2019北京中考数学二模16区-分类汇编-08 新定义(教师版)

合集下载

海淀区中考二模数学答案(图片版)

海淀区中考二模数学答案(图片版)

2019 海淀区中考二模数学答案(图片版)
2019 北京海淀中考二模数学考了哪些题目?数学网中考频道第一时间为大家整理北京2019 海淀区中考二模数学试题及答案。

更多2019 北京中考试卷答案请关注》》2019 北京中考二模试卷及答案汇总(十七区全)
2019 北京海淀区中考二模数学试题及答案
2019 北京东城区中考二模数学试题及答案
2019 北京朝阳区中考二模数学试题及答案
2019 北京西城区中考二模数学试题及答案
2019 北京石景山区中考二模数学试题及答案
2019 北京丰台区中考二模数学试题及答案
2019 北京顺义区中考二模数学试题及答案
2019 北京房山区中考二模数学试题及答案
2019 北京通州区中考二模数学试题及答案
2019 北京密云区中考二模数学试题及答案
2019 北京怀柔区中考二模数学试题及答案
2019 北京燕山区中考二模数学试题及答案
2019 北京大兴区中考二模数学试题及答案
2019 北京门头沟区中考二模数学试题及答案
2019 北京平谷区中考二模数学试题及答案
2019 北京昌平区中考二模数学试题及答案
2019 北京延庆区中考二模数学试题及答案。

北京市各区2019年中考数学二模试题分类整理 新定义题型的探究

北京市各区2019年中考数学二模试题分类整理 新定义题型的探究

百度文库,精选试题“新定义”题型的探究xOy中、给出如下定义:.在平面直角坐标系(2017昌平二模)29CCPMNCMPNMPNPC的“视角”.是⊙为点对于⊙上两点、当∠及⊙外一点最大时、称∠、关于⊙、O的半径为1、1)如图、⊙(AAO 的“视角”;关于⊙(0、2)1已知点、画出点○Px PO的最大“视角”的度数;上、则点若点在直线关于⊙= 2BmmBOB的坐标;)、点2在第一象限内有一点的“视角”为(关于⊙、60°、求点○3x2?xy??POPP的取上、且点在直线60°、求点关于⊙3若点的横坐标的“视角”大于○P3值范围.EFExFC上所有、若线段-1)0、1)、点0的坐标为()⊙(2、的圆心在轴上、半径为1、点的坐标为(x CC的点关于⊙的“视角”都小于120°、直接写出点的取值范围.的横坐标C yy33A2211x321–2–1Ox–131–2–12O–1–2–2yy332211x3–21–12Ox32–1–21O–1–1–2–2试题习题,尽在百度.百度文库,精选试题y?ax?by?bx?a房山二模)(2017叫做一对交换函数,例如我们定义:关于x的一次函数与y?3x?4y?4x?3就是一对交换函数与.y??2x?b的交换函数)写出一次函数.(1b??2时、写出(1)(2)当中两函数图象的交点的横坐标..的值求b(1)中两函数图象与y轴围成三角形的面积为3,(3)如果(2017房山二模)28.类比等腰三角形的定义、我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)如图1、在四边形ABCD中添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.)问题探究2(小红提出了一个猜想:对角线互相平分且相等的“等邻边四边形”是正方形.她的猜想正确吗?请说明理由.为对角线、.AC、BD、∠BAD+∠BCD=90°、2(3)如图、“等邻边四边形”ABCD中、AB=AD 之间的数量关系、并证明你的结论.BD、试探究线段BCCD、试题习题,尽在百度.百度文库,精选试题GA上各个点的距离的最小值称为该点到这个图形的最到图形(2017通州二模)29.我们规定:平面内点GGDAdA到图形上各个点的距离的最大值称为该点到这个图形的最大距离到图形小距离、定义点、点dRD.=的距离跨度为-OxOyG为半径的圆、直接写出以下各点中、图形为圆心、为以2(1)①如图1、在平面直角坐标系1G的距离跨度:到图形1A;(1,0)的距离跨度31?B;(,)的距离跨度22C;(-3,-2)的距离跨度G的所有的点②根据①中的结果、猜想到图形2的距离跨度为1 .组成的图形的形状是)?1y?k(x DxOyG直线为半径的圆、(-1,0)在平面直角坐标系为圆心、中、图形2为以、2()如图22k G的距离跨度为2的点、求的取值范围。

2019年北京市中考二模数学试题(附答案)

2019年北京市中考二模数学试题(附答案)

