FlexRay总线调研报告
FlexRay总线的实现及其在汽车上的应用研究的开题报告

FlexRay总线的实现及其在汽车上的应用研究的开题报告一、研究背景随着汽车技术的不断发展,汽车电子控制系统也日益复杂,需求更高的通信系统也得到了广泛的应用。
FlexRay总线作为一种新兴的嵌入式网络通信协议,因其高速、高可靠性、灵活性等特点已被广泛应用于汽车电控系统。
因此,对FlexRay总线的实现及其在汽车上的应用研究具有现实意义。
二、研究目的本项目的研究目的是:1. 研究FlexRay总线的实现原理和工作流程;2. 探究FlexRay总线在汽车电控系统中的应用,包括安全性、可靠性、性能等方面的优势和局限性;3. 分析和比较FlexRay总线与CAN总线在汽车电控系统中的应用情况;4. 基于FlexRay总线技术,设计并实现一个在汽车电控系统中的应用案例。
三、研究方法本项目采用文献资料法和实验法相结合的研究方法。
首先通过对FlexRay总线的相关文献进行梳理和分析,了解其实现原理、工作流程、应用场景等基本情况。
其次,基于对FlexRay总线的理论研究,设计并实现一个简单的应用案例,验证其在汽车电控系统中的应用能力。
最后,将FlexRay总线与CAN总线进行比较分析,探讨其各自的优劣和适用情况。
四、研究内容和工作计划1. 阅读相关文献,了解FlexRay总线的实现原理和工作流程(预计完成时间:一个月);2. 设计并实现一个基于FlexRay总线的简单应用案例,测试系统的可靠性和性能(预计完成时间:两个月);3. 进行FlexRay总线与CAN总线的比较分析,探讨各自的优劣和适用情况(预计完成时间:一个月);4. 撰写开题报告和项目计划书(预计完成时间:一个月)。
五、预期成果本项目将实现一个基于FlexRay总线的简单应用案例,验证其在汽车电控系统中的应用能力,并对FlexRay总线与CAN总线进行比较和分析,探讨各自的优劣和适用情况。
最终成果将通过论文和展示的形式呈现。
FlexRay汽车通信总线介绍及测试环境(原创博文)

FlexRay汽车通信总线介绍及测试环境综述FlexRay通信总线是由多个汽车制造商和领先的供应商共同开发的确定性、容错和高速总线系统。
FlexRay满足了线控应用(即线控驱动、线控转向、线控制动等)的容错性和时间确定性的性能要求,本文介绍FlexRay的基础知识。
为了使汽车继续提高安全性、提升性能、减少环境影响并增强舒适性,必须提高汽车电子控制单元(ECU)之间传送数据的速度、数量和可靠性。
先进的控制和安全系统(结合了多个传感器、执行器和电子控制单元)开始要求同步功能和传输性能超过现有标准的控制器局域网(CAN)所能提供的性能。
随着带宽需求的增长和各种先进功能的实现,汽车工程师急需下一代嵌入式网络。
经过OEM厂商、工具供应商和最终用户的多年合作,FlexRay标准已经成为车载通信总线,以应对下一代车辆中的这些新的挑战。
FlexRay还能够提供很多CAN网络不具有的可靠性特点,尤其是FlexRay 具备的冗余通信能力可实现通过硬件完全复制网络配置,双通道冗余进行数据通信。
FlexRay同时提供灵活的配置,可支持各种拓扑,如总线、星型和混合拓扑。
设计人员可以通过结合两种或两种以上的该类型拓扑来配置分布式系统。
了解FlexRay的工作原理对工程师在车辆设计和生产过程的各个方面都至关重要。
本文将解释FlexRay的核心概念。
FlexRay基础FlexRay的许多方面旨在降低成本,同时在恶劣的环境中提供最佳性能。
FlexRay使用非屏蔽双绞线电缆将节点连接在一起,FlexRay总线可以由一对或两对电缆组成的单通道和双通道组成。
每对线缆上的差分信号减少了外部噪声对网络的影响,而无需昂贵的屏蔽层。
大多数FlexRay节点通常还具有可用于收发器和微处理器的电源线和地线。
