln p k ln 2 p k ln p k k 1 1 2 2 pk pk p k ln p k p k ln p k

2 [ pk , p k21 ) p [ p k2 , p k21 ) p ln p k p = k k (1 ) <2 k psk p sk pk psk pk p sk
e 2 n 2 p 1 Sh(n) ( ) (1 ) 2 2 3 p n p p |a p 2
2n= pu p v 的哥德巴赫猜想解个数 G(2n)
G (2n) (
e 2 n 2 p 1 ) (1 ) 2 2 3 p n p p|n p 2
证明:
2 2 2 2 ∵ n=3+(8-3)+(24-8)+(48-24)+…+ ( p k 1 p k ) +…+ ( p i 1 p i ) 2 2
∴ 根据引理 1,区间[ p k , p k 1 )的素数个数可近似表示为
k
2 ( p k21 p k ) (1
j 1
sk
2 2 w(k)= | ( p k 1 p k )
(1 p
j 1
1
j
) -π[ p k2 , p k21 )|
w(S)=|
sk 2 1 2 ( p p ) ) ( n) | k 1 k (1 p k 1 j 1 j i
1 ) pj
2 pk 1 / pk 1 时,p k 到
2 因为 p k k<p k21 , 所以当 p j = pt >
p k21 之间的数没有 p j 的 pk
倍数,所以在去掉 p1 2 , p 2 3 , pu pt … p j … p k 1 ,的倍数后,余下数中, p k 的倍 数个数是
pi2 n<p i21 , 则不大于 n 的素数个数π(n)有公式(S)和公式(L)为
(S) π(n)=
sk 2 1 2 ( p p ) ) g ( n) k 1 k (1 p k 1 j 1 j i
其中 g(n)满足:-
1 1 ( n ) <g(n)< 1 ( n ) 1 pi pi
定理:若 p1 2 , p 2 3 ,… p k …, pi , pi 1 为连续素数, pi2 n<p i21 , 则去掉 模 p k 的 m 个同余类(含余 0 的同余类)后,余下素数个数
k ( x) (
e m 1 m ) x (1 ) 2 p p m p m p x

( log p k p sk 2e
l
≈1.123 , 欧拉常数γ=0.5772156649 … )
(L)
π(n)= n
(1 p
j 1
1
j
) g ( n)
( log pi pl 单增)
其中 g(n)满足:
pi p ( n ) g ( n) i ( n ) 2 pl 2 pl
l
e 1 x (1 ) 2 p x p
(L)
π(n)= n
(1 p
j 1
1
j
) g ( n)
( log pi pl 单增)
pl pi
又 ∵ ∴
pi2 n<p i21
pl pi ( n ) n / 2
根据 Mertens 定理 3 和素数定理,得
i
y i (n) n (1
j 1
1 ). pj
证明:I.当 i=1 时, ∵
p1 =2 , p1 |n y i ( n) n n 1 1 n (1 ) n (1 ) 2 2 p1
结论成立。

Ⅱ.假设 i=k 时,结论成立,即:
k
y k (n) n (1
孪生素数猜想证明
李联忠
(营山中学 四川营山 637700 邮箱 lianzhong.li2008@ 电话:13458241897) 摘要: 本文通过对筛法的分析研究得出不大于 x 的素数个数的连乘积公式, 再根据素数 定理和 Mertens 定理 3 推导出素数连乘积不等式,从而证明孪生素数猜想,哥德巴赫猜想等 一些猜想。 关键词:数论;素数;公式;猜想 中图分类号:015 文献标识码: 文章编号: 引理 1:若 p1 2 , p 2 3 ,… p j …, pi ,为连续素数,且 p j | n ,1≤m≤n ,则 m≠0(mod p j ) 的数的个数 y i ( n) 可表示为
1 e 1 (1 ) O( 2 ห้องสมุดไป่ตู้/ 2 ) /2 p ln x ln x p x / 2
2e 1
2e / 1 1 O( 2 / 2 ) → ln x ln x ln x


