动态面板数据分析步骤详解 ..
使用GMM方法分析动态面板数据.

对外经济贸易大学金融学院张海洋 S EN ( Z ' ε ( z ' z 1 1 ˆ ˆ E'Z( Z'Z1 Z'E N2 j k 然而,该统计量有时候是不一致的,如果在命令中要求报告稳健的Sargan统计量,软件ˆ ;再根会做两阶段GMM估计(先找任意合理的H,令 A=( Z'HZ ,估计出第一步参数β 1 1 ˆ ˆ ,令 A=( Z'ˆ ˆ Z ,估计出第二部参数β ˆ ,计算出残差项的方差-协方差矩阵ˆ )据β 1 2 ,β β 1 1 1 根据第二步的参数结果,默默报告出Hansen统计量。
整体上说,Hansen统计量好像更靠谱一点,所以报告的时候,更多关注Hansen统计量。
(三)动态面板数据现在回到我们的动态面板数据,对数据和模型有如下假定: 1 234 动态。
模型中包含了因变量的滞后项;有个体的固定效应;可以有一些自变量是内生的;除了固定效应之外的误差项 it 可以异方差,可以序列相关;5 不同个体之间的误差项 it 和 jt 不会相关。
67 可以有前定的(Predetermined)但不是完全外生的变量。
“大N,小T” ,即个体数量要足够多,但时间不用太长。
如果时间足够长的话,动态面板误差不会太大,用固定效应即可。
从上述要求可以看出,GMM方法特别适合宏观的面板数据分析,因为宏观变量中,很难找出绝对外生的变量,变量之间多少会互相影响。
而GMM方法可以“有一些自变量是内生的” ,这可能也是GMM方法在文献中这么常用的原因。
此前已经说过,不能用传统的OLS方法或者固定效应模型进行动态面板数据的分析,那样会得到有偏的估计量。
先要对数据进行一定的变换,然后根据不同的矩条件设定开展矩估计。
其中数据变换有两种方法,矩条件的设定也有两种方法。
6对外经济贸易大学金融学院张海洋 1、数据的变换方法:一阶差分还是垂直离差为了消除动态面板数据中的固定效应,通常用的有两种方法:一阶差分 (first difference和垂直离差(orthogonal deviations。
面板数据分析的流程

面板数据分析的流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!1. 数据收集确定研究问题和目标,明确需要分析的变量和时间范围。
回归分析中的动态面板数据分析方法(Ⅰ)

在经济学和统计学中,回归分析是一种常用的数据分析方法,用于探讨自变量与因变量之间的关系。
而动态面板数据分析方法则是回归分析的一种特殊形式,用于研究随时间变化的数据。
本文将从动态面板数据的特点、动态面板数据分析方法以及应用举例三个方面来探讨回归分析中的动态面板数据分析方法。
一、动态面板数据的特点动态面板数据是指在横截面数据和时间序列数据的基础上,对不同时间点上的相同个体进行观察和记录。
动态面板数据具有以下特点:1. 数据的时间序列性:即数据在不同时间点上有连续的观测结果,可以用来分析时间序列变化的规律性。
2. 数据的个体异质性:即数据中包含不同个体的观测结果,可以用来分析不同个体之间的差异性。
3. 数据的动态性:即数据中包含时间序列和横截面的特点,可以用来分析个体随时间变化的动态效应。
由于动态面板数据具有以上特点,因此在回归分析中需要采用特殊的方法来处理这类数据,以更好地探讨因果关系和动态效应。
二、动态面板数据分析方法动态面板数据分析方法主要包括固定效应模型(Fixed Effects Model)、随机效应模型(Random Effects Model)和一阶差分估计法(First DifferenceEstimation)等。
其中,固定效应模型和随机效应模型是最常用的方法,适用于具有个体异质性和时间序列性的数据分析。
1. 固定效应模型:固定效应模型是一种控制了个体固定效应的回归分析方法。
在固定效应模型中,个体固定效应被视为一个固定的参数,通过引入虚拟变量来捕捉个体固定效应,并进一步控制个体异质性。
固定效应模型适用于个体固定效应对因变量有显著影响的情况,能够有效控制了个体固定效应的影响,提高了回归分析的准确性。
2. 随机效应模型:随机效应模型是一种考虑了个体固定效应和随机效应的回归分析方法。
在随机效应模型中,个体的固定效应被视为一个随机变量,并通过引入个体固定效应的方差来检验其对因变量的影响。
随机效应模型适用于个体固定效应对因变量的影响较小,能够更好地估计个体固定效应的方差,并提高了回归分析的拟合度。
面板数据分析简要步骤与注意事项面板单位根—面板协整—回归分析

面板数据分析简要步骤与注意事项面板单位根—面板协整—回归分析 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#面板数据分析简要步骤与注意事项(面板单位根—面板协整—回归分析)步骤一:分析数据的平稳性(单位根检验)按照正规程序,面板数据模型在回归前需检验数据的平稳性。