双通道配置可提高容错能力或增加带宽。
大多数第一代FlexRay网络仅利用一个信道来降低布线成本,但是随着应用程序对复杂性和安全性要求的提高,未来的网络将同时使用这两个信道。
FlexRay总线调研报告

FlexRay总线调研报告汽车电子已成为汽车行业的一个重要市场。
汽车电子行业最大的热点就是网络化错误!未找到引用源。
如今的汽车,已然是一个移动式的信息装置,通过车内网络系统,可以接收、发送并处理大量的数据,对某些状况做出必要的反应。
未来汽车的发展趋势必然是自动化程度越来越高,使汽车更安全、更可靠、更舒适,这意味着在车内使用更多的传感器、传动装置及电子控制单元,这也将对车载网络提出更高的要求。
针对未来汽车车载网络的发展要求,FlexRay应运而生。
FlexRay关注的是当今汽车行业的一些核心需求,包括更快的数据速率,更灵活的数据通信,更全面的拓扑选择和容错运算等。
FlexRay的出现,弥补了既有总线协议应用在汽车线控系统或者同安全相关的系统时容错性和传输速率太低的不足,并将逐步取代CAN总线成为新一代的汽车总线错误!未找到引用源。
1FlexRay总线介绍1.1车载网络概述现代科技推动了汽车网络技术的不断发展,早在20世纪80年代国际上众多知名汽车公司就积极致力于汽车网络技术的研究及应用,迄今为止,已有多种网络标准。
1994年,SAE车辆网络委员会将汽车数据传输网划分为A、B、C等3类。
A类为面向传感器∕执行器控制的低速网络,B类为面向数据共享的中速网络,C类为面向高速、实时闭环控制的多路传输网络错误!未找到引用源。
另外它还保留了D类网的定义,这类网络主要是面向车内的娱乐设备的信息传输。
四种汽车网络标准总结如错误!未找到引用源。
所示。
表1汽车网络标准A类网络主要面向传感器、执行器控制,是低速网络。
在该类网络中对实时性要求不高,且不需要诊断功能,数据速率一般在1~10Kbps,主要应用于电动门窗、座椅调节、灯光照明等控制。
目前A类网络协议主要有TTP/A(Time-Triggered Protocol)、LIN(Local Interconnect Network)等协议。
B类网络主要面向独立模块间的数据共享,是中速网络,该类网络适用于对实时性要求不高的通信场合,数据速率一般在10~100Kbps,主要应用于电子车辆信心中心、故障诊断、仪表显示、安全气囊等系统,以减少冗余的传感器和其他电子部件。
Flexray线控总线技术

高速
FlexRay支持高达10 Mbps的数据传 输速率,满足汽车中大量数据传输的 需求。
可靠性
FlexRay具有错误检测和纠正功能, 能够保证数据传输的可靠性。
工作原理
1 2
通信模式
FlexRay支持静态和动态两种通信模式,可以根 据实际需求进行选择。
拓扑结构
FlexRay支持星型和总线型两种拓扑结构,可以 根据汽车内部ECU的分布情况进行选择。
的领域,其优势可能无法充分发挥。
对实时性的 依赖
由于FlexRay总线的通信机制和硬件资源限制,其支 持的节点数量有限,可能不适合大规模分布式系统。
04
FlexRay线控总线与其他总线的比较
CAN总线
总结词
CAN总线是一种广泛应用于汽车行业的通信协议,具有高可靠性和良好的实时 性。
详细描述
CAN总线采用基于优先级的通信方式,支持多主节点同时通信,具有较高的数 据传输速率和较低的延迟时间。然而,CAN总线在处理大量数据和复杂通信时 可能会遇到带宽限制。
随着汽车电子化程度的不断提高,对汽车内部通信的要求也 越来越高,FlexRay总线技术正是在这样的背景下应运而生。
技术发展历程
FlexRay总线技术最初由BMW和戴姆勒-克莱斯勒于1999年联合开发,旨在为汽车 内部通信提供一种高性能、高可靠性的总线系统。
自推出以来,FlexRay总线技术得到了广泛的认可和应用,已成为汽车内部通信的标 准之一。