2019北京市中考二模数学试题学校 姓名 准考证号考 生 须 知1.本试卷共8页,共三道大题,29道小题,满分120分。

考试时间120分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上。

在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答,在试卷上作答无效。

4.考试结束,请将本试卷和答题卡一并交回。

下面各题均有四个选项,其中只有一个..是符合题意的. 1.据有关部门数据统计,2015年中国新能源汽车销量超过33万辆,创历史 新高.数据“33万”用科学记数法表示为 A .43310⨯ B .43.310⨯ C .53.310⨯ D .60.3310⨯2.下列计算正确的是A .632a a a =⋅B .()222b a ab = C .()532a a =D .42232a a a =+3.如图,数轴上有四个点M ,P ,N ,Q ,若点M ,N 表示的数互为相反数,则 图中表示绝对值最大的数对应的点是 A .点M B .点N C .点P D .点Q 4.若312--x x 在实数范围内有意义,则x 的取值范围是 A .3≠x B .21>x 且3≠x C .2≥x D .21≥x 且3≠x 5.从长度分别是2,3,4的三条线段中随机抽出一条,与长为1,3的两条线段首尾顺次相接,能构成三角形的概率是 A .1 B .32 C .31D .0 6.将代数式2105x x -+配方后,发现它的最小值为A .30-B .20-C .5-D .07.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为A .⎩⎨⎧=+=-y x y x 4738B .⎩⎨⎧=-=+y x y x 4738C .⎩⎨⎧=-=-4738x y x yD .⎩⎨⎧=-=-4738y x y x PMNQ8.如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠BCD 的度数为A .32°B .58°C .64°D .116° 9.如图,为了估计河的宽度,在河的对岸选定一个目标 点A ,在近岸取点B ,C ,D ,E ,使点A ,B ,D 在一 条直线上,且AD ⊥DE ,点A ,C ,E 也在一条直线上 且DE ∥BC .如果BC=24m ,BD=12m ,DE=40m ,则 河的宽度AB 约为 A .20mB .18mC .28mD .30m10.如图1,在等边△ABC 中,点D 是BC 边的中点,点P 为AB 边上的一个动点,设AP =x ,图1中线段DP 的长为y ,若表示y 与x 的函数关系的图象如图 2所示,则等边△ABC 的面积为 A .4 B . C .12 D .二、填空题(本题共18分,每小题3分) 11.分解因式:2484x x -+= .12.某班学生分组做抛掷瓶盖实验,各组实验结果如下表:根据表中的信息,估计掷一枚这样的瓶盖,落地后盖面朝上的概率为 . (精确到0.01)13.写出一个函数,满足当x>0时,y 随x 的增大而减小且图象过(1,3),则这个函数的表达式为 .14.甲、乙两名队员在5次射击测试中,成绩如下表所示:若需要你根据两名队员的5次成绩,选择一名队员参加比赛,你会选择队员 ,选择的理由是 .ECDB A PCDBA图1 图2第14题图 第15题图15.如图为44⨯的正方形网格,图中的线段均为格点线段(线段的端点为格点),则12345∠+∠+∠+∠+∠的度数为 .16.为预防“手足口病”,某学校对教室进行“药熏消毒”.消毒期间,室内每立方米空气中的含药量y (mg)与时间x (分钟)的函数关系如图所示.已知,药物燃 烧阶段,y 与x 成正比例,燃完后y 与x 成 反比例.现测得药物10分钟燃完,此时教 室内每立方米空气含药量为8mg .当每立方 米空气中含药量低于1.6mg 时,对人体才能 无毒害作用.那么从消毒开始,经过 分钟后教室内的空气才能达到安全要求.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:131833tan 303-⎛⎫--+-︒ ⎪⎝⎭.18.已知0142=++x x ,求代数式()()71212++--x x x 的值.19.解方程:221111x x x x --=--. 20.如图,在Rt △ABC 中,∠ABC=90°,点D 在边AB 上,且DB =BC ,过点D 作EF ⊥AC于E ,交CB 的延长线于点F .求证:AB=BF .21.在平面直角坐标系xOy 中,一次函数12y x b =+的图象与y 轴交于点A ,与反比例函数8y x=的图象交于点P (2,m ). (1)求m 与b 的值; 成绩/环 五次射击测试成绩DEFCB A 54321x /8O10y /mg(2)取OP 的中点B ,若△MPO 与△AOP 关于点B 中心对称,求点M 的坐标.22.为了促进旅游业的发展,某市新建一座景观桥.桥的拱肋ADB 可视为抛物线的一部分,桥面AB 可视为水平线段,桥面与拱肋用垂直于桥面的杆状景观灯连接,拱肋的跨度AB 为40米,桥拱的最大高度CD 为16米(不考虑灯杆和拱肋的粗细),求与CD 的距离为5米的景观灯杆MN 的高度.23.如图,CD 垂直平分AB 于点D ,连接CA ,CB ,将BC 沿BA 的方向平移,得到线段DE ,交AC 于点O ,连接EA ,EC . (1)求证:四边形ADCE 是矩形; (2)若CD =1,AD =2,求sin ∠COD 的值.24.阅读下面材料:当前,中国互联网产业发展迅速,互联网教育市场增长率位居全行业前列.以下是根据某媒体发布的2012 2015年互联网教育市场规模的相关数据,绘制的统计图表的一部分.(1)2015年互联网教育市场规模约是亿元(结果精确到1亿元),并补全条形 统计图;(2)截至2015年底,约有5亿网民使用互联网进行学习,互联网学习用户的年龄分布 如右图所示,请你补全扇形统计图,并估年份年增长率/%年份市场规模/亿元 NDOECDBA学习用户分布图截至2015年底互联网36-55岁9%其他7-17岁18-35岁56%7-17岁 %GHEFB C DA计7-17岁年龄段有 亿网民通过互联 网进行学习;(3)根据以上材料,写出你的思考、感受或建议(一条即可).25.如图,在Rt △ACB 中,∠C =90°,D 是AB 上一点,以BD 为直径的⊙O 切AC于点E ,交BC 于点F ,连接DF . (1)求证:DF=2CE ; (2)若BC =3,sin B =54,求线段BF 的长.26.阅读下面材料:小骏遇到这样一个问题:画一个和已知矩形ABCD 面积相等的正方形.小骏发现:延长AD 到E ,使得DE =CD , 以AE 为直径作半圆,过点D 作AE 的垂线, 交半圆于点F ,以DF 为边作正方形DFGH , 则正方形DFGH 即为所求.请回答:AD ,CD 和DF 的数量关系为 . 参考小骏思考问题的方法,解决问题:画一个和已知□ABCD 面积相等的正方形,并写出画图的简要步骤.FOE DC BA B CDA27.已知关于x 的方程()021222=-+-+m m x m x .(1) 求证:无论m 取何值时,方程总有两个不相等的实数根;(2) 抛物线()m m x m x y 21222-+-+=与x 轴交于()0,1x A ,()0,2x B 两点,且210x x <<,抛物线的顶点为C ,求△ABC 的面积;(3) 在(2)的条件下,若m 是整数,记抛物线在点B ,C 之间的部分为图象G (包含B ,C 两点),点D 是图象G 上的一个动点,点P 是直线b x y +=2上的一个动点,若线段DP 的最小值是55,请直接写出b 的值.28.如图,正方形ABCD ,G 为BC 延长线上一点,E 为射线BC 上一点,连接AE . (1)若E 为BC 的中点,将线段EA 绕着点E 顺时针旋转90°,得到线段EF ,连接CF . ①请补全图形;②求证:∠DCF =∠FCG ;(2)若点E 在BC 的延长线上,过点E 作AE 的垂线交∠DCG 的平分线于点M ,判断AE 与EM 的数量关系并证明你的结论.29.在平面直角坐标系xOy 中,对图形W 给出如下定义:若图形W 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度,例如,下图中的矩形ABCD 的坐标角度是90°.E GD C BAMAB C DGE yDCB A12345(1)已知点)3,0(-A ,)1,1(--B ,在点)0,2(C ,)0,1(-D ,)2,2(-E 中,选一点,使得以该点及点A ,B 为顶点的三角形的坐标角度为90°,则满足条件的点为 ;(2)将函数2ax y =)31(≤≤a 的图象在直线1=y 下方的部分沿直线1=y 向上翻折,求所得图形坐标角度m 的取值范围;(3)记某个圆的半径为r ,圆心到原点的距离为l ,且)1(3-=r l ,若该圆的坐标角度︒≤≤︒9060m .直接写出满足条件的r 的取值范围.