1 e 2

1 2e / ) p 1 e p ( x ) ln x lim lim 1 2 2 e x x (1 p ) ln x p x
所以,孪生素数猜想,哥德巴赫猜想等一些猜想是正确的。
6
5
因为孪生素数猜想是在 pi2 n<p i21 的限制下,去模 p( p 0 的同余类) ;双生素数猜想是去模 p( p 德巴赫猜想是去模 p( p 模 p( p
n )的两个同余类(含余
n )的一个或两个同余类(含余 0 的同余类) ;哥
n )的一个或两个同余类(含余 0 的同余类) ;四生素数猜想是去
j 1
1 ) pj
成立。
当 i=k+1 时, ∵
p1 |n, p 2 |n,…, p k |n,据归纳假设
k

y k (n) n (1
j 1
1 ) pj
因为 p k 1 |n ,所以 m≠o (mod p k 1 ) 的数有
k n 1 (1 ) 个 p k 1 j 1 pj k
pi ( n) p si

w(S)<
pi ( n) p si

∵ ∴
p si pi pi2e
.123 p1 i
pi 1 1 1 0.123 p si pi pi
w(S)<

1 ( n) pi 1
公式(L)的误差 w(L)应小于 根据素数定理,得
( n) ( n) 的一半,下面计算 . pl pl
( n) n n n n ( n) pl pl ln n 2 pl ln n 2 p l

pi2 n<p i21

n pi 2
w(L)<
∴ 引理 2 证毕。
pi ( n) 2 pl
4
引理 3(素数连乘积不等式) : ( x) 证明:根据素数连乘积公式
不大于 n 的四生素数(p,p+2,p+6,p+8)个数 S(n)
e 4 n 4 S ( n) ( ) (1 ) 2 2 3 5 p n p
不大于 n 的 k 生素数个数 K(n)
K (n) (
e k 1 k ) (1 ) 2 p p k p k p n
n )的不大于四个同余类(含余 0 的同余类) ;k 生素数猜想是去模 p( p n )的
不大于 k 个同余类(含余 0 的同余类) ;所以有: 不大于 n 的孪生素数(p,p+2)个数 L(n)
L( n) (
e 2 n 2 ) (1 ) 2 2 3 p n p
不大于 n 的双生素数(p,p+a)个数 Sh(n)
因为
为了与引理 1 有相吻合的表达式,也避免向后演绎导致麻烦,采取让 p k 后的去素数倍数因
2
子 (1
1 1 1 2 ) 、(1 )、 …、 (1 ) 提前进入, 来平衡少减的量。 所以, 区间 [ pk , p k21 ) p sk p k 1 pk 2
有较精确的素数个数表达式
其中 g(n)满足:-
1 1 ( n ) <g(n)< 1 ( n ) 1 pi pi

( log p k p sk 2e
2 2
≈1.123,欧拉常数γ=0.5772156649 … ,)
知道了 n 受 pi n<p i 1 限制,所导致偏差的原因,同理可得另一形式的 不大于 n 的素数个数公式
n 个, 去了 p1 , p 2 , , p k 的倍数后,余 p k 1

y k 1 (n) n (1
j 1 k
k 1 n 1 ) (1 ) pj p k 1 j 1 pj k 1 1 1 1 ) (1 ) n (1 ) pj p k 1 pj j 1
n (1
j 1
1
k 1

i=k+1 时,结论 y k 1 (n) n
(1 p
j 1
1
j
)
成立。
由 I、Ⅱ可得,当 i 为任何正整数,结论都成立。 引理 1 证毕。 引理 2 : (素数连乘积公式) :若 p1 2 , p 2 3 ,… p k …, pi , pi 1 为连续素数,

w(k)<
pk p sk
考虑到这 i 个区间 s k 取值的整体一致性(即 log p k p sk 2e , 定理 2 中有这点的证 明),这 i 个区间中可能存在区间误差 w(k)大于 1,最大可达到
相关文档
最新文档