李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。
这种情况称为称为虚假回归或伪回归(spurious regression)。
他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。
因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。
因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。
而检验数据平稳性最常用的办法就是单位根检验。
首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。
单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,LevinandLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。
后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。
Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。
Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。
回归分析中的动态面板数据分析方法(Ⅲ)

回归分析中的动态面板数据分析方法回归分析是一种用来探究变量之间关系的统计方法,而面板数据则是指在不同时间点上收集到的同一组个体数据。
动态面板数据分析方法则是针对这种面板数据的一种分析方法,它可以更好地考虑到时间序列和横截面的特性,从而更准确地分析变量之间的关系。
一、面板数据分析的基本概念首先,我们需要了解一些基本概念。
面板数据分析通常包括两个维度,一个是时间维度,另一个是横截面维度。
时间维度是指在不同时间点上收集到的数据,例如不同年份、不同季度等;而横截面维度则是指在同一时间点上收集到的不同个体的数据。
因此,面板数据可以反映出不同个体在不同时间点上的变化情况,具有更多的信息量。
二、动态面板数据模型在面板数据分析中,动态面板数据模型是一种常用的分析方法。
这种模型通常包括两个部分,一个是横截面维度上的固定效应,另一个是时间维度上的动态效应。
固定效应指的是在不同个体之间存在的固定差异,例如不同国家、不同公司等之间的差异;而动态效应则是指随着时间推移而发生的变化。
动态面板数据模型可以更好地捕捉到个体之间和时间序列之间的相关性,因此在实际分析中具有重要的应用价值。
三、动态面板数据的估计方法在动态面板数据分析中,常用的估计方法包括差分估计方法、一阶滞后模型、二阶滞后模型等。
差分估计方法是一种常用的方法,它利用变量在不同时间点上的差值进行估计,从而消除了固定效应。
一阶滞后模型和二阶滞后模型则是利用时间序列的滞后效应进行估计,可以更好地捕捉到动态效应。
这些估计方法在实际应用中可以根据具体情况进行选择,以获得更准确的分析结果。
四、动态面板数据的应用领域动态面板数据分析方法在许多领域都具有重要的应用价值。
例如,在经济学领域,可以利用动态面板数据分析方法来研究不同国家或地区的经济增长模式、产业结构变化等问题;在管理学领域,可以利用动态面板数据分析方法来研究不同公司的经营绩效、市场份额变化等问题。
因此,动态面板数据分析方法在实际应用中具有广泛的应用前景。
面板数据分析方法步骤全解

面板数据分析方法步骤全解面板数据分析是一种常用的统计方法,可用于研究面板数据。
面板数据是指在一定时间内,对多个个体或单位进行反复观测的数据。
面板数据的特点是具有跨个体和跨时间的变异性,可以更好地捕捉个体变量和时间变量的相关性。
本文将详细介绍面板数据分析的方法步骤。
步骤一:数据准备面板数据分析的第一步是准备数据。
首先,需要收集面板数据,包括个体的观测值和时间变量。
然后,对数据进行清洗和整理,包括处理缺失值、异常值和重复值。
此外,还要对变量进行命名和编码,以便后续分析使用。
步骤二:面板数据的描述性统计分析在进行面板数据分析之前,通常需要对数据进行描述性统计分析。
这可以帮助我们了解数据的基本特征和变化趋势。
常用的描述性统计方法包括计算平均数、标准差、最大值、最小值和分位数等。
此外,还可以使用图表和图表来可视化数据的分布和变化情况。
步骤三:面板数据的平稳性检验面板数据在进行进一步分析之前,需要进行平稳性检验。
平稳性是指面板数据的统计特性在时间和个体之间保持不变。
常用的平稳性检验方法包括单位根检验和平稳均值假设检验。
如果数据不平稳,可以通过差分或其他方法进行处理,以实现平稳性。
步骤四:面板数据的固定效应模型估计面板数据分析的核心是建立面板数据模型并进行参数估计。
其中,固定效应模型是最常用的面板数据模型之一。
固定效应模型假设个体效应是固定的,与个体的观测值无关。
通过固定效应模型,可以估计个体效应和其他变量的影响。
