材料力学第四章平面弯曲
合集下载
《材料力学》课程讲解课件第四章弯曲内力

x
∴ 弯曲构件内力:Fs -剪力,M -弯矩。
若研究对象取m - m 截面的右段:
Y 0, Fs F FBY 0.
mC 0,
FBY
FBY (l x) F(a x) M 0.
Fs
F (l a) l
,
M F (l a) x 18 l
1. 弯矩:M 构件受弯时,横截面上
存在垂直于截面的内力偶矩 (弯矩)。
由 Fy 0, 得到:
A
FAy
a
Mc
C FSc
FAy q 2a FSc 0
FSc FAy q 2a qa
(剪力FS 的实际方向与假设方
向相反,为负剪力)
由 MC 0, 得到:
MC FAy 2a 2qa a M1 0
MC FAy 2a 2qa a M1 2qa2
F
M (x) FAY x M A
F(x L) (0 x l)
x
③根据方程画内力图
FL
x
41
§4-4 剪力方程和弯矩方程 剪力图和弯矩图
q
例题4-2
悬臂梁受均布载荷作用。
x
试写出剪力和弯矩方程,并
q
l
x
FS
M x
FS x
画出剪力图和弯矩图。
解:任选一截面x ,写出
剪力和弯矩方程
ql FS x=qx
变形特点——杆轴线由直线变为一条平面的曲线。
P
主要产生弯曲变形的杆--- 梁。
q
M
二、平面弯曲的概念:
RA
NB
3
F1
q
F2
M
纵向对称面
平面弯曲 受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在
《材料力学》第四章 弯曲内力

ql FS = R A-qx= -qx 2 x qlx qx 2 M = R A x-qx ⋅ = - 2 2 2
M FS
F S
(3)画出FS图与M图。 画出F 图与M 剪力图为一斜直线, 剪力图为一斜直线, x=0,FS=ql/2;x=l,FS=-ql/2; ; 弯矩图为一抛物线, 弯矩图为一抛物线, 由三点来确定: 由三点来确定: x=0及x=l时,M=0; x=l/2, M=ql2/8。 。
M x = a, M = O a AC段 x=0, AC段:x=0,M=0 ; l
CB段 CB段:x=a, x=l, M= x= , M=0
MO M =- b l
试作轴的简力图和弯矩图
补例1 补例1
解
(1)求支反力。 求支反力。
1 ql 2
R A = RB =
(2)用截面法求剪力和弯矩方程。 用截面法求剪力和弯矩方程。
∑ mA = 0 ∑m
B
=0
l -m-P ⋅ + YB ⋅ l = 0 2 l -YA ⋅ l-m+P ⋅ = 0 2
YA-FSC=0 , 3 FSC=- P 2
5 P B 2 3 Y A =- P 2 Y =
m
(2)计算C截面的内力。 计算C截面的内力。
∑Y = 0 ,
P
l 13 mC=0 , YA ⋅ -m+M C=0 , M C= Pl ∑ 4 8
求反力: 解 (1)求反力:
∑ X = 0, X = 0 ∑ Y = 0, P - Y =0 ∑ m =0, m - Pa =0
C C C C
YC= P m C= Pa
(2)列弯矩和轴力方程。 列弯矩和轴力方程。 AB段 AB段:M(x)= Px, N(x)=0 , BC段 BC段:M(y)=mC=Pa, N(y)=P ,
M FS
F S
(3)画出FS图与M图。 画出F 图与M 剪力图为一斜直线, 剪力图为一斜直线, x=0,FS=ql/2;x=l,FS=-ql/2; ; 弯矩图为一抛物线, 弯矩图为一抛物线, 由三点来确定: 由三点来确定: x=0及x=l时,M=0; x=l/2, M=ql2/8。 。
M x = a, M = O a AC段 x=0, AC段:x=0,M=0 ; l
CB段 CB段:x=a, x=l, M= x= , M=0
MO M =- b l
试作轴的简力图和弯矩图
补例1 补例1
解
(1)求支反力。 求支反力。
1 ql 2
R A = RB =
