2018届甘肃省河西三校普通高中高三上学期第一次联考理科数学试题及答案
2018年高三第一次联考数学(理科)试卷

甘肃省河西五地市2015届高三第一次联考数学(理) 试卷一.选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}【考点】:并集及其运算;指数函数的单调性与特殊点;一元二次不等式的解法.【专题】:计算题.【分析】:根据题意先求出集合M和集合N,再求M∪N.【解析】:解:∵集合M={x|x2+3x+2<0}={x|﹣2<x<﹣1},集合={x|2﹣x≤22}={x|﹣x≤2}={x|x≥﹣2},∴M∪N={x|x≥﹣2},故选A.【点评】:本题考查集合的运算,解题时要认真审题,仔细解答.2.(5分)下面是关于复数的四个命题:p1:|z|=2,p2:z2=2i,p3:z的共轭复数为﹣1+i,p4:z的虚部为1.其中真命题为()A.p2,p3 B.p1,p2 C.p2,p4 D.p3,p4【考点】:命题的真假判断与应用;复数代数形式的乘除运算.【专题】:计算题;函数的性质及应用.【分析】:求出|z|,可判断p1的真假;化简z2,可判断p2的真假;,可得z的共轭复数为1﹣i,z的虚部为1,由此可得结论.【解析】:解:p1:|z|==,故命题为假;p2:z2===2i,故命题为真;,∴z的共轭复数为1﹣i,故命题p3为假;∵,∴p4:z的虚部为1,故命题为真.故真命题为p2,p4故选B.【点评】:本题考查命题真假的判定,考查复数知识,考查学生的计算能力,属于基础题.3.(5分)已知平面向量与的夹角为,且||=1,|+2|=2,则||=()A. 1 B.C. 3 D. 2【考点】:平面向量数量积的运算.【专题】:平面向量及应用.【分析】:由已知将,|+2|=2,两边平方,得到,的模的等式,解之即可.【解析】:解:由已知,|+2|2=12,即,所以||2+4||||×+4=12,所以||=2;故选D.【点评】:本题考查了向量的模的求法;一般的,要求向量的模,先求向量的平方.4.(5分)下列推断错误的是()A.命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1则x2﹣3x+2≠0”B.命题p:存在x0∈R,使得x02+x0+1<0,则非p:任意x∈R,都有x2+x+1≥0 C.若p且q为假命题,则p,q均为假命题D.“x<1”是“x2﹣3x+2>0”的充分不必要条件【考点】:命题的真假判断与应用.【专题】:简易逻辑.【分析】:A,写出命题“若x2﹣3x+2=0,则x=1”的逆否命题,可判断A;B,写出命题p:“存在x0∈R,使得x02+x0+1<0”的否定¬p,可判断B;C,利用复合命题的真值表可判断C;D,x2﹣3x+2>0⇒x>2或x<1,利用充分必要条件的概念可判断D.【解析】:解:对于A,命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1则x2﹣3x+2≠0”,正确;对于B,命题p:存在x0∈R,使得x02+x0+1<0,则非p:任意x∈R,都有x2+x+1≥0,正确;对于C,若p且q为假命题,则p,q至少有一个为假命题,故C错误;对于D,x2﹣3x+2>0⇒x>2或x<1,故“x<1”是“x2﹣3x+2>0”的充分不必要条件,正确.综上所述,错误的选项为:C,故选:C.【点评】:本题考查命题的真假判断与应用,着重考查全称命题与特称命题的理解与应用,考查复合命题与充分必要条件的真假判断,属于中档题.5.(5分)若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为()A.B.C.D. 6【考点】:由三视图求面积、体积.【专题】:计算题;压轴题;图表型.【分析】:由三视图及题设条件知,此几何体为一个三棱柱,其高已知,底面正三角形的高为,故先解三角形求出底面积,再由体积公式求解其体积即可.【解析】:解:此几何体为一个三棱柱,棱柱的高是4,底面正三角形的高是,设底面边长为a,则,∴a=6,故三棱柱体积.故选B【点评】:本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是本棱柱的体积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.6.(5分)(2014•广西)等比数列{a n}中,a4=2,a5=5,则数列{lga n}的前8项和等于()A. 6 B. 5 C. 4 D. 3【考点】:等比数列的前n项和.【专题】:等差数列与等比数列.【分析】:利用等比数列的性质可得a1a8=a2a7=a3a6=a4a5=10.再利用对数的运算性质即可得出.【解析】:解:∵数列{a n}是等比数列,a4=2,a5=5,∴a1a8=a2a7=a3a6=a4a5=10.∴lga1+lga2+…+lga8=lg(a1a2•…•a8)=4lg10=4.故选:C.【点评】:本题考查了等比数列的性质、对数的运算性质,属于基础题.7.(5分)若实数x、y满足不等式组则z=|x|+2y的最大值是()A.10 B.11 C.13 D.14【考点】:简单线性规划.【专题】:不等式的解法及应用.【分析】:由约束条件作出可行域,分类化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.【解析】:解:由约束条件作出可行域如图,当x≥0时,z=|x|+2y化为y=﹣x+z,表示的是斜率为﹣,截距为的平行直线系,当过点(1,5)时,直线在y轴上的截距最大,z最大,z max=1+2×5=11;当x<0时,z=|x|+2y化为,表示斜率为,截距为,的平行直线系,当直线过点(﹣4,5)时直线在y轴上的截距最大,z最大,z max=4+2×5=14.∴z=|x|+2y的最大值是14.故选:D.【点评】:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.8.(5分)抛物线x2=y在第一象限内图象上一点(a i,2a i2)处的切线与x轴交点的横坐标记为a i+1,其中i∈N*,若a2=32,则a2+a4+a6等于()A.64 B.42 C.32 D.21【考点】:抛物线的简单性质.【专题】:综合题;导数的综合应用.