市场前景
增长的市场需求
竞争格局变化
未来发展方向
随着汽车电子化程度的不断提高,对 线控技术的需求也在不断增长。 FlexRay总线技术作为汽车线控技术 的关键组成部分,其市场需求将进一 步扩大。
基于FlexRay总线的线控转向系统及其路感模拟研究的开题报告

基于FlexRay总线的线控转向系统及其路感模拟研究的开题报告一、研究背景及意义随着汽车电子技术的不断发展,越来越多的电子控制单元(ECU)被用于汽车的控制与管理。
其中,线控转向系统是一种集成了众多传感器和执行器的复杂系统,通过控制电机转向实现车辆的转向控制,为驾驶员带来更加轻松和安全的驾驶体验。
为了确保线控转向系统的稳定性和可靠性,需要对其进行全面的测试和验证,以最大程度地减少故障和事故的发生。
FlexRay总线是当前汽车控制领域广泛使用的一种高速数据传输协议,具有高可靠性、高带宽和互不干扰的特点,能够满足线控转向系统的实时数据传输需求。
因此,本研究将基于FlexRay总线开发一种线控转向系统,并通过路感模拟的方式对其进行测试和验证。
二、研究内容和方法1. 线控转向系统的设计和实现:基于FlexRay总线,设计并实现一种高稳定性、高可靠性的线控转向系统,包括转向角度传感器、转向电机、控制算法等组件,实现对车辆转向的精准控制。
2. 路感模拟环境的搭建:搭建一种基于虚拟仿真技术的路感模拟环境,以模拟不同类型的路况,包括平坦路面、颠簸路面、过弯路面等,为线控转向系统的测试提供真实的环境场景。
3. 线控转向系统的测试和验证:通过将线控转向系统与路感模拟环境相结合,在不同的路况下测试和验证其转向控制性能和稳定性,并对测试结果进行分析和评估。
三、预期研究成果和意义1. 实现一种基于FlexRay总线的高稳定性、高可靠性的线控转向系统,为汽车驾驶员带来更加舒适和安全的驾驶体验。
2. 建立一种基于虚拟仿真技术的路感模拟环境,为线控转向系统的测试和验证提供真实的环境场景,提高测试结果的可信度和准确性。
3. 通过测试和验证,进一步提高线控转向系统的稳定性和可靠性,为汽车安全和智能化发展提供技术支持。
四、研究进度安排第一年:1. 研究FlexRay总线的数据传输特性和应用场景。
2. 设计和实现线控转向系统的算法和硬件组件。
flexray,协议中文版

竭诚为您提供优质文档/双击可除flexray,协议中文版篇一:通信协议标准FlexRay总线的功能安全性详解通信协议标准FlexRay总线的功能安全性详解在汽车中采用电子系统已经有几十年的历史,它们使汽车安全、节能与环保方面的性能有大幅度的提高。
随着研究的深入,许多系统需要共享和交换信息,为了节省线缆,就形成了依赖于通信的分布式嵌入系统。
目前,世界上90%的都采用基于can总线的系统。
FlexRay是下一代通信协议事实上的标准,它的功能安全性如何是至关重要的。
1iec61508功能安全的要求目前车控系统正在向线控技术(xbywire)过渡,例如线控转向与线控刹车。
线控系统最终目标是取消机械后备,因为取消这些后备可以降低成本,增强设计的灵活性,扩大适用范围,为以后新添功能创造条件。
但是取消机械后备就对电子系统的可信赖性(dependability)要求大为提高。
车是一个运动的物体,处于运动的环境之中,它因故障可能伤及自身及别人。
取消机械后备,就将电子系统由今天的故障静默(failsilent)要求提升到故障仍工作(failoperational)的要求。
国际上对工业应用的功能安全要求已制定了标准iec61508,它主要关心被控设备及其控制系统的安全。
虽然它也适用于汽车,但汽车不仅有上述功能安全问题,而且要关心由于功能变化造成的整车系统安全,所以汽车业内正在制定相应的标准iso26262。
汽车的功能安全等级分为4级,要求最高的是asild,相应的失效概率<10-8/h,它相当于iec61508的sil3。