(2)用截面法求剪力和弯矩方程。 用截面法求剪力和弯矩方程。
∑ mA = 0 ∑m
B
=0
l -m-P ⋅ + YB ⋅ l = 0 2 l -YA ⋅ l-m+P ⋅ = 0 2
YA-FSC=0 , 3 FSC=- P 2
5 P B 2 3 Y A =- P 2 Y =
m
(2)计算C截面的内力。 计算C截面的内力。
∑Y = 0 ,
P
l 13 mC=0 , YA ⋅ -m+M C=0 , M C= Pl ∑ 4 8
求反力: 解 (1)求反力:
∑ X = 0, X = 0 ∑ Y = 0, P - Y =0 ∑ m =0, m - Pa =0
C C C C
YC= P m C= Pa
(2)列弯矩和轴力方程。 列弯矩和轴力方程。 AB段 AB段:M(x)= Px, N(x)=0 , BC段 BC段:M(y)=mC=Pa, N(y)=P ,
材料力学(刘鸿文)第四章-弯曲内力

练习:计算下列各图中特殊截面上的内力
P a q
a
P
a
a
a M=qa2
q
a a
P=2qa
练习:计算下列各图中特殊截面上的内力
q
a
2a
P=qa
a
a M=qa2
a
§4-4
剪力方程和弯矩方程、剪力图和弯矩
一、内力方程: 任意截面处的内力表示为截面位置的函数; q x q x 例1、悬臂梁上作用均布载荷 写内力方程,并作内力图
M ( x) m Pa
x
(0 x a )
BC段:
Fs ( x) P
M ( x) m P( x a) 2 Pa Px
( a x 2a )
Fs ( x) 0
m=Pa
P
B C
M ( x) m Pa
(0 x a )
A
Fs ( x) P
弯矩图上凸;
总结3 3、梁上没有均布载荷时:
剪力的图 弯矩图
FS
Fb / l
F C
x
水平;
斜直线;
M
Fa / l
Fab / l
且剪力大于零时, 弯矩图上升; 剪力小于零时, 弯矩图下降;
x
总结4 4、集中力的作用点处
FS
Fb / l
F
C
Fa / l
剪力图 突变; 突变量 =集中力的大小; 突变的方向 弯矩图 顺集中力的方向
固定端截面处;
FS max=ql
M max=ql 2 / 2
M
ql 2 / 2
x
仔细观察内力图的特点 1885年,俄国人别斯帕罗夫开 始使用弯矩图;
材料力学-第四章弯曲应力教学

FS
x
dx
0
FS
x
dM x
dx
qx
dM 2x
dx 2
注:q(x)向上为正,反之为负。
●简易法作剪力图和弯矩图
①梁上无分布荷载作用:q(x)=0
qx dFS x 0
dx
FS x cont
剪力图斜率为零,FS(x)图为平行于x轴的直线。
dM x
B 1kN
A FAx
FB
FAy
FAx=-3kN FAy=3kN
FB=5kN
2)剪力图: 简易法 BC杆:取一点(水平线) DC杆:取两点(水平线) DA杆:取两点(斜直线)
D 3kN
C
1kN E
5kN
1kN B
3kN A
q=1kN/m 4m 3m
8kN
1m D
2m C
E
B 1kN
A FAx
A
A
ydA Sz 0 中性轴z必通过截面形心
A
横截面对z轴的静矩
My
z dA 0
A
zE
A
y dA
E
A
zydA
0
zydA I yz 0
A
截面对yz轴的惯性积
*由于y为对称轴, 上式自然满足。
M z
y dA
A
M
例5.作外伸梁的内力图
q
FA
ql 8
A
FB
5ql 8
FA
FS
B
lC
l
FB 2
ql / 2
材料力学第四章平面弯曲

得
∫ A ydA =0
M
dA
z
y z ζdA
My
横截面对中性轴 zdA 的面积矩为零, A 中性轴过形心。 E yzdA 0
A
y
Iyz =0——梁发生平面弯曲的条件
E I E 2 ∫ AσdA· z ∫ A y dA = Mz= y = ρ ρ 1 Mz = EIz —— 梁的弯曲刚度 中性层曲率公式 EI ρ z
y