答案及评分参考阅卷须知:为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题共30分,每小题3分) 题 号 1 2 3 4 5 6 7 8 9 10 答 案CBDDCBAABD二、填空题(本题共18分,每小题3分) 11.()241x -;12.0.53;13.如3y x=,答案不唯一; 14.选择队员甲,理由:甲乙成绩的平均数相同,甲的成绩比乙的成绩稳定; 15.225︒;16.50.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:原式=323333-+-⨯………………………………………………4分 =523-.…………………………………………………………5分18.解:原式=2221227x x x x -+--+ ………………………………………2分 =248x x --+.……………………………………………………3分2410x x ++=∴241x x +=- .……………………………………………………… 4分∴原式=()248x x -++189.=+= ………………………………………………………5分 19. 解:去分母得:2(1)(21)1x x x x +--=-…………………………………1分 解得:2x =………………………………………………………………4分 经检验,2x =是原方程的解……………………………………………5分 ∴原方程的解为2x =20.证明:∵EF ⊥AC ,∴∠A +∠ADE =90°.∵∠ABC =90°,∴∠F +∠FDB =90°,∠DBF =90°∴∠A =∠F ………………………………1分在△ABC 和△FBD 中A FABC FBD BC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩D E A∴△ABC ≌△FBD ………………………………4分∴AB =BF .………………………………………5分 21.解:(1)∵12y x b =+与8y x =交于点P (2,m ),∴4m =,3b =.………………………………………………………2分(2)法一:由中心对称可知,四边形OA PM 是平行四边形 ∴OM ∥AP 且OM =AP∵一次函数12y x b =+的图象与y 轴交于点A (0,3)(2,4),(0,0)A P O ∴∴由平移规律可得点A 关于点B 对称点M 的坐标为(2,1).………5分 法二:∵一次函数12y x b =+的图象与y 轴交于点A ∴(0,3)A . ∵B 为OP 的中点∴(1,2)B .∴点A 关于点B 对称点M 的坐标为(2,1).………………5分22.解:如图建立坐标系………………………………………………………………1分设抛物线表达式为216y ax =+ …………………………………………………2分 由题意可知,B 的坐标为(20,0) ∴400160a += ∴125a =-∴211625y x =-+…………………………………………………………………4分 ∴当5x =时,15y =答:与CD 距离为5米的景观灯杆MN 的高度为15米.………………………5分23.(1)证明:由已知得BD //CE ,BD =CE . ∵CD 垂直平分AB ,∴AD =BD ,∠CDA =90°.∴AD //CE ,AD =CE .∴四边形ADCE 是平行四边形.…………………………………1分 ∴平行四边形ADCE 是矩形. …………………………………2分(2) 解:过D 作DF ⊥AC 于F ,xyNM DCB AOEC D BA在Rt △ADC 中,∠CDA =90°,∵CD =1,AD =2, 由勾股定理可得:AC =5.∵O 为AC 中点,∴OD =52. …………………………………3分 ∵AC DF AD DC ⋅=⋅,∴DF =255. ………………………4分 在Rt △ODF 中,∠OFD =90°,∴sin ∠COD =DF OD =45………5分 24.(1)1610,并补全图形; ……………………………………………………2分 (2)1.6; ………………………………………………………………………4分 (3)略.…………………………………………………………………………5分 25.(1)证明:连接OE 交DF 于G ,∵AC 切⊙O 于E ,∴∠CEO =90°. 又∵BD 为⊙O 的直径,∴∠DFC =∠DFB =90°.∵∠C =90°,∴四边形CEGF 为矩形.∴CE =GF ,∠EGF =90°…………………1分 ∴DF =2CE .………………………………2分(2)解:在Rt △ABC 中,∠C =90°,∵BC =3,4sin 5B =,∴AB =5.…………………………………3分设OE =x ,∵OE //BC ,∴△AOE ∽△ABC . ∴OE AO BC AB =,∴535x x -=,∴158x =.………………………4分 ∴BD =154. 在Rt △BDF 中,∠DFB =90°,∴BF =94…………………………5分 26.解:2DF AD CD =⋅………………………………………………………………1分解决问题:法一:过点A 作AM ⊥BC 于点M ,延长AD 到E ,使得DE =AM ,以AE 为直径作半圆,过点 D 作AE 垂线,交半圆于点F ,以DF 为边 作正方形DFGH ,正方形DFGH 即为所求.……………………………………………………………………………………5分GFO ED C A GHEF CDA法二:如图,过点A 作AM ⊥BC 于点M ,过点D 作DN ⊥BC 交BC 延长线于点N ,将平行四边形转化为等面积矩形,后同小骏的画法. ……………………………………………………………………………………5分 说明:画图2分,步骤2分.27.解:(1)∵1=a ,()12-=m b ,m m c 22-=∴()()0424144222>=---=-=∆m m m ac b ∴无论m 取任何实数时,方程总有两个不相等的实数根. ……2分(2)令,则()021222=-+-+m m x m x ()()02=-++m x m x∴m x -=或2+-=m x∵210x x <<∴m x -=1,22+-=m x …………………………………………4分 ∴2=AB当1+-=m x 时,1-=y∴1-=c y∴121=⨯=∆c ABC y AB S .………………………………………5分 (3) 0=b 或3-=b . …………………………………………………….. 7分28.(1)①补全图形,如图所示.…………………………………..1分②法一:证明:过F 作FH ⊥BG 于H ,连接EH ……..2分F EG D C B A DAG H E F D A由已知得AE ⊥EF ,AE =EF .在正方形ABCD 中,∵∠B =∠AEF =∠EHF =90°,∴∠AEB +∠FEC =90°∠AEB +∠BAE =90°∴∠BAE =∠HEF∴△ABE ≌△EHF .…………………………………………………..3分∴BE =FH ,AB =EH ,∵E 为BC 中点,∴BE =CE =CH =FH .∴∠DCF =∠HCF=45°. …………………………………………..4分法二证明:取线段AB 的中点H ,连接EH . …………………………………..2分由已知得AE ⊥EF ,AE =EF .∴∠AEB +∠FEC =90°.在正方形ABCD 中,∵∠B =90°,∴∠AEB +∠BAE =90°.∴∠FEC =∠BAE . ∵AB =BC ,E ,H 分别为AB ,BC 中点,∴AH=EC ,∴△ECF ≌△AHE .…………………………………………………..3分∴∠ECF =∠AHE =135°,∴∠DCF =∠ECF ∠ECD =45°.∴∠DCF =∠HCF .…………………………………………………..4分(2)证明:在BA 延长线上取一点H ,使BH =BE ,连接EH . …………..5分在正方形ABCD 中,∵AB =BC ,∴HA =CE . ∵∠B =90°,∴∠H =45°. ∵CM 平分∠DCG ,∠DCG =∠BCD =90°,∴∠MCE =∠H=45°.∵AD //BG ,∴∠DAE =∠AEC .∵∠AEM =∠HAD =90°, ∴∠HAE =∠CEM .∴△HAE ≌△CEM .………………………………………………. 6分∴AE =EM . ………………………………………………………. 7分H F E G D CB A HMA B C D GE9. (1)满足条件的点为)0,1(-D ,)2,2(-E ……………………………… 3分(2)当1=a 时,角的两边分别过点)(1,1-,)(1,1,此时坐标角度︒=90m ; 当3a =时,角的两边分别过点)(1,33-,)(1,33,此时坐标角度︒=60m ,所以︒≤≤︒9060m ;……………………………………………………… 6分(3)3233≤≤-r .…………………………………………………….8分。