根据实践经验,分配给通信的失效概率<10-10/h。
有关这方面的介绍可参见参考文献。
现在安全攸关的应用系统的范围有所扩大,以前不算在内的一些系统现在都要算了。
例如安全预先动作系统(presafe)中座椅调整子系统、刹车辅助系统中的灯光控制子系统、碰撞后telematic自动呼叫求援的子系统,都将视为安全攸关系统。
基于FlexRay总线的静态段带宽利用率研究

定孑科■执2019年第32卷第6期Electronic Sci. & Tech. /Jun. 15,2019基于FlexRay 总线的静态段带宽利用率研究张育贵】,胡雪晨】,王义2(1.贵州大学大数据与信息工程学院,贵州贵阳550025#2.贵州师范大学物理与电子科学学院,贵州贵阳550025)摘 要 为提高FlexRay 网络的带宽利用率,文中对FlexRay 静态段参数和传输中消息的长度进行了研究。
针对静态段参数数学模型和静态消息帧长度差异过大造成大量带宽浪费的情况,分别提出了 MATLAB 的优化函数和将部分较长消息分割成两个长度相同消息进行分配方法。
文中阐述了将FlexRay 静态段数学模型转化为非线性规划的问题,所提的分配方法考虑了分割后的消息在编码过程中增加的无效比特数对整个网络的影响。
数值实验表明,该方法可以在理 论最优带宽利用率的基础上实现进一步提高。
关键词 FlexRay 总线'静态段'带宽利用率'消息分割'优化函数'消息编码中图分类号 TP393 文献标识码 A 文章编号1007 -7820(2019)06 -012 -05doi :10. 16180/j. cnki. imnl007 -7820. 2019. 06. 003Research about Bandwitth Utilization of Static Segment Based on FlexRay BusZHANG Yugui 1 ,HU Xuechen 1 ,WANG Yi 2收稿日期:2018-06-10基金项目:国家自然科学基金(61462015 );贵州省国际科技合作计划项目(黔科合外G 字[2014)7007号)Nationai Naturai Science Foundation of China (61462015) ;GuizhouPravinciai Internationai Science and Technology Cooperation Pra-gram Project ( GKWG [2014] Na. 7007)作者简介:张育贵(1993 -),男,硕士研究生。
FlexRay技术综述

FlexRay技术综述FlexRay 是一种用于汽车的高速可确定性的,具备故障容错的总线系统,它的基础源于戴姆勒?克莱斯勒公司(奔驰公司)的典型应用以及BMW公司(宝马公司)byteflignt通信系统开发的成功经验。
Byteflight是BMW公司专门为被动安全系统(气囊)而开发的,为了同时能够满足主动安全系统的需要,在Byteflight协议基础之上,被FlexRay协会进一步开发成了一个与确定性和故障容错有密切关系的,更可靠的高速汽车网络系统。
今天,BMW,Daimler? Chrysler,General Motors,Ford,Volkswagen和一些半导体公司如Bosch,freescale,Philips等组成了FlexRay联盟。
2006年应用FlexRay技术的汽车将进入市场。
如今,大多数汽车中的控制器件、传感器和执行器之间的数据交换,主要是通过CAN网络进行的。
然而新的x-by-wire系统设计思想的出现,导致了车辆系统对信息传送速度尤其是故障容错与时间确定性的需求的不断增加。
FlexRay通过在确定的时间槽中传递信息,以及在两个通道上的故障容错和冗余信息的传送,满足了这些新增加的要求。