m MB=-40kN· m MD=22.5kN· B M y B截面 上部受拉、下部受压 tBmax B t max 21.4MPa Iz B yt max 100mm B M y I z 186.6 106 m 4 B B c max 38.6MPa B c max yc max 180mm Iz
max
FQ S
* z max
Izd
d FQ 4 FQ 12 4 d 3 A d 64
3
d/2
z
max
四、薄壁圆环截面梁 中性轴处:
r0
z
max 2
FQ A
max
例 如图所示一T形截面。某截面上的剪力FQ=50kN,与y 轴重合。试求腹板的最大切应力,并画出腹板上的切应力分布图。
1
* FQ S z 1
I zd
4.13MPa
例 一矩形截面外伸梁,如图所示。现自梁中1、2、 3、4点处分别取四个单元体,试画出单元体上的应力,并 写出应力的表达式。
q
1 2 h/4 4 3
z l/4 b
l/4
l
解: (1)求支座反力:
FRA
FRB
1 l/4
《材料力学》第4章弯曲内力 课后答案

0 ; FS−C
= b F, a+b
M
− C
=
ba a+b
F
FS+C
=
−a a+b
F
,
M
+ C
=
ba a+b
F ; FSB
=
−A a+b
F
,MB
=
0
d解
图(d1), ∑ Fy
=
0,F
=
1 2
ql
,
∑
M
A
= 0,M A
=
− 3 ql 2 8
仿题 a 截面法得
FSA
=
1 2
ql
,MA
=
−
3 8
ql
2
;
FS−C
FS (x) = −F
⎜⎛ 0 < x < l ⎟⎞
⎝
2⎠
M (x) = −Fx ⎜⎛0 ≤ x ≤ l ⎟⎞
⎝
2⎠
FS (x) = F
⎜⎛ l < x < l ⎟⎞
⎝2
⎠
45
M (x) =
FA x +
FB
⎜⎛ ⎝
x
−
l 2
⎟⎞ ⎠
,
FB
= 2F
M (x) = Fx − Fl ⎜⎛ l ≤ x ≤ l ⎟⎞
( ) 解
∑MB
=
0 , FA
⋅l
+
ql 2
×
3l 4
− ql 2
=
0
, FA
=
5 ql 8
↑
( ) ∑ Fy
= 0 , FB
刘鸿文材料力学 I 第6版_4_弯取内力

43
(3) 在剪力Q为零处, 弯矩M取极值。
注意: 以上结论只在该 段梁上无集中力 或集中力偶作用 时才成立。
44
(4) 在集中力作用点: 剪力图有突变,突变值 即为集中力的数值,突 变的方向沿着集中力的 方向(从左向右观察); 弯矩图在该处为折点。
(5) 在集中力偶作用点: 对剪力图形状无影响; 弯矩图有突变,突变值 即为集中力偶的数值。
2
AC段: N 1 qa Q qa qy 2
M qa y 1 qy2
2
(3) 轴力图
(4) 剪力图
35
(4) 剪力图
(5) 弯矩图
BC段:
M 1 qa x
2
qa
AC段:
M qa y 1 qy2
特点: 2
在刚节点处,弯矩值连续 ;
Q
1 qa 2
36
特点: 在刚节点处,弯矩值连续; 可以利用刚节点的平衡, 对内力图进行校核。
(2) 求剪力方程和弯矩方程
需分段求解。
分为两段:AC和CB段。 AC段 取x截面,左段受力如图。
由平衡方程,可得:
Q(x) Pb l
(0 x a)
M (x) Pb x
(0 x a)
l
CB段 取x截面,
x
Q
M
17
CB段 取x截面, 左段受力如图。 由平衡方程,可得:
外侧均可,但需标出正 负号; (3) 弯矩画在受压侧。
32
例 5 刚架
已知:q,a。
求:内力图。
解:(1) 求支反力 结果如图。
(2) 求内力 BC段:
X 0
MQ
N Dx
N 0
(3) 在剪力Q为零处, 弯矩M取极值。
注意: 以上结论只在该 段梁上无集中力 或集中力偶作用 时才成立。
44
(4) 在集中力作用点: 剪力图有突变,突变值 即为集中力的数值,突 变的方向沿着集中力的 方向(从左向右观察); 弯矩图在该处为折点。
(5) 在集中力偶作用点: 对剪力图形状无影响; 弯矩图有突变,突变值 即为集中力偶的数值。