【分析】:由y=2x2(x>0),求出x2=y在第一象限内图象上一点(a i,2a i2)处的切线方程是:y﹣2a i2=4a i(x﹣a i),再由切线与x轴交点的横坐标为a i+1,知a i+1=a i,所以{a2k}是首项为a2=32,公比q=的等比数列,由此能求出a2+a4+a6.【解析】:解:∵y=2x2(x>0),∴y′=4x,∴x2=y在第一象限内图象上一点(a i,2a i2)处的切线方程是:y﹣2a i2=4a i(x ﹣a i),整理,得4a i x﹣y﹣2a i2=0,∵切线与x轴交点的横坐标为a i+1,∴a i+1=a i,∴{a2k}是首项为a2=32,公比q=的等比数列,∴a2+a4+a6=32+8+2=42.故选:B.【点评】:本题考查数列与函数的综合,综合性强,难度大,容易出错.解题时要认真审题,注意导数、切线方程和等比数列性质的灵活运用.9.(5分)定义行列式运算:.若将函数的图象向左平移m(m>0)个单位后,所得图象对应的函数为奇函数,则m的最小值是()A.B.C.D.【考点】:函数y=Asin(ωx+φ)的图象变换.【专题】:新定义;三角函数的图像与性质.【分析】:利用所给行列式展开法则求出f(x),化简为一个解答一个三角函数的形式,再由函数的平移公式能够得到f(x+m),然后由偶函数的性质求出m的最小值.【解析】:解:f(x)=sinx﹣cosx=sin(x﹣),图象向左平移m(m>0)个单位,得f(x+m)=sin(x+m﹣),则由m﹣=kπ,可解得m=k,k∈Z,则当m取得最小值时,函数为奇函数.故选:A.【点评】:本题考查二阶行列式的展开法则,解题时要注意函数的平移和偶函数的合理运用,属于基础题.10.(5分)设k是一个正整数,(1+)k的展开式中第四项的系数为,记函数y=x2与y=kx的图象所围成的阴影部分为S,任取x∈[0,4],y∈[0,16],则点(x,y)恰好落在阴影区域内的概率为()A.B.C.D.【考点】:几何概型;定积分在求面积中的应用.【专题】:概率与统计.【分析】:先利用二项式定理求出k值,再利用积分求阴影部分的面积,那积分的上下限由求方程组得到.然后利用几何概型的概率公式解答.【解析】:解:根据题意得,解得:k=4或k=(舍去)解方程组,解得:x=0或4∴阴影部分的面积为=,任取x∈[0,4],y∈[0,16],则点(x,y)对应区域面积为4×16=64,由几何概型概率求法得点(x,y)恰好落在阴影区域内的概率为;故选C.【点评】:本题主要考查了定积分、二项式定理和几何概型的概率求法,应用定积分求平面图形面积时,积分变量的选取是至关重要的,属于基础题.11.(5分)已知F2、F1是双曲线﹣=1(a>0,b>0)的上、下焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆上,则双曲线的离心率为()A. 3 B.C. 2 D.【考点】:双曲线的简单性质.【专题】:计算题;直线与圆;圆锥曲线的定义、性质与方程.【分析】:首先求出F2到渐近线的距离,利用F2关于渐近线的对称点恰落在以F1为圆心,|OF1|为半径的圆上,可得直角三角形MF1F2,运用勾股定理,即可求出双曲线的离心率.【解析】:解:由题意,F1(0,﹣c),F2(0,c),一条渐近线方程为y=x,则F2到渐近线的距离为=b.设F2关于渐近线的对称点为M,F2M与渐近线交于A,∴|MF2|=2b,A为F2M的中点,又0是F1F2的中点,∴OA∥F1M,∴∠F1MF2为直角,∴△MF1F2为直角三角形,∴由勾股定理得4c2=c2+4b2∴3c2=4(c2﹣a2),∴c2=4a2,∴c=2a,∴e=2.故选C.【点评】:本题主要考查了双曲线的几何性质以及有关离心率和渐近线,考查勾股定理的运用,考查学生的计算能力,属于中档题.12.(5分)已知实数a,b,c,d满足==1,其中e是自然对数的底数,则(a﹣c)2+(b﹣d)2的最小值为()A. 4 B.8 C.12 D.18【考点】:两点间的距离公式.【专题】:直线与圆.【分析】:由已知得点(a,b)在曲线y=x﹣2e x上,点(c,d)在曲线y=2﹣x 上,(a﹣c)2+(b﹣d)2的几何意义就是曲线y=x﹣2e x到曲线y=2﹣x上点的距离最小值的平方.由此能求出(a﹣c)2+(b﹣d)2的最小值.【解析】:解:∵实数a,b,c,d满足==1,∴b=a﹣2e a,d=2﹣c,∴点(a,b)在曲线y=x﹣2e x上,点(c,d)在曲线y=2﹣x上,(a﹣c)2+(b﹣d)2的几何意义就是曲线y=x﹣2e x到曲线y=2﹣x上点的距离最小值的平方.考查曲线y=x﹣2e x平行于直线y=2﹣x的切线,∵y′=1﹣2e x,令y′=1﹣2e x=﹣1,解得x=0,∴切点为(0,﹣2),该切点到直线y=2﹣x的距离d==2就是所要求的两曲线间的最小距离,故(a﹣c)2+(b﹣d)2的最小值为d2=8.故选:B.【点评】:本题考查代数式的最小值的求法,是中档题,解题时要认真审题,注意两点间距离公式的合理运用.二.填空题(本大题共4个小题,每小题5分,共20分,请把正确的答案填写在各小题的横线上.)13.(5分)定义某种运算⊗,S=a⊗b的运算原理如图;则式子5⊗3+2⊗4=14.【考点】:选择结构.【专题】:图表型.【分析】:通过程序框图判断出S=a⊗b的解析式,求出5⊗3+2⊗4的值.【解析】:解:有框图知S=a⊗b=∴5⊗3+2⊗4=5×(3﹣1)+4×(2﹣1)=14故答案为14【点评】:新定义题是近几年常考的题型,要重视.解决新定义题关键是理解题中给的新定义.14.(5分)正四棱锥P﹣ABCD的五个顶点在同一球面上,若该正四棱锥的底面边长为4,侧棱长为,则这个球的表面积为36π.【考点】:球的体积和表面积.【专题】:计算题;作图题.【分析】:画出图形,正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.【解析】:解:正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,PO=AO=R,PO1=4,OO1=R﹣4,或OO1=4﹣R(此时O在PO1的延长线上),在Rt△AO1O中,R2=8+(R﹣4)2得R=3,∴球的表面积S=36π故答案为:36π【点评】:本题考查球的表面积,球的内接体问题,考查计算能力,是基础题.15.(5分)从某校数学竞赛小组的10名成员中选3人参加省级数学竞赛,则甲、乙2人至少有1人入选,而丙没有入选的不同选法的种数为49(用数字作答).【考点】:计数原理的应用.【专题】:排列组合.