常用的估计方法包括最小二乘法、广义最小二乘法和联合估计法等。
步骤五:面板数据的随机效应模型估计除了固定效应模型外,还可以使用随机效应模型进行面板数据分析。
随机效应模型假设个体效应是随机的,与个体的观测值相关。
通过随机效应模型,可以同时估计个体效应和其他变量的影响。
常用的估计方法包括广义最小二乘法和极大似然估计法等。
步骤六:面板数据的混合效应模型估计混合效应模型是固定效应模型和随机效应模型的组合,既考虑了个体效应的固定性,又考虑了个体效应的随机性。
stata分析面板数据

引言概述面板数据(Paneldata)是一种特殊类型的数据,它同时包含了横向和纵向的信息。
对于研究人员来说,面板数据的分析具有重要的意义,因为它可以对个体、时间和个体在不同时间上的变异进行深入研究。
Stata是一种流行的统计软件,具备强大的面板数据分析功能,可以处理各种面板数据相关的统计问题。
本文将介绍Stata分析面板数据的方法与技巧。
正文内容一、数据准备与导入1.定义面板变量:在Stata中,我们需要先将面板数据转换为面板变量。
可以使用“xtset”命令来定义面板变量,并指定个体和时间的标识变量。
例如,命令“xtsetidyear”可以将变量“id”作为个体标识变量,“year”作为时间标识变量。
2.导入面板数据:Stata支持多种数据格式的导入,如Excel、CSV等。
可以使用“importdelimited”命令导入CSV格式的面板数据。
命令格式如下:“importdelimitedfilename,varnames(1)”.其中,filename是文件名,varnames(1)表示将第一行作为变量名。
二、面板数据的描述统计分析1.描述性统计:在面板数据分析中,我们首先需要对数据进行描述性统计。
可以使用“summarize”命令计算平均值、标准差、最小值、最大值等统计指标。
例如,“summarizevarname”可以计算变量varname的平均值、标准差等。
2.变量相关分析:面板数据中的变量通常具有时间序列的特征,因此,变量之间的相关性也具有时间相关性。
可以使用“xtcorr”命令来计算面板数据中变量的相关系数矩阵。
命令格式如下:“xtcorrvar1var2,pwcorr”.其中,var1和var2是需要计算相关系数的变量。
三、面板数据的固定效应模型分析1.固定效应模型简介:固定效应模型是一种常见的面板数据分析方法,它考虑了个体固定效应,并通过个体虚拟变量来捕捉个体固定效应对因变量的影响。
报告中的动态面板数据和固定效应

报告中的动态面板数据和固定效应一、理解动态面板数据1. 动态面板数据的概念和特点- 动态面板数据是一种结合了纵向和横向特征的经济数据形式。
- 具有时间序列的特征,能够观察数据在时间上的变化。
- 可以通过观察个体间的变化来研究经济现象的动态性。
2. 动态面板数据的应用领域- 经济学研究中常用的面板数据分析方法之一。
- 在宏观经济学、企业组织与产业经济学等领域得到广泛应用。
- 有助于发现经济模型的时间动态性与个体异质性。
二、动态面板数据分析方法1. 差分法- 将面板数据转化为一阶或二阶差分。
- 消除个体效应和时间效应的固定效应。
- 有效利用数据的动态信息。
2. 一阶与二阶差分面板数据模型- 一阶差分模型适合研究时间序列变量的短期动态关系。
- 二阶差分模型适合研究时间序列变量的长期与短期动态关系。
- 通过引入滞后变量,考虑变量间的动态联动效应。
三、固定效应模型的基本概念1. 固定效应与随机效应的区别- 固定效应:假设个体效应与自变量存在相关关系。
- 随机效应:假设个体效应与自变量不存在相关关系。
2. 固定效应模型的优势和局限性- 通过引入个体效应,控制个体间的异质性。
- 能够估计不变量或者相对不变量的效应。
- 忽略了个体效应与时间变化的相关性。
四、固定效应模型的估计方法1. 最小二乘法估计- 通过OLS估计固定效应模型。
- 仅利用信息平均化,数据损失较大。
2. 差分法估计- 通过差分处理,消除个体效应。
- 估计纯时间效应对因变量的影响。
- 适用于变量在时间上有较大波动的情况。
五、固定效应模型的应用案例研究1. 教育投资对经济增长的影响- 利用固定效应模型分析不同国家教育政策的效果。
- 得出教育投资对经济增长具有显著正向影响。
2. 可持续发展与环境污染- 利用固定效应模型研究环境污染对经济可持续发展的影响。
- 得到环境政策对减少污染和促进可持续发展的重要性。
六、动态面板数据与固定效应模型的局限性与解决方案1. 异质性未能完全消除- 个体效应可能存在与其他变量的相关性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动态面板数据分析算法1. 面板数据简介面板数据(Panel Data, Longitudinal Data ),也称为时间序列截面数据、混合数据,是指同一截面单元数据集上以不同时间段的重复观测值,是同时具有时间和截面空间两个维度的数据集合,它可以被看作是横截面数据按时间维度堆积而成。