2
AC段: N 1 qa Q qa qy 2
M qa y 1 qy2
2
(3) 轴力图
(4) 剪力图
35
(4) 剪力图
(5) 弯矩图
BC段:
M 1 qa x
2
qa
AC段:
M qa y 1 qy2
特点: 2
在刚节点处,弯矩值连续 ;
Q
1 qa 2
36
特点: 在刚节点处,弯矩值连续; 可以利用刚节点的平衡, 对内力图进行校核。
(2) 求剪力方程和弯矩方程
需分段求解。
分为两段:AC和CB段。 AC段 取x截面,左段受力如图。
由平衡方程,可得:
Q(x) Pb l
(0 x a)
M (x) Pb x
(0 x a)
l
CB段 取x截面,
x
Q
M
17
CB段 取x截面, 左段受力如图。 由平衡方程,可得:
外侧均可,但需标出正 负号; (3) 弯矩画在受压侧。
32
例 5 刚架
已知:q,a。
求:内力图。
解:(1) 求支反力 结果如图。
(2) 求内力 BC段:
X 0
MQ
N Dx
N 0
材料力学4弯曲内力

平面曲线仍与外力共面。
目录
§4-2 受弯杆件的简化
计算简图:
分析梁的内力、变形都在计算简图上进行。梁的简化包括:
1、构件几何形状的简化 将梁简化为杆,用轴线表示。
2、支座的简化 活动铰支座
固定铰支座
固定端
3、载荷的简化
集中载荷 分布载荷(常见的为均布载荷) 集中力偶
目录
工程实例——受弯构件的力学简图
P
( a< x2 < l )
ab l 2
1 Mmax 4 Pl
观察:集中力作用点、无载荷
M
( x2
)
FB
(l
x2 )
a l
P(l
x2 )
3)作Fs、M 图
( a ≤x2≤ l )
作用的梁段剪力图、弯矩图的形态
Fs
max
a l
1 qa 2
M1
—
右侧
qa
a 2
+FB0
Fs2 左侧
+FA
—
qa + FB
qa
Fs2 qa
M2 — qa a 1 qa2
右侧
右侧
22
Fs P横向外力 左上、右下,外力为正
一侧
力的集大中小力;作弯用矩点相的等左。、右所邻以M截,O=面不为一上截考侧面的m虑的剪O集形(力中P心不力) 相作左等用外顺,力点右(相逆的偶差(剪上) 矩集凹力为弯中。正曲)
车削工件
目录
§4-1 弯曲的概念和实例
火车轮轴
目录
§4-1 弯曲的概念和实例
弯曲特点 以弯曲变形为主的杆件通常称为梁
目录
常见受弯构件的横截 面都有竖直对称轴 y
纵向对称面:
轴线x 和竖直对称 轴y 所确定的平面。
目录
§4-2 受弯杆件的简化
计算简图:
分析梁的内力、变形都在计算简图上进行。梁的简化包括:
1、构件几何形状的简化 将梁简化为杆,用轴线表示。
2、支座的简化 活动铰支座
固定铰支座
固定端
3、载荷的简化
集中载荷 分布载荷(常见的为均布载荷) 集中力偶
目录
工程实例——受弯构件的力学简图
P
( a< x2 < l )
ab l 2
1 Mmax 4 Pl
观察:集中力作用点、无载荷
M
( x2
)
FB
(l
x2 )
a l
P(l
x2 )
3)作Fs、M 图
( a ≤x2≤ l )
作用的梁段剪力图、弯矩图的形态
Fs
max
a l
1 qa 2
M1
—
右侧
qa
a 2
+FB0
Fs2 左侧
+FA
—
qa + FB
qa
Fs2 qa
M2 — qa a 1 qa2
右侧
右侧
22
Fs P横向外力 左上、右下,外力为正
一侧
力的集大中小力;作弯用矩点相的等左。、右所邻以M截,O=面不为一上截考侧面的m虑的剪O集形(力中P心不力) 相作左等用外顺,力点右(相逆的偶差(剪上) 矩集凹力为弯中。正曲)
车削工件
目录
§4-1 弯曲的概念和实例
火车轮轴
目录
§4-1 弯曲的概念和实例
弯曲特点 以弯曲变形为主的杆件通常称为梁
目录
常见受弯构件的横截 面都有竖直对称轴 y
纵向对称面:
轴线x 和竖直对称 轴y 所确定的平面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