【分析】:先做出满足丙没有入选的结果数,丙没有入选相当于从9人中选3人,要求甲、乙至少有1人入选,可以先做出甲、乙都没入选的结果,相当于从7人中选3人,用所有的事件数减去不合题意的事件数,得到满足条件的事件数.【解析】:解:丙没有入选相当于从9人中选3人,共有选法C93=84,甲、乙都没入选相当于从7人中选3人共有C73=35,∴满足条件的事件数是84﹣35=49,故答案为:49.【点评】:本题考查排列组合的实际应用,是一个综合题,题目中带有两个限制条件,注意限制条件的应用,先做满足一个条件的事件数,再做满足另一个条件的事件数,把不合题意的舍去.16.(5分)在平面直角坐标系xoy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx+2上至少存在一点,使得以该点为圆心,半径为1的圆与圆C有公共点,则k的最小值是﹣.【考点】:直线与圆相交的性质.【专题】:直线与圆.【分析】:化圆C的方程为(x﹣4)2+y2=1,求出圆心与半径,由题意,只需(x ﹣4)2+y2=4与直线y=kx+2有公共点即可.【解析】:解:圆C的方程为x2+y2﹣8x+15=0即圆C的方程为(x﹣4)2+y2 =1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx+2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=4与直线y=kx+2有公共点即可.设圆心C(4,0)到直线y=kx+2的距离为d,则d=≤2,即3k2≤﹣4k,求得﹣≤k≤0,故k的最小值是﹣,故答案为:.【点评】:本题考查直线与圆的位置关系,将条件转化为“(x﹣4)2+y2=4与直线y=kx+2有公共点”是关键,考查学生灵活解决问题的能力,体现了转化的数学思想,是中档题.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明或演算步骤.)17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=3acosB ﹣ccosB.(Ⅰ)求cosB的值;(Ⅱ)若,且,求a和c的值.【考点】:正弦定理;平面向量数量积的运算;两角和与差的正弦函数;余弦定理.【专题】:计算题;转化思想.【分析】:(1)首先利用正弦定理化边为角,可得2RsinBcosC=3×2RsinAcosB ﹣2RsinCcosB,然后利用两角和与差的正弦公式及诱导公式化简求值即可.(2)由向量数量积的定义可得accosB=2,结合已知及余弦定理可得a2+b2=12,再根据完全平方式易得a=c=.【解析】:解:(I)由正弦定理得a=2RsinA,b=2RsinB,c=2RsinC,则2RsinBcosC=6RsinAcosB﹣2RsinCcosB,故sinBcosC=3sinAcosB﹣sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即sin(B+C)=3sinAcosB,可得sinA=3sinAcosB.又sinA≠0,因此.(6分)(II)解:由,可得accosB=2,,由b2=a2+c2﹣2accosB,可得a2+c2=12,所以(a﹣c)2=0,即a=c,所以.(13分)【点评】:本题考查了正弦定理、余弦定理、两角和与差的正弦公式、诱导公式、向量数量积的定义等基础知识,考查了基本运算能力.18.(12分)甲、乙两人进行围棋比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或下满6局时停止.设甲在每局中获胜的概率为p (p>),且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为.(1)求p的值;(2)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和数学期望Eξ.【考点】:互斥事件的概率加法公式;离散型随机变量及其分布列.【分析】:(1)已知各局胜负相互独立,第二局比赛结束时比赛停止,包含甲连胜2局或乙连胜2局,写出甲连胜两局的概率和乙连胜两局的概率求和为.解出关于P的方程.(2)因为比赛进行到有一人比对方多2分或下满6局时停止,所以ξ的所有可能取值为2,4,6,而ξ=2已经做出概率,只要求出ξ=4或ξ=6时的概率即可,最后求出期望.【解析】:解:(1)当甲连胜2局或乙连胜2局时,第二局比赛结束时比赛停止,故,解得(2)依题意知ξ的所有可能取值为2,4,6,设每两局比赛为一轮,则该轮结束时比赛停止的概率为,若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响,从而有,则随机变量ξ的分布列为:故.【点评】:求离散型随机变量的分布列和期望是近年来理科高考必出的一个问题,题目做起来不难,运算量也不大,只要注意解题格式就问题不大.19.(12分)己知斜三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形,侧面A1ACC1为菱形,∠A1AC=60°,平面A1ACC1⊥平面ABC,N是CC1的中点.(I)求证:A1C⊥BN;(Ⅱ)求二面角B﹣A1N﹣C的余弦值.【考点】:与二面角有关的立体几何综合题.【专题】:综合题;空间位置关系与距离;空间角.【分析】:(I)以O为原点,建立如图所示的空间直角坐标系,证明,可得A1C⊥BN;(Ⅱ)求出平面A1BN的法向量、平面A1NC的法向量,利用向量的夹角公式求二面角B﹣A1N﹣C的余弦值.【解析】:(Ⅰ)证明:取AC的中点O,连结BO,A1O,由题意知BO⊥AC,A1O⊥AC.又因为平面A1ACC1⊥平面ABC,所以A1O⊥平面ABC以O为原点,建立如图所示的空间直角坐标系O﹣xyz.…(2分)则O(0,0,0),,,,C(0,1,0),.…(4分)因为,所以A1C⊥BN…(6分)(Ⅱ)解:取AC的中点O,连结BO,A1O,由题意知BO⊥AC,A1O⊥AC.又因为平面A1ACC1⊥平面ABC,所以A1O⊥平面ABC以O为原点,建立如图所示的空间直角坐标系O﹣xyz.…(7分)则O(0,0,0),,,,,.设平面A1BN的法向量为n1=(x,y,z),则即令x=1.所以.…(9分)又平面A1NC的法向量n2=(1,0,0)…(10分)设二面角B﹣A1N﹣C的平面角为θ,则.