传输介质的访问FlexRay符合TDMA(Time Division Multiple Access)的原则,部件和信息都被分配了确定的时间槽,在这期间它们可以唯一的访问总线。
时间槽是经固定的周期而重复的。
信息在总线上的时间是可以完全预测出来的,因而对总线的访问是确定性的。
不过,通过为部件和信息分配时间槽的方法来固定的分配总线带宽,其不利因素是导致总线的带宽没有被完全的利用。
出于这个考虑,FlexRay把周期分成了静态段和动态段,确定的时间槽适用于位于信息开始的静态段。
在动态段,时间槽是动态分配的。
每种情况下都只有一小段时间是允许唯一的总线访问的(这段时间称为"mini-slots"),如果在mini-slot中出现了总线访问,时间槽就会按照需要的时间来扩展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FlexRay总线调研报告汽车电子已成为汽车行业的一个重要市场。
汽车电子行业最大的热点就是网络化[1]。
如今的汽车,已然是一个移动式的信息装置,通过车内网络系统,可以接收、发送并处理大量的数据,对某些状况做出必要的反应。
未来汽车的发展趋势必然是自动化程度越来越高,使汽车更安全、更可靠、更舒适,这意味着在车内使用更多的传感器、传动装置及电子控制单元,这也将对车载网络提出更高的要求。
针对未来汽车车载网络的发展要求,FlexRay应运而生。
FlexRay关注的是当今汽车行业的一些核心需求,包括更快的数据速率,更灵活的数据通信,更全面的拓扑选择和容错运算等。
FlexRay的出现,弥补了既有总线协议应用在汽车线控系统或者同安全相关的系统时容错性和传输速率太低的不足,并将逐步取代CAN总线成为新一代的汽车总线[2]。
1FlexRay总线介绍1.1车载网络概述现代科技推动了汽车网络技术的不断发展,早在20世纪80年代国际上众多知名汽车公司就积极致力于汽车网络技术的研究及应用,迄今为止,已有多种网络标准。
1994年,SAE车辆网络委员会将汽车数据传输网划分为A、B、C等3类。
A类为面向传感器∕执行器控制的低速网络,B类为面向数据共享的中速网络,C类为面向高速、实时闭环控制的多路传输网络[3]。
另外它还保留了D类网的定义,这类网络主要是面向车内的娱乐设备的信息传输。
四种汽车网络标准总结如表1所示。
表1汽车网络标准A类网络主要面向传感器、执行器控制,是低速网络。
在该类网络中对实时性要求不高,且不需要诊断功能,数据速率一般在1~10Kbps,主要应用于电动门窗、座椅调节、灯光照明等控制。
目前A类网络协议主要有TTP/A(Time-Triggered Protocol)、LIN(Local Interconnect Network)等协议。
B类网络主要面向独立模块间的数据共享,是中速网络,该类网络适用于对实时性要求不高的通信场合,数据速率一般在10~100Kbps,主要应用于电子车辆信心中心、故障诊断、仪表显示、安全气囊等系统,以减少冗余的传感器和其他电子部件。
在B类网络中,具有代表性的有SAEJ1850、V AN(Vehicle Area Network)、CAN(ISO11595-2,不高于125Kbps)等协议。
其中,CAN凭其优越的性能,目前已经成为被全世界接受的主流协议。
C类网络主要面向高速、实时闭环控制的多路传输网,该类网络适用于与安全性相关的实时系统,如发动机定时、燃油供给等系统,数据速率通常在125kbps~1Mbps之间。
目前,C类网络中的主要协议包括高速CAN(ISO118982)、正在发展中的TTP/C和FlexRay等协议。