2019北京各区二模分类汇编 新定义(含答案)

2019北京各区二模分类汇编 新定义(含答案)

新定义专题 【2019东城二模】28.对于平面直角坐标系xoy 中的图形P 和直线AB ,给出如下定义:M 为图形P 上任意一点,N 为直线AB 上任意一点,如果M ,N 两点间的距离有最小值,那么称这个最小值为图形P 和直线AB 之间的“确定距离”,记作d (P ,直线AB ). 已知A(2,0),B(0,2). (1)求d (点O ,直线AB );(2)⊙T 的圆心为(,0),T t 半径为1,若d(⊙T ,直线AB)≤1,直接写出的取值范围; (3)记函数,(11,0)y kx x k =-≤≤≠的图象为图形Q .若d(Q ,直线AB)=1,直接写出k 的值.28.(1)∵A(2,0),B(0,2),∴△AOB 是等腰直角三角形, 如图,作OH ⊥AB 于点H , ∴点H 是AB 的中点. ∵AB=2√2,∴d (点O ,直线AB )=OH=√2; .................................. 2分(2)22t -≤≤+···················· 5分. (3)3k =-+1k =··················· 7分.【2019西城二模】28. 对于平面内的∠MAN 及其内部的一点P ,设点P 到直线AM ,AN 的距离分别为d 1,d 2,称12d d 和21d d 这两个数中较大的一个为点P 关于∠MAN 的“偏率” . 在平面直角坐标系xOy 中,(1)点M ,N 分别为x 轴正半轴,y 轴正半轴上的两个点.①若点P 的坐标为(1,5),则点P 关于∠MON 的“偏率”为____________; ②若第一象限内点Q (a ,b )关于∠MON 的“偏率”为1,则a ,b 满足的关系为____________; (2)已知点A (4,0),B (2,,连接OB ,AB ,点C 是线段AB 上一动点(点C 不与点A ,B 重合). 若点C 关于∠AOB 的“偏率”为2,求点C 的坐标;(3)点E ,F 分别为x 轴正半轴,y 轴正半轴上的两个点,动点T 的坐标为(t ,4),⊙T 是以点T 为圆心,半径为1的圆. 若⊙T 上的所有点都在第一象限,且关于∠EOF的“偏率”都大于t 的取值范围.【2019海淀二模】28.对于平面直角坐标系xOy 中的两个图形M 和N ,给出如下定义:若在图形M 上存在一点A ,图形N 上存在两点B ,C ,使得△ABC 是以BC 为斜边且BC=2的等腰直角三角形,则称图形M 与图形N 具有关系()M N ,φ. (1)若图形X 为一个点,图形Y 为直线y x =,图形X 与图形Y 具有关系()X Y ,φ,则点1(0P ,2(11)P ,,3(22)P -,中可以是图形X 的是_____;(2)已知点()20P ,,点()02Q ,,记线段PQ 为图形X .①当图形Y 为直线y x =时,判断图形X 与图形Y 是否既具有关系()X Y ,φ又具有关系()Y X ,φ,如果是,请分别求出图形X 与图形Y 中所有点A 的坐标;如果不是,请说明理由;②当图形Y 为以(0)T t ,T 时,若图形X 与图形X 具有关系()X Y ,φ,求的取值范围.28.(本小题满分7分) (1)1P ; (2)① 是,图1 图2如图1,在直线y x =上取点B ,C ,且BC =2,则满足△ABC 是以BC 为斜边的等腰直角三角形的点A ,在到直线y x =距离为1的两条平行直线上. 这两条平行直线与PQ 分别交于1A ,2A 两点. 故图形X 与图形Y 满足(),X Y ϕ.直线y x =与线段PQ 交于点M (1,1),过点M 作MH ⊥y 轴于H ,与1A B交于点N ,则11MA =,2MN =,可得1A (12-,12+). 同理可求得 2A (12+,12-). 如图2,在线段PQ 上取点B ,C ,且BC =2,则满足△ABC 是以BC为斜边的等腰直角三角形的点A 在图中的两条线段上,这两条线段与直线y x =交于3A ,4A 两点. 故图形X 与图形Y 满足(),YX ϕ.同上可求得3A(12-,12-),4A(12+,12+).② 1t ≤≤-或25t ≤≤.28.1(1,)2M --,1(1,)2N -是平面直角坐标系xOy 中的两点,若平面内直线MN 上方的点P满足:45°≤∠MPN ≤90°,则称点P 为线段MN 的可视点.(1)在点11(0,)2A ,21(,0)2A ,3A ,4(2,2)A 中,线段MN 的可视点为_____;(2)若点B 是直线12y x =+上线段MN 的可视点,求点B 的横坐标t 的取值范围; (3)直线(0)y x b b =+≠与x 轴交于点C ,与y 轴交于点D ,若线段CD 上存在线段MN的可视点,直接写出b 的取值范围.28.对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若⊙C 上存在两个点A ,B ,使得点P 在射线BC 上,且14APB ACB ∠=∠(0°<∠ACB <180°),则称P 为⊙C 的依附点.(1)当⊙O 的半径为1时,①已知点D (-1,0),E (0,-2),F (2.5,0),在点D ,E ,F 中, ⊙O 的依附点是__________;②点T 在直线y = -x 上,若T 为⊙O 的依附点,求点T 的横坐标t 的取值范围; (2)⊙C 的圆心在x 轴上,半径为2,直线y = -x +2与x 轴、y 轴分别交于点M ,N .若线段MN 上的所有点都是⊙C 的依附点,直接写出圆心C 的横坐标m 的取值范围.28. 解:(1)①E ,F ; .........................2分②32232222t t <<<< .........................5分 (2)4222m -<<-442m <<. .........................7分【2019石景山二模】28.对于平面直角坐标系xOy 中的点P ,Q ,给出如下定义:若P ,Q 为某个三角形的顶点,且边PQ 上的高h ,满足h=PQ ,则称该三角形为点P ,Q 的“生成三角形”. (1)已知点A (4,0),①若以线段OA 为底的某等腰三角形恰好是点O ,A 的“生成三角形”,求该三 角形的腰长;②若Rt △ABC 是点A ,B 的“生成三角形”,且点B 在x 轴上,点C 在直线25y x =-上,则点B 的坐标为_________________________________;(2)⊙T 的圆心为点T )0,2(,半径为2,点M 的坐标为)6,2(,N 为直线4+=x y 上一点,若存在Rt △MND ,是点M ,N 的“生成三角形”,且边ND 与⊙ T 有公共 点,直接写出点N 的横坐标N x 的取值范围.28.解:(1)①如图,不妨设满足条件的三角形为等腰△OAR ,则OR=AR .过点R 作RH ⊥OA 于点H , ∴OH=HA .∵以线段OA 为底的等腰△OAR 恰好是点O ,A 的“生成三角形”, ∴RH = OA=4.∴OR=25即腰长为25xy141HR AOxyC 2B 3B 2B 1C 1AO②(1,0)(3,0)(7,0)若A 为直角顶点时,点B 的坐标为(1,0)或(7,0);若B 为直角顶点时,点B 的坐标为(1,0)或(3,0) 综上,点B 的坐标为(1,0),(3,0)或(7,0). (2)若N为直角顶点:10N x -≤;若M 为直角顶点:62N x -≤≤-;综上:60N x -≤≤.4【2019门头沟二模】28.对于平面直角坐标系xOy 中的动点P 和图形N ,给出如下定义:如果Q 为图形N 上一个动点,P ,Q 两点间距离的最大值为d max ,P ,Q 两点间距离的最小值为d min ,我们把d max + d min的值叫点P 和图形N 间的“和距离”,记作(),dP N 图形. (1)如图,正方形ABCD 的中心为点O ,A (3,3).① 点O 到线段AB 的“和距离”(),d O A B =线段 ;② 设该正方形与y 轴交于点E 和F ,点P 在线段EF 上,(),7d P A B C D =正方形,求点P 的坐标.图1(2)如图2,在(1)的条件下,过C ,D 两点作射线CD ,连接AC ,点M 是射线CD 上的一个动点,如果(),d M A C <线段,直接写出M 点横坐标t 取值范围.图2xx【2019房山二模】28. 对于平面直角坐标系x O y 中的点P 和⊙C ,给出如下定义:若⊙C 上存在点A ,使得∠APC =30°,则称P 为⊙C 的半角关联点. 当⊙O 的半径为1时, (1)在点D (12,-12),E (2,0),F (0,32)中,⊙O 的半角关联点是__________;(2)直线:2y x =-交x 轴于点M ,交y 轴于点N ,若直线上的点P (m ,n )是⊙O 的半角关联点,求m 的取值范围.【2019顺义二模】28. 对于平面直角坐标系xOy 中的任意两点M (1x ,1y ),N (2x ,2y ),给出如下定义: 点M 与点N 的“折线距离”为:2121),(y y x x N M d -+-=.例如:若点M (-1,1),点N (2,-2),则点M 与点N 的“折线距离”为:(,)121(2)336d M N =--+--=+=.根据以上定义,解决下列问题: (1)已知点P (3,- 2) .① 若点A (-2,-1),则d (P ,A② 若点B (b , 2),且d (P ,B )=5,则b ③ 已知点C (m , n )是直线y x =-上的一个动点,且d (P ,C )<3 ,求m 的取值范围.(2)⊙F的半径为1,圆心F的坐标为(0,t),若⊙F上存在点E,使d (E,O)=2,直接写出t的取值范围.【2019平谷二模】28.如图,在平面直角坐标系xOy 中,点P 是⊙C 外一点,连接CP 交⊙C 于点Q ,点P 关于点Q 的对称点为P’,当点P’在线段CQ 上时,称点P 为⊙C “友好点”.已知A (1,0),B (0,2),C (3,3) (1)当⊙O 的半径为1时,①点A ,B ,C 中是⊙O “友好点”的是 ;②已知点M 在直线23y x =-+上,且点M 是⊙O “友好点”,求点M 的横坐标m 的取值范围;(2)已知点D (),连接BC ,BD ,CD ,⊙T 的圆心为T (t ,-1),半径为1,若在△BCD 上存在一点N ,使点N 是⊙T “友好点”,求圆心T 的横坐标t 的取值范围.28.解:(1)①B ; (1)②0m ≤≤ (4)(2)4t ≤≤. (7)【2019怀柔二模】28.在平面直角坐标系xOy 中,对于两个点A ,B 和图形ω, 如果在图形ω上存在点P ,Q(P ,Q 可以重合),使得AP=2BQ ,那么称点A 与点B 是图形ω的一对“倍点”. 已知⊙O 的半径为1,点B (0,3).(1)①点B 到⊙O 的最大值 ,最小值 ;②在A 1(5,0),A 2(0,10),A 3(2,2)这三个点中,与点B 是⊙O 的一对“倍点”的是 ; (2)在直线b +=x y 33上存在点A 与点B 是⊙O 的一对“倍点”,求b 的取值范围; (3)正方形MNST 的顶点M (m ,1),N (m+1,1),若正方形上的所有点与点B 都是⊙O 的一对“倍点”,直接写出m 的取值范围.【2019昌平二模】28.对于平面直角坐标系xOy 中的图形M 及以点C 为圆心,1为半径的⊙C ,给出如下定义:P 为图形M 上任意一点,Q 为⊙C 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M 到⊙C 的“圆距离”,记作d (M -C ). (1)点C 在原点O 时,①记点A (4,3)为图形M ,则d (M -O )=______;②点B 与点A 关于x 轴对称,记线段AB 为图形M ,则d (M -O )=______;③记函数4y kx =+(0k >)的图象为图形M ,且d (M -O )1≤,直接写出k 的取值范围; (2)点C 坐标为(t ,0)时,点A ,B 与(1)中相同,记∠AOB 为图形M ,且d (M -C )=1,直接写出t 的值.。