…(12分)【点评】:本题考查线线垂直,考查面面角,考查向量知识的运用,考查学生分析解决问题的能力,属于中档题.20.(12分)已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2,点(1,)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)过F1的直线l与椭圆C相交于A,B两点,且△AF2B的面积为,求以F2为圆心且与直线l相切的圆的方程.【考点】:椭圆的标准方程;圆的标准方程;直线与圆锥曲线的综合问题.【专题】:计算题.【分析】:(Ⅰ)先设出椭圆的方程,根据题设中的焦距求得c和焦点坐标,根据点(1,)到两焦点的距离求得a,进而根据b=求得b,得到椭圆的方程.(Ⅱ)先看当直线l⊥x轴,求得A,B点的坐标进而求得△AF2B的面积与题意不符故排除,进而可设直线l的方程为:y=k(x+1)与椭圆方程联立消y,设A (x1,y1),B(x2,y2),根据韦达定理可求得x1+x2和x1•x2,进而根据表示出|AB|的距离和圆的半径,求得k,最后求得圆的半径,得到圆的方程.【解析】:解:(Ⅰ)设椭圆的方程为,由题意可得:椭圆C两焦点坐标分别为F1(﹣1,0),F2(1,0).∴.∴a=2,又c=1,b2=4﹣1=3,故椭圆的方程为.(Ⅱ)当直线l⊥x轴,计算得到:,,不符合题意.当直线l与x轴不垂直时,设直线l的方程为:y=k(x+1),由,消去y得(3+4k2)x2+8k2x+4k2﹣12=0显然△>0成立,设A(x1,y1),B(x2,y2),则,又即,又圆F2的半径,所以,化简,得17k4+k2﹣18=0,即(k2﹣1)(17k2+18)=0,解得k=±1所以,,故圆F2的方程为:(x﹣1)2+y2=2.【点评】:本题主要考查了椭圆的标准方程和椭圆与直线,椭圆与圆的关系.考查了学生综合运用所学知识,创造性地解决问题的能力.21.(12分)已知函数(1)当时,求f(x)的单调递减区间;(2)若当x>0时,f(x)>1恒成立,求a的取值范围;(3)求证:.【考点】:数列与不等式的综合;函数恒成立问题;利用导数研究函数的单调性.【专题】:综合题;导数的综合应用.【分析】:(1)求导数,利用导数小于0,即可求f(x)的单调递减区间;(2)由得a>(x+2)﹣(x+2)ln(x+1),记g(x)=(x+2)[1﹣ln(x+1)],确定函数的最值,即可求a的取值范围;(3)先证明,取,即可证得结论.【解析】:(1)解:当时,(x>﹣1)令f′(x)<0,可得,∴f(x)的单调递减区间为…(4分)(2)解:由得a>(x+2)﹣(x+2)ln(x+1)记g(x)=(x+2)[1﹣ln(x+1)],则当x>0时g′(x)<0,∴g(x)在(0,+∞)递减又g(0)=2•[1﹣ln1]=2,∴g(x)<2(x>0),∴a≥2…(8分)(3)证明:由(Ⅱ)知(x>0)∴取得,即∴…(12分)【点评】:本题考查导数知识的运用,考查函数的单调性,考查不等式的证明,属于中档题.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.选修4-1:几何证明选讲22.(10分)如图所示,PA为圆O的切线,A为切点,PO交圆O于B,C两点,PA=20,PB=10,∠BAC的角平分线与BC和圆O分别交于点D和E.(Ⅰ)求证AB•PC=PA•AC(Ⅱ)求AD•AE的值.【考点】:与圆有关的比例线段.【专题】:直线与圆.【分析】:(1)由已知条件推导出△PAB∽△PCA,由此能够证明AB•PC=PA•AC.(2)由切割线定理求出PC=40,BC=30,由已知条件条件推导出△ACE∽△ADB,由此能求出AD•AE的值.【解析】:(1)证明:∵PA为圆O的切线,∴∠PAB=∠ACP,又∠P为公共角,∴△PAB∽△PCA,∴,∴AB•PC=PA•AC.…(4分)(2)解:∵PA为圆O的切线,BC是过点O的割线,∴PA2=PB•PC,∴PC=40,BC=30,又∵∠CAB=90°,∴AC2+AB2=BC2=900,又由(1)知,∴AC=12,AB=6,连接EC,则∠CAE=∠EAB,∴△ACE∽△ADB,∴,∴.(10分)【点评】:本题考查三角形相似的证明和应用,考查线段乘积的求法,是中档题,解题时要注意切割线定理的合理运用.选修4-4:坐标系与参数方程23.(10分)在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是,射线OM:θ=与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.【考点】:简单曲线的极坐标方程;点的极坐标和直角坐标的互化.【专题】:坐标系和参数方程.【分析】:解:(I)利用cos2φ+sin2φ=1,即可把圆C的参数方程化为直角坐标方程.(II)设(ρ1,θ1)为点P的极坐标,由,联立即可解得.设(ρ2,θ2)为点Q的极坐标,同理可解得.利用|PQ|=|ρ1﹣ρ2|即可得出.【解析】:解:(I)利用cos2φ+sin2φ=1,把圆C的参数方程为参数)化为(x﹣1)2+y2=1,∴ρ2﹣2ρcosθ=0,即ρ=2cosθ.(II)设(ρ1,θ1)为点P的极坐标,由,解得.设(ρ2,θ2)为点Q的极坐标,由,解得.∵θ1=θ2,∴|PQ|=|ρ1﹣ρ2|=2.∴|PQ|=2.【点评】:本题考查了利用极坐标方程求曲线的交点弦长,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲24.已知函数f(x)=|2x+1|,g(x)=|x|+a(Ⅰ)当a=0时,解不等式f(x)≥g(x);(Ⅱ)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.【考点】:绝对值不等式的解法;带绝对值的函数.【专题】:不等式的解法及应用.【分析】:(Ⅰ)当a=0时,由f不等式可得|2x+1|≥x,两边平方整理得3x2+4x+1≥0,解此一元二次不等式求得原不等式的解集.(Ⅱ)由f(x)≤g(x)得a≥|2x+1|﹣|x|,令h(x)=|2x+1|﹣|x|,则h(x)=,求得h(x)的最小值,即可得到从而所求实数a的范围.【解析】:解:(Ⅰ)当a=0时,由f(x)≥g(x)得|2x+1|≥x,两边平方整理得3x2+4x+1≥0,解得x≤﹣1 或x≥﹣∴原不等式的解集为(﹣∞,﹣1]∪[﹣,+∞)(Ⅱ)由f(x)≤g(x)得a≥|2x+1|﹣|x|,令h(x)=|2x+1|﹣|x|,即h(x)=,故h(x)min=h(﹣)=﹣,故可得到所求实数a的范围为(﹣,+∞).【点评】:本题主要考查带有绝对值的函数,绝对值不等式的解法,求函数的最值,属于中档题.。