自20世纪60年代以来,计量经济学家开始关注面板数据以来,特别是近20年,随着计量经济学理论,统计方法及计量分析软件的发展,面板数据计量经济分析已经成为计量经济学研究最重要的分支之一。
面板数据越来越多地被应用到计量模型的研究中,其在实证分析中的优点是明显的:相对于只具有一个时点的横截面数据模型,面板数据包含了更多时间维度的数据,从而可以利用更多的信息来分析所研究问题的动态关系;而时间序列模型,其数据往往是由个体数据加总产生的,在实际计量分析中,在研究其动态调整行为时,由于个体差异被忽略,其估计结果有可能是有偏的,而面板数据模型能够通过截距项,捕捉到数据的动态调整过程中的个体差异,有效地减少了由于数据加总所产生的偏误;同时,面板数据同时具有时间和截面空间的两个维度,从而分享了横截面数据和时间序列数据的优点,另外,由于具有更多的观察值,其推断的可靠性也有所增加。
2. 面板数据的建模与检验设3. 动态面板数据的建模与检验所谓动态面板数据模型,是指通过在静态面板数据模型中引入滞后被解释变量以反映动态滞后效应的模型。
这种模型的特殊性在于被解释变量的动态滞后项与随机误差组成部分中的个体效应相关,从而造成估计的内生性。
4、步骤详解步骤一:分析数据的平稳性(单位根检验)按照正规程序,面板数据模型在回归前需检验数据的平稳性。
李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。
这种情况称为称为虚假回归或伪回归(spurious regression)。
他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。
因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。
因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。
而检验数据平稳性最常用的办法就是单位根检验。
首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。
单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。
后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。
Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。
Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。
Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher 面板单位根检验方法。
由上述综述可知,可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher5种方法进行面板单位根检验。
其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS 、H-Z 分别指Levin, Lin & Chu t* 统计量、Breitung t 统计量、lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量、Hadri Z统计量,并且Levin, Lin & Chu t* 统计量、Breitung t 统计量的原假设为存在普通的单位根过程,lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量的原假设为存在有效的单位根过程, Hadri Z统计量的检验原假设为不存在普通的单位根过程。
有时,为了方便,只采用两种面板数据单位根检验方法,即相同根单位根检验LLC(Levin-Lin-Chu)检验和不同根单位根检验Fisher-ADF检验(注:对普通序列(非面板序列)的单位根检验方法则常用ADF检验),如果在两种检验中均拒绝存在单位根的原假设则我们说此序列是平稳的,反之则不平稳。
如果我们以T(trend)代表序列含趋势项,以I(intercept)代表序列含截距项,T&I代表两项都含,N(none)代表两项都不含,那么我们可以基于前面时序图得出的结论,在单位根检验中选择相应检验模式。
但基于时序图得出的结论毕竟是粗略的,严格来说,那些检验结构均需一一检验。
具体操作可以参照李子奈的说法:ADF检验是通过三个模型来完成,首先从含有截距和趋势项的模型开始,再检验只含截距项的模型,最后检验二者都不含的模型。
并且认为,只有三个模型的检验结果都不能拒绝原假设时,我们才认为时间序列是非平稳的,而只要其中有一个模型的检验结果拒绝了零假设,就可认为时间序列是平稳的。