2019年北京市东城区初三数学二模试题和答案(Word版,可编辑)

2019年北京市东城区初三数学二模试题和答案(Word版,可编辑)

12019 年北京市东城区初三数学二模试题和答案(Word 版,可编辑)一、选择题(本题共 16 分,每小题 2 分)第 1-8 题均有四个选项,符合题意的选项只有..一个1.若分式1有意义,则 x 的取值范围是x3A.x 3 B .x 3C.x 3 D .x 3 2.若 a=,则实数 a 在数轴上对应的点P 的大致位置是A.B.C.D.3.下图是某几何体的三视图,该几何体是A .棱柱B .圆柱C.棱锥D.圆锥x y2 4. 二元一次方程组y 的解为x2x2A. B. C. D.y 05.下列图形中,是中心对称图形但不是..轴对称图形的是A. B., C. D.6.如图,在平面直角坐标系 xOy 中,点 A 的坐标为( 1, 3),点 B 的坐标为( 2 ,1 ) .将线段 AB 沿某一方向平移后,若点 A 的对应点 A' 的坐标为( -2, 0 ).则点 B 的对应点 B'的坐标为A .( 5, 2)B .(-1, -2)C .( -1, -3)D .( 0, -2)7. 如图,某地修建高速公路,要从A 地向B 地修一条隧道(点 A 、 B 在同一水平面上) .为了测量 A 、 B 两地之间的距离,一架直升飞机从A 地起飞,垂直上升1000 米到达 C 处,在 C 处观察 B 地的俯角为 α,则 A 、 B 两地之间的距离约为A .1000sin α米B . 1000tan α米C .1000米D . 1000 米tansin8. 如图 1 ,动点 P 从菱形 ABCD 的顶点 A 出发,沿 A → C →D 以 1cm/s 的速度运动到点 D .设点 P 的运动时间为x(s), △PAB 的面积为 y(cm 2). 表示 y 与 x 的函数关系的图象如图2 所示,则 a 的值为图 1图 2A . 5B .5C . 2D .2 52二、 填空题(本题共 16 分,每小题 2 分)9.分解因式:=.10.某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加东城区青少年科技创新大赛,表格反映的是各组平时成绩的平均数x (单位:分)及方差s 2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是.甲乙丙丁x788721 1.20.9 1.8s11.如果 x y 2 ,那么代数式 (x2) 24x y( y 2x) 的值是.12.如图所示的网格是正方形网格,点 A,B ,C ,D均落在格点上,则∠BAC+ ∠ACD=________ °.13.如图,在平面直角坐标系 xOy 中,若直线 y1=- x+a 与直线 y2=bx - 4 相交于点 P ( 1,-3 ),则关于 x 的不等式- x+a < bx -4 的解集是.14.用一组k , b的值说明命题“若k0 ,则一次函数 y kx b 的图象经过第一、二、三象限”是错误的,这组值可以是k____________,b____________.15. 如图, B, C, D, E 为⊙A 上的点, DE = 5,∠ BAC+∠ DAE =180°,则圆心 A 到弦 BC的距离为.16.运算能力是一项重要的数学能力。