其中高速CAN基于优先级的随机访问方式,总线传输速率通常在125kbps~1Mbps之间而其它几种协议基于TDMA(Time Division Multiple Access)或FTDMA(Flexible Time Division Multiple Access)的确定性访问方式,数据传输具有确定的延迟时间,且有很高的传输速率(1~10Mbps)。
D类网络主要面向汽车信息娱乐和远程信息设备,特别是汽车导航系统,需要功能强大的操作系统和连接能力。
在D类网络中,具有代表性的有MOST、IDBC、IDB1394、D2B、蓝牙等协议[4]。
1.2FlexRay的产生及发展随着汽车中增强安全和舒适体验的功能越来越多,实现这些功能的传感器、传输装置、电子控制单元(ECU)的数量也在持续上升。
如今高端汽车有100多个ECU,如果不采用新架构,该数字可能还会增长,ECU操作和众多车用总线之间的协调配合日益复杂,严重阻碍线控技术(X-by-wire,即利用重量轻、效率高、更简单且具有容错功能的电气/电子系统取代笨重的机械/液压部分)的发展。
即使可以解决复杂性问题,传统的车用总线也缺乏线控所必需的确定性和容错功能,例如,与安全有关的信息传递要求绝对的实时,这类高优先级的信息必须在指定的时间内传输到位,如刹车,从刹车踏板踩下到刹车起作用的信息传递要求立即正确地传输不允许任何不确定因素。
同时,汽车网络中不断增加的通信总线传输数据量,要求通信总线有较高的带宽和数据传输率。
目前广泛应用的车载总线技术CAN,LIN等由于缺少同步性,确定性及容错性等并不能满足未来汽车应用的要求。
宝马和戴姆勒克莱斯勒很早就意识到了,传统的解决方案并不能满足汽车行业未来的需要,更不能满足汽车线控系统(X-by-Wire)的要求。
于是在2000年的9月,宝马和戴姆勒克莱斯勒联合飞利浦和摩托罗拉成立了FlexRay的联盟。
由于FlexRay的优秀特性和广大的发展前景,又有很多的汽车,半导体和电子系统的生产商陆续加入了FlexRay联盟,为联盟的壮大注入更强的活力,并使FlexRay通信系统很快获得了动力。
目前,FlexRay联盟包括了汽车工业中绝大多数实力强劲而且影响力极强的角色,包括博世,通用汽车,福特等等。
FlexRay 成员分为四个等级,分别是核心成员国,重要联系成员国,联系成员国和最外层的开发成员国。
其中核心成员包括宝马,戴姆勒克莱斯勒,通用汽车,大众,博世,飞思卡尔和飞利浦。
该联盟致力于推广FlexRay 通信系统在全球的采用,使其成为高级动力总成、底盘、线控系统的标准协议。
其具体任务为制定FlexRay需求定义、开发FlexRay 协议、定义数据链路层、提供支持FlexRay的控制器、开发FlexRay物理层规范并实现基础解决方案。
由FlexRay联盟制定的FlexRay协议标准给出了汽车工业总线更为理想的解决方案,当前,FlexRay协议已经得到业界各大汽车生产厂家以及汽车半导体公司的支持,成为下一代车用网络标准。
经过几年的测试与修改,FlexRay协议2.1版本已经发布。
1.3FlexRay的特性在FlexRay协计设时,该联盟就规定其三大主要目标特性为:(1)高速:比目前其它车用主干网高出数倍;(2)确定的传输:以便有效的应用简化的分布式控制算法;(3)高容错的通信:以便实施更高安全需要的控制机制或以电控系统替代液压系。
为了能实现这些既定目标,FlexRay协议设计了一些新特性,正是这些优势技术使FlexRay成为下一代车用通信网络的首选。
FlexRay提供了传统车内通信协议不具备的大量特性[6],包括:(1) 高传输速率:FlexRay的每个信道具有10Mbps带宽。
由于它不仅可以像CAN和LIN网络这样的单信道系统一般运行,而且还可以作为一个双信道系统运行,因此可以达到20Mbps的最大传输速率,是当前CAN最高运行速率的20倍。
(2) 同步时基:FlexRay中使用的访问方法是基于同步时基的。
该时基通过协议自动建立和同步,并提供给应用。