此外,单位根检验一般是先从水平(level)序列开始检验起,如果存在单位根,则对该序列进行一阶差分后继续检验,若仍存在单位根,则进行二阶甚至高阶差分后检验,直至序列平稳为止。
我们记I(0)为零阶单整,I(1)为一阶单整,依次类推,I(N)为N阶单整。
步骤二:协整检验或模型修正情况一:如果基于单位根检验的结果发现变量之间是同阶单整的,那么我们可以进行协整检验。
协整检验是考察变量间长期均衡关系的方法。
所谓的协整是指若两个或多个非平稳的变量序列,其某个线性组合后的序列呈平稳性。
此时我们称这些变量序列间有协整关系存在。
因此协整的要求或前提是同阶单整。
但也有如下的宽限说法:如果变量个数多于两个,即解释变量个数多于一个,被解释变量的单整阶数不能高于任何一个解释变量的单整阶数。
另当解释变量的单整阶数高于被解释变量的单整阶数时,则必须至少有两个解释变量的单整阶数高于被解释变量的单整阶数。
如果只含有两个解释变量,则两个变量的单整阶数应该相同。
也就是说,单整阶数不同的两个或以上的非平稳序列如果一起进行协整检验,必然有某些低阶单整的,即波动相对高阶序列的波动甚微弱(有可能波动幅度也不同)的序列,对协整结果的影响不大,因此包不包含的重要性不大。
而相对处于最高阶序列,由于其波动较大,对回归残差的平稳性带来极大的影响,所以如果协整是包含有某些高阶单整序列的话(但如果所有变量都是阶数相同的高阶,此时也被称作同阶单整,这样的话另当别论),一定不能将其纳入协整检验。
协整检验方法的文献综述:(1)Kao(1999)、Kao and Chiang(2000)利用推广的DF和ADF检验提出了检验面板协整的方法,这种方法零假设是没有协整关系,并且利用静态面板回归的残差来构建统计量。
(2)Pedron(1999)在零假设是在动态多元面板回归中没有协整关系的条件下给出了七种基于残差的面板协整检验方法。
和Kao的方法不同的是,Pedroni的检验方法允许异质面板的存在。
(3)Larsson et al(2001)发展了基于Johansen(1995)向量自回归的似然检验的面板协整检验方法,这种检验的方法是检验变量存在共同的协整的秩。
我们主要采用的是Pedroni、Kao、Johansen的方法。
通过了协整检验,说明变量之间存在着长期稳定的均衡关系,其方程回归残差是平稳的。
因此可以在此基础上直接对原方程进行回归,此时的回归结果是较精确的。
这时,我们或许还想进一步对面板数据做格兰杰因果检验(因果检验的前提是变量协整)。
但如果变量之间不是协整(即非同阶单整)的话,是不能进行格兰杰因果检验的,不过此时可以先对数据进行处理。
引用张晓峒的原话,“如果y和x不同阶,不能做格兰杰因果检验,但可通过差分序列或其他处理得到同阶单整序列,并且要看它们此时有无经济意义。
”下面简要介绍一下因果检验的含义:这里的因果关系是从统计角度而言的,即是通过概率或者分布函数的角度体现出来的:在所有其它事件的发生情况固定不变的条件下,如果一个事件X的发生与不发生对于另一个事件Y的发生的概率(如果通过事件定义了随机变量那么也可以说分布函数)有影响,并且这两个事件在时间上又有先后顺序(A前B 后),那么我们便可以说X是Y的原因。
考虑最简单的形式,Granger检验是运用F-统计量来检验X的滞后值是否显著影响Y(在统计的意义下,且已经综合考虑了Y的滞后值;如果影响不显著,那么称X不是Y的“Granger原因”(Granger cause);如果影响显著,那么称X是Y的“Granger原因”。
同样,这也可以用于检验Y是X的“原因”,检验Y 的滞后值是否影响X(已经考虑了X的滞后对X自身的影响)。
Eviews好像没有在POOL窗口中提供Granger causality test,而只有unit root test和cointegration test。
说明Eviews是无法对面板数据序列做格兰杰检验的,格兰杰检验只能针对序列组做。
也就是说格兰杰因果检验在Eviews中是针对普通的序列对(pairwise)而言的。
你如果想对面板数据中的某些合成序列做因果检验的话,不妨先导出相关序列到一个组中(POOL窗口中的Proc/Make Group),再来试试。
情况二:如果如果基于单位根检验的结果发现变量之间是非同阶单整的,即面板数据中有些序列平稳而有些序列不平稳,此时不能进行协整检验与直接对原序列进行回归。
但此时也不要着急,我们可以在保持变量经济意义的前提下,对我们前面提出的模型进行修正,以消除数据不平稳对回归造成的不利影响。
如差分某些序列,将基于时间频度的绝对数据变成时间频度下的变动数据或增长率数据。
此时的研究转向新的模型,但要保证模型具有经济意义。
因此一般不要对原序列进行二阶差分,因为对变动数据或增长率数据再进行差分,我们不好对其冠以经济解释。
难道你称其为变动率的变动率?步骤三:面板模型的选择与回归面板数据模型的选择通常有三种形式:一种是混合估计模型(Pooled Regression Model)。