北京市北京市东城区第八中学2019年中考数学二模考试试卷及参考答案

北京市北京市东城区第八中学2019年中考数学二模考试试卷及参考答案

北京市北京市东城区第八中学2019年中考数学二模考试试卷一、选择题(满分16分,每小题2分)1. 在下图的四个立体图形中,从正面看是四边形的立体图形有( )A . 1个B . 2个C . 3个D . 4个2. 12月2日,2018年第十三届南宁国际马拉松比赛开跑,2.6万名跑者继续刷新南宁马拉松的参与人数纪录!把2.6万用科学记数法表示为( )A . 0.26×10B . 2.6×10C . 0.26×10D . 2.6×10二、填空题(满分16分,每小题2分)3. 若a ,b 都是实数,b = + ﹣2,则a 的值为________.4. 如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是________.5. 如图,△ABC 内接于⊙O ,AD ⊥BC 于点D ,AD =BD.若⊙O 的半径OB =2,则AC 的长为________.6. 2018年6月14日,第21届世界杯足球赛在俄罗斯举行.小李在网上预定了小组赛和决赛两个阶段的门票共10张,总价为15800元,其中小组赛门票每张850元,决赛门票每张4500元,若设小李预定了小组赛门票x 张,决赛门票y 张,根据题意,可列方程组为________.7. 如图,▱ABCD 的对角线AC ,BD 交于点O ,CE 平分∠BCD 交AB 于点E ,交BD 于点F ,且∠ABC =60°,AB =2BC ,连接OE .下列结论:①∠ACD =30°;②S =AC•BC ;③OE :AC =:6; ④S =S , 成立的是________.8. 如图,A 、B 两地相距200km ,一列火车从B 地出发沿BC 方向以的速度行驶,在行驶过程中,这列火车离A 地的路程 与行驶时间 之间的函数关系式是________.三、解答题9. 计算:﹣2﹣ +|1﹣4sin60°|+(2015π).3344b ▱A BCD ▱OEF ▱A BCD 4010.解不等式组:并将解集在数轴上表示.11. 关于x 的一元二次方程x ﹣x ﹣(m+2)=0有两个不相等的实数根.(1) 求m 的取值范围;(2) 若m 为符合条件的最小整数,求此方程的根.12. 如图,在矩形OABC 中,OA =3,OC =4,分别以OA 、OC 所在直线为x 轴、y 轴,建立平面直角坐标系,D 是边CB 上的一个动点(不与C 、B 重合),反比例函数y = (k >0)的图象经过点D 且与边BA 交于点E ,作直线DE.(1) 当点D 运动到BC 中点时,求k 的值;(2) 求 的值;(3) 连接DA ,当△DAE 的面积为 时,求k 值.13. 如图,正方形ABCD 的边长为4,点E ,F 分别在边AB ,AD 上,且∠ECF =45°,CF 的延长线交BA 的延长线于点G ,CE 的延长线交DA 的延长线于点H ,连接AC ,EF .,GH .(1) 填空:∠AHC ∠ACG ;(填“>”或“<”或“=”)(2) 线段AC ,AG ,AH 什么关系?请说明理由;(3) 设AE =m ,①△AGH 的面积S 有变化吗?如果变化.请求出S 与m 的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH 是等腰三角形的m 值.参考答案1.2.3.4.25.6.7.8.9.10.11.12.13.。

14《新定义》2008~2019北京中考数学分类汇编

14《新定义》2008~2019北京中考数学分类汇编

一.解答题(共9小题)1.在△ABC 中,D ,E 分别是△ABC 两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC 的中内弧.例如,图1中是△ABC的一条中内弧.(1)如图2,在Rt △ABC 中,AB =AC=,D ,E 分别是AB ,AC 的中点,画出△ABC 的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点A (0,2),B (0,0),C (4t ,0)(t >0),在△ABC 中,D ,E 分别是AB ,AC 的中点.①若t=,求△ABC 的中内弧所在圆的圆心P 的纵坐标的取值范围;②若在△ABC 中存在一条中内弧,使得所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.2.对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的“闭距离“,记作d (M ,N ).已知点A (﹣2,6),B (﹣2,﹣2),C (6,﹣2).(1)求d (点O ,△ABC );(2)记函数y =kx (﹣1≤x ≤1,k ≠0)的图象为图形G .若d (G ,△ABC )=1,直接写出k 的取值范围;(3)⊙T 的圆心为T (t ,0),半径为1.若d (⊙T ,△ABC )=1,直接写出t 的取值范围.2008~2019北京中考数学分类汇编新定义3.在平面直角坐标系xOy中的点P和图形M,给出如下的定义:若在图形M上存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为图形M的关联点.(1)当⊙O的半径为2时,①在点P1(,0),P2(,),P3(,0)中,⊙O的关联点是.②点P在直线y=﹣x上,若P为⊙O的关联点,求点P的横坐标的取值范围.(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+1与x轴、y轴交于点A、B.若线段AB上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围.4.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)⊙O的半径为,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N 的“相关矩形”为正方形,求m的取值范围.5.在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C 的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.(1)当⊙O的半径为1时.①分别判断点M(2,1),N(,0),T(1,)关于⊙O的反称点是否存在?若存在,求其坐标;②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=﹣x+2与x轴、y轴分别交于点A,B,若线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.6.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y ≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4<x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?7.对于平面直角坐标系xOy中的点P和⊙C,给出如下的定义:若⊙C上存在两个点A、B,使得∠APB=60°,则称P为⊙C的关联点.已知点D(,),E(0,﹣2),F(2,0).(1)当⊙O的半径为1时,①在点D、E、F中,⊙O的关联点是.②过点F作直线l交y轴正半轴于点G,使∠GFO=30°,若直线l上的点P(m,n)是⊙O的关联点,求m的取值范围;(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围.8.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q交点).(1)已知点A(﹣,0),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线y=x+3上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E与点C的坐标.9.如图,在平面直角坐标系xOy中,我们把由两条射线AE,BF和以AB为直径的半圆所组成的图形叫作图形C(注:不含AB线段).已知A(﹣1,0),B(1,0),AE∥BF,且半圆与y轴的交点D在射线AE的反向延长线上.(1)求两条射线AE,BF所在直线的距离;(2)当一次函数y=x+b的图象与图形C恰好只有一个公共点时,写出b的取值范围;当一次函数y=x+b的图象与图形C恰好只有两个公共点时,写出b的取值范围;(3)已知▱AMPQ(四个顶点A,M,P,Q按顺时针方向排列)的各顶点都在图形C 上,且不都在两条射线上,求点M的横坐标x的取值范围.。

12 2019北京中考数学二模16区-套卷-怀柔(教师版)

12 2019北京中考数学二模16区-套卷-怀柔(教师版)

伸到密云区,两区占地面积共 100.9 平方公里,其中怀柔区占地面积比密云占地面积的 2 倍还多 3.4 平方
公里,如果设科学城怀柔占地面积为 x 平方公里,密云占地面积是 y 平方公里,则计算科学城在怀柔和密
云的占地面积各是多少平方公里,依题意可列方程组为
.
16. 下面是一位同学的一道尺规作图题的过程.
x 1
0,则实数 x 的值为
.
10. 写出一.个.满足
的整数 a 的值为

11. 如图,在 O 中,直径 AB⊥GH 于点 M,N 为直径上一点, 且 OM=ON,过 N 作
弦 CD,EF.则弦 AB,CD,EF,GH 中最短的是
.
第 2 页 共 13 页
12. 北京市环境保护监测中心每月向公众公布北京市各区域的空气质量状况.2019 年 1 月份各区域的 PM2.5
24. 2019 年 4 月 23 日世界读书日这天,某校初三年级的小记者,就 2018 年寒假读课外书数量(单位:本)
做了调查,他们随机调查了甲、乙两个班的 10 名同学,调查过程如下,请补充完整.
收集数据 甲、乙两班被调查者读课外书数量(单位:本)统计如下:
甲: 1 9 7 4 2 3 3 2 7 2
第 7 页 共 13 页
26. 在平面直角坐标系 xOy 中,直线 y x 与抛物线 y ax 2 (3 a)x 3(a 0) 交于 A,B 两点,
并且 OA<OB. (1)当 a=1 时,求抛物线与 x 轴的交点坐标;
(2)当 2 2 OB 4 2 时,求 a 的取值范围.
已知:线段 a,b,c.
求作:线段 x ,使得a:b=c:x.x.。
他的作法如下:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