2018年甘肃省河西五市部分普通高中高考一模数学试卷(理科)【解析版】

2018年甘肃省河西五市部分普通高中高考数学一模试卷(理科)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目要求的.1.(5分)设全集U=R,A={x|x2﹣2x>0},,则A∪∁U B=()A.(2,+∞)B.(﹣∞,0)∪(2,+∞)C.(﹣∞,1)∪(2,+∞)D.(﹣∞,0)2.(5分)已知复数(i是虚数单位),则=()A.B.C.D.3.(5分)已知向量,若,则λ=()A.﹣4B.﹣3C.﹣2D.﹣14.(5分)下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”D.命题“若x=y,则sin x=sin y”的逆否命题为真命题5.(5分)如图所示的程序框图,程序运行时,若输入的S=﹣12,则输出的S 的值为()A.4B.5C.8D.96.(5分)某学校为了更好的培养尖子生,使其全面发展,决定由3名教师对5个尖子生进行“包教”,要求每名教师的“包教”学生不超过2人,则不同的“包教”方案有()A.60B.90C.150D.1207.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A.B.C.D.8.(5分)若(x++1)n的展开式中各项的系数之和为81,则分别在区间[0,π]和[0,]内任取两个实数x,y,满足y>sin x的概率为()A.1﹣B.1﹣C.1﹣D.9.(5分)已知函数的部分图象如图所示,△EFG是正三角形,为了得到的图象,只需将f(x)的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移1个单位长度D.向右平移1个单位长度10.(5分)《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P﹣ABC为鳖臑,P A⊥平面ABC,P A=AB=2,AC=4,三棱锥P﹣ABC 的四个顶点都在球O的球面上,则球O的表面积为()A.8πB.12πC.20πD.24π11.(5分)直线y=2b与双曲线(a>0,b>0)的左、右两支分别交于B,C两点,A为右顶点,O为坐标原点,若∠AOC=∠BOC,则该双曲线的离心率为()A.B.C.D.12.(5分)已知定义在R上的函数y=f(x)对任意的x都满足f(x+2)=f(x),当﹣1≤x<1时,f(x)=sin x,若函数g(x)=f(x)﹣log a|x|至少6个零点,则a的取值范围是()A.(0,]∪(5,+∞)B.(0,)∪[5,+∞)C.(,]∪(5,7)D.(,)∪[5,7)二、填空题:本题共4小题,每小题5分.13.(5分)在△ABC中,内角A,B,C所对的边长分别为a,b,c.a sin B cos C+c sin B cos A=且a>b,则∠B=.14.(5分)甲、乙、丙三名同学中只有一人考了满分,当他们被问到谁考了满分时,甲说:丙没有考满分;乙说:是我考的;丙说:甲说真话.事实证明:在这三名同学中,只有一人说的是假话,那么得满分的同学是.15.(5分)已知点P(x,y)满足,过点P的直线与圆x2+y2=50相交于A,B两点,则|AB|的最小值为.16.(5分)设函数与g(x)=a2lnx+b有公共点,且在公共点处的切线方程相同,则实数b的最大值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)设数列{a n}的前n项和S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(1)求数列{a n}的通项公式;(2)记数列的前n项和T n,求得成立的n的最小值.18.(12分)某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如图).(Ⅰ)体育成绩大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;(Ⅱ)现从体育成绩在[60,70)和[80,90)的样本学生中随机抽取2人,求在抽取的2名学生中,体育成绩在[60,70)的学生人数X的分布列及数学期望.19.(12分)如图,矩形ACEF和等边三角形ABC中,AC=2,CE=1,平面ABC ⊥平面ACEF.(1)在EF上找一点M,使BM⊥AC,并说明理由;(2)在(1)的条件下,求平面ABM与平面CBE所成锐二面角余弦值.20.(12分)已知椭圆C:=1(a>b>0)的离心率为,以椭圆长、短轴四个端点为顶点的四边形的面积为4.(Ⅰ)求椭圆C的方程;(Ⅱ)如图所示,记椭圆的左、右顶点分别为A、B,当动点M在定直线x=4上运动时,直线AM、BM分别交椭圆于P、Q两点,求四边形APBQ面积的最大值.21.(12分)已知f(x)=xlnx+mx,且曲线y=f(x)在点(1,f(1))处的切线斜率为1.(1)求实数m的值;(2)设g(x)=f(x)﹣x2﹣x+a(a∈R)在其定义域内有两个不同的极值点x1,x2,且x1<x2,已知λ>0,若不等式e1+λ<x1•x2λ恒成立,求λ的范围.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](本小题满分10分)22.(10分)已知平面直角坐标系中,曲线C:x2+y2﹣6x﹣8y=0,直线,直线,以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系.(1)写出曲线C的参数方程以及直线l1,l2的极坐标方程;(2)若直线l1与曲线C分别交于O,A两点,直线l2与曲线C分别交于O,B 两点,求△AOB的面积.[选修4-5:不等式选讲](本小题满分0分)23.已知函数f(x)=2﹣x2,g(x)=|x﹣a|.(1)若a=1,解不等式f(x)+g(x)≥3;(2)若不等式f(x)>g(x)至少有一个负数解,求实数a的取值范围.2018年甘肃省河西五市部分普通高中高考数学一模试卷(理科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目要求的.1.