时基的精确度介于0.5μs和10μs之间(通常为1~2μs)。
(3)确定性:通信是在不断循环的周期中进行的,特定消息在通信周期中拥有固定位置,因此接收器已经提前知道了消息到达的时间。
到达时间的临时偏差幅度会非常小,并能得到保证。
(4) 高容错:强大的错误检测性能和容错功能是FlexRay设计时考虑的重要方面。
FlexRay 总线使用循环冗余校验CRC(Cyclic redundancy cheek)来检验通信中的差错。
FlexRay总线通过双通道通信,能够提供冗余功能,并且使用星型拓扑可完全解决容错问题,如果出现意外情况,星型的支路可以有选择的切断。
(5)灵活性:在FlexRay协议的开发过程中,关注的主要问题是灵活性。
不仅提供消息冗余传输或非冗余传输两种选择,系统还可以进行优化,以提高可用性(静态带宽分配)或吞吐量(动态带宽分配)。
用户还可以扩展系统,而无需调整现有节点中的软件。
同时,还支持总线或星型拓扑。
FlexRay提供了大量配置参数,可以支持对系统进行调整,如通信周期、消息长度等,以满足特定应用的需求。
2FlexRay总线技术原理2.1帧格式结构FlexRay帧格式包括帧头段(Header segment)、有效载荷段(payload segment)与帧尾段(Trailer segment)三部分,如图1所示[8]。
节点在网络上传输帧时,首先传输的是帧头段,其次传输的是有效载荷段,最后传输的是帧尾段。
图1 FlexRay帧格式FlexRay帧头段包括5个字节的信息,包括保留位(Reserved bit)、有效载荷段前言指示位(Payload preamble indicator)、空帧指示位(Null frame indicator)、同步帧指示位(Sync frame indicator)、起始帧指示位(Startup frame indicator)、帧ID(Frame ID)、有效载荷段长度(Payload length)、帧头CRC(Header CRC)、周期计数(cycle count)。
帧ID的范围从1到2047,帧0是无效的帧ID。
在每个通道的一个通信周期内,帧ID仅被使用一次。
一簇中每个可能被传输的帧都赋予了一个帧ID。
ID 数字越小,则优先级越高。
有效载荷段长度用来指明有效载荷段的尺寸。
有效载荷段的尺寸被编码为有效载荷段数据字节数值的二分之一(即word的个数)。
在静态时序部分的一个通信周期内,所有发送帧的有效载荷段长度应该是稳定不变的。
在动态时序部分的一个通信周期内,不同帧的有效载荷段长度可能不同。
另外,在不同周期内特殊动态时序部分的帧有效载荷段长度可能变化。
FlexRay有效载荷段包含0~254个字节数据。
在动态时序部分,有效载荷段的前两个字节通常用作信息ID域(Message ID Field),接收节点根据域中的内容去过滤或者引导数据。
在静态时序部分,有效载荷段的前13个字节(数据0~数据12)通常用作网络管理向量,在同一个簇内所有的节点应具有相同长度的网络管理向量。
帧头段的有效载荷前言指示位指明了有效载荷段是网络管理向量还是信息ID。
FlexRay帧尾段只含有24位的校验域,这个域包含了由帧头段与有效载荷段计算得出的CRC校验码。
计算帧CRC时,根据网络传输顺序将从保留位开始,到有效载荷段最后一个字节的最后一位结束,这些数据都放入CRC生成器中进行计算。
2.2编码与解码FlexRay总线协议独立于底层物理层,有两个不同级的二进制媒介。
这两个不同级媒介所产生的比特流叫做通信要素(Communication Element)。
节点使用“不归零”编码的方式对通信要素CE进行编解码。
编码与解码(Coding and Decoding)实际讲述了通信控制器与总线驱动器之间,TxD、RXD和TxEN接口信号的编码与解码行为。