082019北京中考二模分类汇编-新定义西城二模28.对于平面内的∠MAN 及其内部的一点P ,设点P 到直线AM ,AN 的距离分别为1d ,2d ,称12d d 和21d d 这两个数中较大的一个为点P 关于∠MAN 的“偏率”.在平面直角坐标系xOy 中,(1)点M ,N 分别为x 轴正半轴,y 轴正半轴上的两个点.①若点P 的坐标为(1,5),则点P 关于∠MON 的“偏率”为_________;②若第一象限内点Q (a ,b )关于∠MON 的“偏率”为1,则a ,b 满足的关系为_________;(2)已知点A (4,0),(2,B ,连接OB ,AB ,点C 是线段AB 上一动点(点C 不与点A ,B 重合).若点C 关于∠AOB 的“偏率”为2,求点C 的坐标;(3)点E ,F 分别为x 轴正半轴,y 轴正半轴上的两个点,动点T 的坐标为(t ,4),⊙T 是以点T 为圆心,半径为1的圆.若⊙T 上的所有点都在第一象限,且关于∠EOF 的“偏率”t 的取值范围.【答案】28.解:(1)①5;……………………………………………………………………………1分②a =b ;…………………………………………………………………………2分(2)∵点A (4,0),B (2,),∴OA =4,OB4=,AB4=.∴OA =OB =AB .∴△OAB 是等边三角形.∴∠OAB =∠OBA =60°.过点C 作CD ⊥OA 于点D ,CH ⊥OB 于点H ,如图,则∠CDA =∠CHB =90°.∴△ACD ∽△BCH .∴CD CA CH CB=.∵点C 关于∠AOB 的“偏率”为2,∴2CD CH =或2CH CD=.当2CD CH =时,则2CA CB=.∴2833CA AB ==.∴4cos603DA CA =⋅=,sin 60CD CA =⋅=.∴83OD OA DA =-=.∴点C 的坐标为(83,433).同理可求,当2CH CD =时,点C 的坐标为(103,).∴点C 的坐标为(83,)或(103.…………………………5分(3)2313t <<或2t >+.……………………………………………………7分28.对于平面直角坐标系xOy 中的两个图形M 和N ,给出如下定义:若在图形M 上存在一点A ,图形N上存在两点B ,C ,使得△ABC 是以BC 为斜边且BC =2的等腰直角三角形,则称图形M 与图形N 具有关系()M N ,φ.(1)若图形X 为一个点,图形Y 为直线y x =,图形X 与图形Y 具有关系()X Y ,φ,则点1(02)P ,,2(11)P ,,3(22)P -,中可以是图形X 的是_____;(2)已知点()20P ,,点()02Q ,,记线段PQ 为图形X .①当图形Y 为直线y x =时,判断图形X 与图形Y 是否既具有关系()X Y ,φ又具有关系()Y X ,φ,如果是,请分别求出图形X 与图形Y 中所有点A 的坐标;如果不是,请说明理由;②当图形Y 为以(0)T t ,5⊙T 时,若图形X 与图形X 具有关系()X Y ,φ,求t 的取值范围.【答案】28.(1)1P ;(2)①是,图1图2如图1,在直线y x =上取点B ,C ,且BC =2,则满足△ABC 是以BC 为斜边的等腰直角三角形的点A ,在到直线y x =距离为1的两条平行直线上.这两条平行直线与PQ 分别交于1A ,2A 两点.故图形X 与图形Y 满足(),X Y ϕ.直线y x =与线段PQ 交于点M (1,1),过点M 作MH ⊥y 轴于H ,与1A B 交于点N ,则11MA =,22MN =,可得1A (212-,212+).同理可求得2A (212+,212-).如图2,在线段PQ 上取点B ,C ,且BC =2,则满足△ABC 是以BC 为斜边的等腰直角三角形的点A 在图中的两条线段上,这两条线段与直线y x =交于3A ,4A 两点.故图形X 与图形Y 满足(),Y X ϕ.同上可求得3A (212-,212-),4A (212+,212+).②51t -≤≤-或225t -≤≤.28.对于平面直角坐标系xoy 中的图形P 和直线AB ,给出如下定义:M 为图形P 上任意一点,N 为直线AB 上任意一点,如果M ,N 两点间的距离有最小值,那么称这个最小值为图形P 和直线AB 之间的“确定距离”,记作d (P ,直线AB ).已知A (2,0),B (0,2).(1)求d (点O ,直线AB );(2)⊙T 的圆心为(,0),T t 半径为1,若d (⊙T ,直线AB )≤1,直接写出t 的取值范围;(3)记函数,(11,0)y kx x k =-≤≤≠的图象为图形Q .若d (Q ,直线AB )=1,直接写出k 的值.【答案】28.(1)∵A (2,0),B (0,2),∴△AOB 是等腰直角三角形,如图,作OH ⊥AB 于点H ,∴点H 是AB 的中点.∵AB =2 ,∴d (点O ,直线AB )=OH = ;......................................................................2分(2)22t -≤≤+5分.(3)3k =-或1k =-7分.28.1(1,)2M --,1(1,2N -是平面直角坐标系xOy 中的两点,若平面内直线MN 上方的点P 满足:45°≤∠MPN ≤90°,则称点P 为线段MN 的可视点.(1)在点11(0,)2A ,21(,0)2A ,3A ,4(2,2)A 中,线段MN 的可视点为_____;(2)若点B 是直线12y x =+上线段MN 的可视点,求点B 的横坐标t 的取值范围;(3)直线(0)y x b b =+≠与x 轴交于点C ,与y 轴交于点D ,若线段CD 上存在线段MN 的可视点,直接写出b 的取值范围.【答案】28.解:(1)A 1,A 3;……………………………………………………………………………………2分(2)如图,以(0,12-)为圆心,1为半径作圆,以(0,12为半径作圆,两圆在直线MN 上方的部分与直线12y x =+分别交于点E ,F .可求E ,F 两点坐标分别为(0,12)和(1,32).只有当点B 在线段EF 上时,满足45°≤∠MBN ≤90°,点B 是线段MN 的可视点.∴点B 的横坐标t 的取值范围是01t ≤≤.……………………………………………5分(3)1522b ≤≤或322b -<≤-.…………………………………………………………7分28.对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若⊙C 上存在两个点A ,B ,使得点P 在射线BC 上,且14APB ACB ∠=∠(0°<∠ACB <180°),则称P 为⊙C 的依附点.(1)当⊙O 的半径为1时,①已知点D (-1,0),E (0,-2),F (2.5,0),在点D ,E ,F 中,⊙O 的依附点是__________;②点T 在直线y =-x 上,若T 为⊙O 的依附点,求点T 的横坐标t 的取值范围;(2)⊙C 的圆心在x 轴上,半径为2,直线y =-x +2与x 轴、y 轴分别交于点M ,N .若线段MN 上的所有点都是⊙C 的依附点,直接写出圆心C 的横坐标m 的取值范围.【答案】(1)①E ,F ;.........................2分②22t t <<-<<或.........................5分(2)42m -<<-4m <<..........................7分………………………………5分28.对于平面直角坐标系xOy中的点P,Q ,给出如下定义:若P ,Q 为某个三角形的顶点,且边PQ 上的高h ,满足h=PQ ,则称该三角形为点P ,Q 的“生成三角形”.(1)已知点A (4,0),①若以线段OA 为底的某等腰三角形恰好是点O ,A 的“生成三角形”,求该三角形的腰长;②若Rt △ABC 是点A ,B 的“生成三角形”,且点B 在x 轴上,点C 在直线25y x =-上,则点B 的坐标为_________________________________;(2)⊙T 的圆心为点T )0,2(,半径为2,点M 的坐标为)6,2(,N 为直线4+=x y 上一点,若存在Rt △MND ,是点M ,N 的“生成三角形”,且边ND 与⊙T 有公共点,直接写出点N 的横坐标N x 的取值范围.