(5分)设全集U=R,A={x|x2﹣2x>0},,则A∪∁U B=()A.(2,+∞)B.(﹣∞,0)∪(2,+∞)C.(﹣∞,1)∪(2,+∞)D.(﹣∞,0)【解答】解:A={x|x<0,或x>2},B={x|x≥1};∴∁U B={x|x<1};∴A∪∁U B={x|x<1,或x>2}=(﹣∞,1)∪(2,+∞).故选:C.2.(5分)已知复数(i是虚数单位),则=()A.B.C.D.【解答】解:∵=,∴,故选:B.3.(5分)已知向量,若,则λ=()A.﹣4B.﹣3C.﹣2D.﹣1【解答】解:,∴(2λ+3)×(﹣1)﹣3=0,∴λ=﹣3.故选:B.4.(5分)下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”D.命题“若x=y,则sin x=sin y”的逆否命题为真命题【解答】解:对于A:命题“若x2=1,则x=1”的否命题为:“若x2=1,则x ≠1”.因为否命题应为“若x2≠1,则x≠1”,故错误.对于B:“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件.因为x=﹣1⇒x2﹣5x ﹣6=0,应为充分条件,故错误.对于C:命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”.因为命题的否定应为∀x∈R,均有x2+x+1≥0.故错误.由排除法得到D正确.故选:D.5.(5分)如图所示的程序框图,程序运行时,若输入的S=﹣12,则输出的S 的值为()A.4B.5C.8D.9【解答】解:由程序框图知:第一次循环S=﹣12+2=﹣10,n=2;第二次循环S=﹣10+4=﹣6,n=3;第三次循环S=﹣6+6=0,n=4;第四次循环S=0+8=8,n=5.不满足条件S≤n,跳出循环,输出S=8.故选:C.6.(5分)某学校为了更好的培养尖子生,使其全面发展,决定由3名教师对5个尖子生进行“包教”,要求每名教师的“包教”学生不超过2人,则不同的“包教”方案有()A.60B.90C.150D.120【解答】解:5个尖子生分为(2,2,1),故其分组的方法有=15种,再分配给3名教师,共有15A33=90种,故选:B.7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A.B.C.D.【解答】解:该几何体可以看成:在一个半球上叠加一个圆锥,然后挖掉一个相同的圆锥,所以该几何体的体积和半球的体积相等,因此,故选:A.8.(5分)若(x++1)n的展开式中各项的系数之和为81,则分别在区间[0,π]和[0,]内任取两个实数x,y,满足y>sin x的概率为()A.1﹣B.1﹣C.1﹣D.【解答】解:由题意知,令x=1,得到3n=81,解得n=4,∴0≤x≤π,0≤y ≤1.作出对应的图象如图所示:则此时对应的面积S=π×1=π,满足y≥sin x的点构成区域的面积为:S=sin xdx=﹣cos x|=﹣cosπ+cos0=2,则满足y>sin x的概率为.故选:B.9.(5分)已知函数的部分图象如图所示,△EFG是正三角形,为了得到的图象,只需将f(x)的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移1个单位长度D.向右平移1个单位长度【解答】解已知函数=sin (),∵△EFG是正三角形,∴sin×GF=.即GF=2.∴周期T=4.那么ω==.∴f(x)=sin()=sin(x)得到=sin(x)=sin(x)的图象,∴只需x向左平移1个单位长度即可.故选:C.10.(5分)《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P﹣ABC为鳖臑,P A⊥平面ABC,P A=AB=2,AC=4,三棱锥P﹣ABC 的四个顶点都在球O的球面上,则球O的表面积为()A.8πB.12πC.20πD.24π【解答】解:由题意,PC为球O的直径,PC==2,∴球O的半径为,∴球O的表面积为4π•5=20π,故选:C.11.(5分)直线y=2b与双曲线(a>0,b>0)的左、右两支分别交于B,C两点,A为右顶点,O为坐标原点,若∠AOC=∠BOC,则该双曲线的离心率为()A.B.C.D.【解答】解:设直线y=2b与y轴交于D点,由对称性可知∠BOD=∠COD,又∠AOC=∠BOC,∴∠AOC=2∠COD,又∠AOC+∠COD=90°,∴∠AOC=60°,把y=2b代入可得x=±a,即C(a,2b),∴=tan60°=,即b2=,∴e==.故选:D.12.(5分)已知定义在R上的函数y=f(x)对任意的x都满足f(x+2)=f(x),当﹣1≤x<1时,f(x)=sin x,若函数g(x)=f(x)﹣log a|x|至少6个零点,则a的取值范围是()A.(0,]∪(5,+∞)B.(0,)∪[5,+∞)C.(,]∪(5,7)D.(,)∪[5,7)【解答】解:当a>1时,作函数f(x)与函数y=log a|x|的图象如下,,结合图象可知,,故a>5;当0<a<1时,作函数f(x)与函数y=log a|x|的图象如下,,结合图象可知,,故0<a≤.故选:A.二、填空题:本题共4小题,每小题5分.13.(5分)在△ABC中,内角A,B,C所对的边长分别为a,b,c.a sin B cos C+c sin B cos A=且a>b,则∠B=30°.【解答】解:利用正弦定理化简得:sin A sin B cos C+sin C sin B cos A=sin B,∵sin B≠0,∴sin A cos C+cos A sin C=sin(A+C)=sin B=,∵a>b,∴∠A>∠B,∴∠B=30°.故答案为:30°14.(5分)甲、乙、丙三名同学中只有一人考了满分,当他们被问到谁考了满分时,甲说:丙没有考满分;乙说:是我考的;丙说:甲说真话.事实证明:在这三名同学中,只有一人说的是假话,那么得满分的同学是甲.【解答】解:假设甲说的是假话,即丙考满分,则乙也是假话,不成立;假设乙说的是假话,即乙没有考满分,又丙没有考满分,故甲考满分;故答案为:甲.15.(5分)已知点P(x,y)满足,过点P的直线与圆x2+y2=50相交于A,B两点,则|AB|的最小值为2.【解答】解:由约束条件作出可行域如图,联立,解得A(2,5).由图可知,可行域内的点中,A1到原点的距离最大,为,∴|AB|的最小值为2.故答案为:.16.