max
FQ S
* z max
Izd
d FQ 4 FQ 12 4 d 3 A d 64
3
d/2
z
max
四、薄壁圆环截面梁 中性轴处:
r0
z
max 2
FQ A
max
例 如图所示一T形截面。某截面上的剪力FQ=50kN,与y 轴重合。试求腹板的最大切应力,并画出腹板上的切应力分布图。
t m ax
c m ax
M Wz
My max Iz
My Iz
t max
My Iz
max
c max
二、正应力公式的推广
对于剪切弯曲梁,这时两个基本假设并不成立。但实验 和理论分析表明,当l/h(跨高比)较大(>5)时,采用该 正应力公式计算的误差很小,满足工程的精度要求。 这时
FQ Sz* Iz b y z
FQ ——横截面上剪力。 S z* ——横截面上距中性轴y处横线一 侧 的部分截面对中性轴的面积矩。 Iz ——整个横截面对中性轴z的惯性矩。
ζ"
ζ'
dx
b ——横截面宽度。
(二)沿梁高的切应力分布
h h b h S b( y ) [( y ) / 2 y ] ( y 2 ) 2 2 2 4
1
* FQ S z 1
I zd
4.13MPa
例 一矩形截面外伸梁,如图所示。现自梁中1、2、 3、4点处分别取四个单元体,试画出单元体上的应力,并 写出应力的表达式。
q
1 2 h/4 4 3
z l/4 b
l/4
l
解: (1)求支座反力:
FRA
FRB
1 l/4
ql 2
q
2 h/4 4 3 l l/4 b
M(x)y Iz
M(x) 1 = ρ( x ) E Iz
max
Mmax Wz
例 一简支梁及其所受荷载如图所示。若分别采用截面面 积相同的矩形截面,圆形截面和工字形截面,试求三种截面的 最大拉应力。设矩形截面高为140mm,宽为100mm。 F=20kN
A C B
3m
3m
解: 1. 求最大弯矩Mmax
1 O1 2 O2 2
dq
ab的纵向线应变
1 O1'
2 O2' 2
a'b'-ab (ρ+y)dθ -dx = ε= dx ab
= =
a
(ρ+y)dθ - ρd θ
y ρd θ
1
b
y
a'
dx
1
b'
dx
ρ
2.物理关系 胡克定律
σ=Eε =E
y
ρ
由此可见,横截面上的正应力分布为
z
中性轴
3.静力学关系
E ∫A FN= σdA = ∫ A ydA =0 ρ
tBmax
D t max
M B ytBmax 21.4MPa Iz
D t max
cBmax
M B ycBmax 38.6MPa Iz M B ycDmax 12.1MPa Iz
B MD y c max 21.7MPa Iz D截面为最大拉应力截面; B截面为最大压应力截面
max
* FQ S z max
Izd
50 103 972 103 109 Pa 4.34MPa 6 12 3 186.56 10 10 60 10
2.腹板上切应力分布
* FQ S z
Izd
抛物线分布
腹板和翼缘交界处:
* 3 3 Sz 70 60 220 924 10 mm 1
解: 1.腹板的最大切应力
max
* FQ S z max
1 1 3 2 I z 220 60 70 220 60 60 2203 70 2 60 220 12 12 186.56 106 mm 3
Izd
* 3 3 Sz 180 60 90 972 10 mm max
FN 2 dA
A*
η1
δ u
h
δ
η'1
z
FN1 u
η1
A
FN2 dx
b (a)
u
η1
dx
( b)
(c)
FQ S z* 1 1 I z
* 其中 S z ——面积δ×u 对中性轴的面积矩。
1 S z* u (h ) 2
三、圆形截面梁 中性轴处:
σ=Eε =E
y
ρ
1 Mz = EIz ρ
Mzy Iz
——正应力公式
正应力性质(正负号))确定: ζ的符号可由M与y的符号确定,也 可由弯曲变形情况确定。 最大正应力:
max
Mymax Iz 得 M Wz
令
Iz Wz = ymax
弯曲截面系数
max
① z轴为对称时:
② z轴为非对称时:
1.作图示梁的FQ和M图
q A
2l B l
ql C
ql2
2.绘出梁的剪力图和弯矩图
2ql
ql2
l
2l
3.纯弯曲和横力弯曲 A 纯弯曲:如图CD段。
a
C
F
F
a
D
B
F 剪切弯曲(横力弯曲): 如图AC段和BD段。 FQ
+
F
M
+
Fa
§4-2
梁横截面上的正应力
梁的横截面上一般同时存在正应力和切应力。 FQ由切向微内力ηdA合成;M由法向微内力ζdA合成。
4.工字形截面 查型钢表,A=bh=140cm2,选用50c号(A=139cm2)
Wz 2080cm
3
max
M max 14.42MPa Wz
例 一T形截面外伸梁及其所受荷载如图所示。求最大拉 应力及最大压应力,并画出最大拉应力截面的正应力分布图。
q=20kN/m
A D 4m 40 +
第四章
平面弯曲
§4-1
一、平面弯曲的概念
概
述
以弯曲变形为主要变形的杆件称为梁。 工程中绝大多数梁都有一纵向对称面,且外力均作用在此 面内,此时梁的轴线在此对称面内弯成一条平面曲线,梁发生 平面弯曲。平面弯曲是杆件的一种基本变形。 外力特点:作用在纵向对称面 内、垂直于杆轴线的集中力或 分布力,或作用在纵向对称面 内的力偶。 变形特点:杆的轴线在纵向对 称平面内弯成曲线。 若梁不具有纵向对称面, 或虽有纵向对称面但外力不 作用在该面内,这种弯曲统 称为非对称弯曲。
3 ql 4 3 ql 4
z
(2)画FQ图和M图
FQ
+
ql 4
ql 4
-
ql 2 ql2 32
FN1
ζ"
FN2
FN2 -FN1 =η'bdx =η bdx
ζ' dA dx FN1=∫ A*ζ'dA= ∫ A* M y' dA Iz M∫ = y'dA A* Iz S z* = ∫ A* y'dA
ζ"
ζ'
dx
M FN1= I Sz* z
M FN1= I Sz* z FN2=∫ A*σ"dA= ∫ A* (M +dM) FN2= S z* Iz
δ u
h
δ
η'1
z
FN1
η1
A
FN2
u
dx
b (a)
u
dx
( b)
dF FN 2 FN1
dF 1dx
式中:FN1 dA
A*
M M * y d A Sz A * Iz Iz
M dM M dM * y d A Sz A * Iz Iz
d a b y
z
ηmax
η=
FQ Sz*
Iz d
h2 h12 h12 τ [b( ) d( y 2 )] 2I z d 2 4 4
FQ
y0
max
* FQ S z max
Izd
FQ d
/
Iz
* Sz max
2.翼缘部分切应力 有铅直切应力(很小),也有水平切应力
中性轴:中性层与横截面的交线。 中性层
横截面绕中性轴转动 找与横截面上的正应力有关的纵向线应变的变 化规律: 取微段梁dx 1 O1 2 O2 2 1 O1' 2 O2' 2
dq
dx
a
1
b
y
a'
dx
1
b'
O1O2变形前后长度不变,ρ为中性层的曲率半径
变形前 变形后
dx= ab=O1O2
O 1O'2=ρdθ a b'2=(ρ+y)dθ =O1O2
FN2 -FN1 = η bdx
(M +dM)y' (M +dM) d A = ∫ A* y'dA Iz Iz y'η′ ζ'
FN1
ζ"
FN2
dM Sz* = η bdx FN2 -FN1= Iz
dM=FQ dx
ζ' dA dx FQ Sz* Iz b
FQdx
Iz
Sz* = η bdx
从而
η=
η=
y
m MB=-40kN· m MD=22.5kN· B M y B截面 上部受拉、下部受压 tBmax B t max 21.4MPa Iz B yt max 100mm B M y I z 186.6 106 m 4 B B c max 38.6MPa B c max yc max 180mm Iz