【答案】28.解:(1)①如图,不妨设满足条件的三角形为等腰△OAR ,则OR=AR .过点R 作RH ⊥OA 于点H ,∴OH=HA .∵以线段OA 为底的等腰△OAR 恰好是点O ,A 的“生成三角形”,∴RH =OA=4.∴OR=25即腰长为25②(1,0)(3,0)(7,0)若A 为直角顶点时,点B 的坐标为(1,0)或(7,0);若B 为直角顶点时,点B 的坐标为(1,0)或(3,0)综上,点B 的坐标为(1,0),(3,0)或(7,0).(2)若N 为直角顶点:120N x --≤≤;若M 为直角顶点:62N x -≤≤-;综上:60N x -≤≤.……………1分………………………………7分……………2分28.对于平面直角坐标系xOy 中的动点P 和图形N ,给出如下定义:如果Q 为图形N 上一个动点,P ,Q两点间距离的最大值为d max ,P ,Q 两点间距离的最小值为d min ,我们把d max +d min 的值叫点P 和图形N 间的“和距离”,记作(),d P N 图形.(1)如图,正方形ABCD 的中心为点O ,A (3,3).①点O 到线段AB 的“和距离”(),d O AB =线段;②设该正方形与y 轴交于点E 和F ,点P 在线段EF 上,(),7d P ABCD =正方形,求点P 的坐标.图1(2)如图2,在(1)的条件下,过C ,D 两点作射线CD ,连接AC ,点M 是射线CD 上的一个动点,如果(),6d M AC <<+线段,直接写出M 点横坐标t 取值范围.28.(本小题满分7分)解:(1)①323;…………………………………………………………………………………2分②如图,设P (0,t ).∵点P 在线段EF 上,∴-3≤t ≤3.当0≤t ≤3时,由题意可知d max =PC ,d min =PE .∴PE =3-t ,PF =t +3,CF =3.∵(),7d P ABCD =正方形,∴PC +PE =7.∴PC =4+t .在Rt △PCF 中,由勾股定理得()()222433t t +=++,解得 1.t =…………………………………………………………………………………4分∴P (0,1).当0>t ≥-3时,由对称性可知P (0,-1).综上,P 的坐标为(0,1)和(0,-1).………………………………………………5分(2)3 3.t -<<…………………………………………………………………………………7分房山二模28.对于平面直角坐标系x Oy 中的点P 和⊙C ,给出如下定义:若⊙C 上存在点A ,使得∠APC =30°,则称P 为⊙C 的半角关联点.当⊙O 的半径为1时,(1)在点D (12,-12),E (2,0),F (0,32)中,⊙O 的半角关联点是__________;(2)直线l :323y x =--交x 轴于点M ,交y 轴于点N ,若直线l 上的点P (m ,n )是⊙O 的半角关联点,求m 的取值范围.【答案】28.(1)D 、E ………………………………………………2分(2)((0,2)M N -………………………………………3分以O 为圆心,ON 长为半径画圆,交直线MN 于点G ,可得m ≤0………………………………………………4分设小圆⊙O 与y 轴负半轴的交点为H ,连接OG ,HG∵M (-,0),N (0,2)∴OM =,ON =2,tan ∠OMN =33∴∠OMN =30°,∠ONM =60°∴△OGN 是等边三角形∴GH ⊥y 轴,∴点G 的纵坐标为-1,代入323y x =--可得,横坐标为,∴m ≥………………………………………………6分∴≤m ≤0………………………………………………7分28.对于平面直角坐标系xOy 中的任意两点M (1x ,1y ),N (2x ,2y ),给出如下定义:点M 与点N 的“折线距离”为:2121),(y y x x N M d -+-=.例如:若点M (-1,1),点N (2,-2),则点M 与点N 的“折线距离”为:(,)121(2)336d M N =--+--=+=.根据以上定义,解决下列问题:(1)已知点P (3,-2).①若点A (-2,-1),则d (P ,A )=;②若点B (b ,2),且d (P ,B )=5,则b =;③已知点C (m ,n )是直线y x =-上的一个动点,且d (P ,C )<3,求m 的取值范围.(2)⊙F 的半径为1,圆心F 的坐标为(0,t ),若⊙F 上存在点E ,使d (E ,O )=2,直接写出t 的取值范围.【答案】28.解:(1)①)1()2()2(3),(---+--=Q P d =6-------------1分②5432)2(3),(=+-=--+-=b b H P d ∴13=-b ∴b =2或4----------------------3分③32323)2(3),(<-+-=+-+-=--+-=m m m m n m C P d 即数轴上表示数m 的点到表示数3的点的距离与到表示数2的点的距离之和小于3,所以1<m <4----------------5分(2)223322-≤≤-≤≤-t t 或-------------------7分28.在平面直角坐标系xOy 中,对于两个点A ,B 和图形ω,如果在图形ω上存在点P ,Q (P ,Q 可以重合),使得AP =2BQ ,那么称点A 与点B 是图形ω的一对“倍点”.已知⊙O 的半径为1,点B (0,3).(1)①点B 到⊙O 的最大值,最小值;②在A 1(5,0),A 2(0,10),A 3(2,2)这三个点中,与点B 是⊙O 的一对“倍点”的是;(2)在直线b +=x y 33上存在点A 与点B 是⊙O 的一对“倍点”,求b 的取值范围;(3)正方形MNST 的顶点M (m ,1),N (m +1,1),若正方形上的所有点与点B 都是⊙O 的一对“倍点”,直接写出m 的取值范围.【答案】28.解:(1)①4,2……………………………2分②A 1……………………………3分(2)∵O 到直线b +=x y 33的距离是9.∴36±=b ∴3636≤≤-b …………………………5分(3)31m ≤≤-或4m ≤≤-…………………7分28.如图,在平面直角坐标系xOy中,点P是⊙C外一点,连接CP交⊙C于点Q,点P关于点Q的对称点为P’,当点P’在线段CQ上时,称点P为⊙C“友好点”.已知A(1,0),B(0,2),C(3,3)(1)当⊙O的半径为1时,①点A,B,C中是⊙O“友好点”的是;②已知点M在直线323y x=-+上,且点M是⊙O“友好点”,求点M的横坐标m的取值范围;(2)已知点D(),连接BC,BD,CD,⊙T的圆心为T(t,-1),半径为1,若在△BCD上存在一点N,使点N是⊙T“友好点”,求圆心T的横坐标t的取值范围.【答案】28.解:(1)①B; (1)②0m≤≤ (4)(2)4t-≤≤ (7)28.对于平面直角坐标系xOy 中的图形M 及以点C 为圆心,1为半径的⊙C ,给出如下定义:P 为图形M 上任意一点,Q 为⊙C 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M 到⊙C 的“圆距离”,记作d (M -C ).(1)点C 在原点O 时,①记点A (4,3)为图形M ,则d (M -O )=______;②点B 与点A 关于x 轴对称,记线段AB 为图形M ,则d (M -O )=______;③记函数4y kx =+(0k >)的图象为图形M ,且d (M -O )1≤,直接写出k 的取值范围;(2)点C 坐标为(t ,0)时,点A ,B 与(1)中相同,记∠AOB 为图形M ,且d (M -C )=1,直接写出t 的值.【答案】28.解:(1)①4………………………………………………………………………………………………1分②3…………………………………………………………………………………………2分③k ……………………………………………………………………………………2分(2)10t=-2t=3或………………………………………………………………………………2分更多初中数学试卷,分类汇编,专题视频请微信关注。

相关文档
最新文档