(5分)设函数与g(x)=a2lnx+b有公共点,且在公共点处的切线方程相同,则实数b的最大值为.【解答】解:设公共点坐标为(x0,y0),则,所以有f'(x0)=g'(x0),即,解出x0=a(舍去),又y0=f(x0)=g(x0),所以有,故,所以有,对b求导有b'=﹣2a(1+lna),故b关于a的函数在为增函数,在为减函数,所以当时b有最大值.故答案为:.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)设数列{a n}的前n项和S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(1)求数列{a n}的通项公式;(2)记数列的前n项和T n,求得成立的n的最小值.【解答】解:(1)由已知S n=2a n﹣a1,有a n=S n﹣S n﹣1=2a n﹣2a n﹣1(n>1),即a n=2a n﹣1(n>1).从而a2=2a1,a3=4a1.又∵a1,a2+1,a3成等差数列,即a1+a3=2(a2+1).∴a1+4a1=2(2a1+1),解得a1=2.∴数列{a n}是首项为2,公比为2的等比数列.故;(2)由(1)得.∴.由,得,即2n>1000.∵29=512<1000<1024=210,∴n≥10.于是,使成立的n的最小值为10.18.(12分)某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如图).(Ⅰ)体育成绩大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;(Ⅱ)现从体育成绩在[60,70)和[80,90)的样本学生中随机抽取2人,求在抽取的2名学生中,体育成绩在[60,70)的学生人数X的分布列及数学期望.【解答】解:(Ⅰ)由折线图知,样本中体育成绩大于或等于70分的学生有30人所以该校高一年级学生中,“体育良好”的学生人数大约为:1000×=750人.…..(5分)(Ⅱ)体育成绩在[60,70)和[80,90)的样本学生中各有学生人数为2人和3人,现从体育成绩在[60,70)和[80,90)的样本学生中随机抽取2人,由题意X的可能取值为0,1,2,P(X=0)==,P(X=1)==,P(X=2)==,X的分布列为:E(X)==.….(12分)19.(12分)如图,矩形ACEF和等边三角形ABC中,AC=2,CE=1,平面ABC ⊥平面ACEF.(1)在EF上找一点M,使BM⊥AC,并说明理由;(2)在(1)的条件下,求平面ABM与平面CBE所成锐二面角余弦值.【解答】解:(1)M为线段EF的中点,理由如下:分别取AC、EF的中点O、M,连接OM,在等边三角形ABC中,AC⊥BO,又OM为矩形ACEF的中位线,AC⊥OM,而OM∩OB=O,∴AC⊥面BOM,∴BM⊥AC.(2)由(1)知OA,OB,OM两两互相垂直,建立空间直角坐标系O﹣xyz如图所示,AC=2,CE=1,三角形ABC为等边三角形,.∴,设面BCE的法向量,∴,得,则面BCE的一个法向量,又M是线段EF的中点,则M的坐标为M(0,0,1),∴,且,又设面ABM的法向量,由,得,取,则,面ABM的一个法向量=(),∴cosθ===,平面MAB与平面BCE所成锐二面角的余弦值为.20.(12分)已知椭圆C:=1(a>b>0)的离心率为,以椭圆长、短轴四个端点为顶点的四边形的面积为4.(Ⅰ)求椭圆C的方程;(Ⅱ)如图所示,记椭圆的左、右顶点分别为A、B,当动点M在定直线x=4上运动时,直线AM、BM分别交椭圆于P、Q两点,求四边形APBQ面积的最大值.【解答】解:(Ⅰ)根据题意,椭圆C:=1(a>b>0)的离心率为,则有a=2c,以椭圆长、短轴四个端点为顶点的四边形的面积为4,则有2ab=4,又a2=b2+c2,解得a=2,b=,c=1,故椭圆C的方程为+=1;(Ⅱ)由于对称性,可令点M(4,t),其中t>0.将直线AM的方程y=(x+2)代入椭圆方程+=1,得(27+t2)x2+4t2x+4t2﹣108=0,由x A•x P=,x A=﹣2得x P=﹣,则y P=.再将直线BM的方程y=(x﹣2)代入椭圆方程+=1得(3+t2)x2﹣4t2x+4t2﹣12=0,由x B•x Q=,x B=2得x Q=,则y Q=.故四边形APBQ的面积为S=|AB||y P﹣y Q|=2|y P﹣y Q|=2(+)===.由于λ=≥6,且λ+在[6,+∞)上单调递增,故λ+≥8,从而,有S=≤6.当且仅当λ=6,即t=3,也就是点M的坐标为(4,3)时,四边形APBQ的面积取最大值6.21.(12分)已知f(x)=xlnx+mx,且曲线y=f(x)在点(1,f(1))处的切线斜率为1.(1)求实数m的值;(2)设g(x)=f(x)﹣x2﹣x+a(a∈R)在其定义域内有两个不同的极值点x 1,x 2,且x 1<x 2,已知λ>0,若不等式e 1+λ<x 1•x 2λ恒成立,求λ的范围. 【解答】解:(1)f ′(x )=1+lnx +m ,由题意知,f ′(1)=1,即:m +1=1,解得 m =0; (2)∵e 1+λ<x 1•x 2λ等价于1+λ<lnx 1+λlnx 2.g (x )=f (x )﹣x 2﹣x +a =xlnx ﹣x 2﹣x +a ,由题意可知x 1,x 2 分别是方程g ′(x )=0,即:lnx ﹣ax =0的两个根, 即lnx 1=ax 1,lnx 2=ax 2.∴原式等价于1+λ<ax 1+λax 2=a (x 1+λx 2), ∵λ>0,0<x 1<x 2,∴原式等价于.又由lnx 1=ax 1,lnx 2=ax 2.作差得,,即.∴原式等价于,∵0<x 1<x 2,原式恒成立,即恒成立.令,t ∈(0,1),则不等式在t ∈(0,1)上恒成立. 令,又h ′(t )=,当λ2≥1时,可得t ∈(0,1)时,h ′(t )>0, ∴h (t )在t ∈(0,1)上单调增,又h (1)=0, h (t )<0在t ∈(0,1)恒成立,符合题意.当λ2<1时,可得t ∈(0,λ2)时,h ′(t )>0,t ∈(λ2,1)时,h ′(t )<0, ∴h (t )在t ∈(0,λ2)时单调增,在t ∈(λ2,1)时单调减,又h (1)=0, ∴h (t )在t ∈(0,1)上不能恒小于0,不符合题意,舍去.综上所述,若不等式e1+λ<x1•x2λ恒成立,只须λ2≥1,又λ>0,∴λ≥1.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](本小题满分10分)22.(10分)已知平面直角坐标系中,曲线C:x2+y2﹣6x﹣8y=0,直线,直线,以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系.(1)写出曲线C的参数方程以及直线l1,l2的极坐标方程;(2)若直线l1与曲线C分别交于O,A两点,直线l2与曲线C分别交于O,B 两点,求△AOB的面积.【解答】解:(1)依题意,曲线C:(x﹣3)2+(y﹣4)2=25,∴曲线C的参数方程是(α为参数),∵直线,直线,∴l1,l2的极坐标方程为;(2)∵曲线C的极坐标方程为ρ=6cosθ+8sinθ,把代入ρ=6cosθ+8sinθ,得,∴,把代入ρ=6cosθ+8sinθ,得,∴,∴.[选修4-5:不等式选讲](本小题满分0分)23.已知函数f(x)=2﹣x2,g(x)=|x﹣a|.(1)若a=1,解不等式f(x)+g(x)≥3;(2)若不等式f(x)>g(x)至少有一个负数解,求实数a的取值范围.【解答】解:(1)若a=1,则不等式f(x)+g(x)≥3化为2﹣x2+|x﹣1|≥3,当x≥1时,2﹣x2+x﹣1≥3,即x2﹣x+2≤0,(x﹣)2+≤0不成立;当x<1时,2﹣x2﹣x+1≥3,即x2+x≤0,解得﹣1≤x≤0.综上,不等式f(x)+g(x)≥3的解集为{x|﹣1≤x≤0}.(5分)(2)作出y=f(x)的图象如图所示:,当a<0时,g(x)的图象如折线①所示:由,得x2+x﹣a﹣2=0,若相切,则△=1+4(a+2)=0,得a=﹣,数形结合知,当a≤﹣时,不等式无负数解,则﹣<a<0.当a=0时,满足f(x)>g(x)至少有一个负数解.当a>0时,g(x)的图象如折线②所示:此时当a=2时恰好无负数解,数形结合知,当a≥2时,不等式无负数解,则0<a<2.综上所述,若不等式f(x)>g(x)至少有一个负数解,则实数a的取值范围是(﹣,2).(10分)。
最新-甘肃省河西五市部分2018届高三第一次联考理科数学试题及答案 精品

2018年1月甘肃省河西五市部分普通高中高三第一次联考数学试卷(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试用时120分钟.考试结束后,将试题纸和答题卡一并交回.第Ⅰ卷(选择题 共60分)一、选择题:(本大题共12小题.每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的). 1.已知集合{| lg(1)0}A x x =-≤,={|13}B x x -≤≤,则A B ⋂= ( ) A .[1,3]-B .[1,2]-C .1,3](D .1,2](2.复数z 满足1+)|i z i =(,则=z ( ) A .1+i B .1i -C .1i --D .1+i -3.设x R ∈ ,向量(,1),(1,2),a x b ==- 且a b ⊥ ,则||a b +=( )A B C . D .104.已知2:,10p m R x mx ∀∈--=有解,2000:,210q x N x x ∃∈--≤,则下列选项中是假命题的为 ( ) A .p q ∧ B .p q ⌝∧()C . p q ∨D .p q ⌝∨()5.函数||cosxy ln x =的图象大致是 ( )A .B .C .D .6.设k 是一个正整数,1+)k x k (的展开式中第四项的系数为116,记函数2y x =与y kx =的图象所围成的阴影部分为S ,任取[0,4]x ∈,[0,16]y ∈,则点)x y (,恰好落在阴影区域S 内的概率是 ( )A .23B .13C .25D .167.正项等比数列 {}n a 中的 1a ,4031a 是函数 321()4633f x x x x =-+-的极值点,则2016= ( )A .1-B .1 CD .2 8.一个几何体的三视图如上图所示,则这个几何体的体积为 ( )A+π8) B2)π+ C+2π8) D+π6)9.阅读如下图所示程序框图,运行相应的程序,则程序运行后输出的结果为 ( )A .7B .9C .10D .1110.已知点A 是抛物线214y x =的对称轴与准线的交点,点F 为该抛物线的焦点,点P 在抛物线上且满足||||PF m PA =,当m 取最小值时,点P 恰好在以A ,F 为焦点的双曲线上,则该双曲线的离心率为 ( ) ABC1 D111.体积为43π的球O 放置在棱长为4的正方体1111ABCD A B C D -上,且与上表面1111A B C D 相切,切点为该表面的中心,,则四棱锥O ABCD -的外接球的半径为 ( ) A .103B .3310C .2D .23612.已知函数3||,03()cos(),393log x x f x x x π<<⎧⎪=⎨-≤≤⎪⎩.若存在实数1x ,2x ,3x ,4x ,当1234x x x x <<<时 满足1234()()()()f x f x f x f x ===,则1234x x x x 的取值范围是 ( ) ( )A .2974(,)B .135214(,)C .[27,30)D .135274(,)第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13题第21题为必考题,每个试题考生都必修作答.第22题第24题为选考题,考生根据要求作答.二、填空题:(本大题共4小题,每小题5分,共20分). 13.已知倾斜角为α的直线l 与直线230x y +-=垂直,则2015cos(2)2πα-的值为 14.若实数(0,0)a b >>,且12=1a b +,则当28a b+的最小值为m ,函数()||1mx f x e lnx -=-的零点个数为15.已知不等式组002x y x y x -≥⎧⎪+≥⎨⎪≤⎩所表示的区域为D ,(,)M x y 是区域D 内的点,点(12)A -,,则z OA OM =的最大值为 .16.方程()f x x =的根称为函数()f x 的不动点,若函数()(5)xf x a x =+有唯一不动点,且11613x =,111()n nx f x +=()n N *∈,则2016x = . 三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤). 17.(本小题满分12分)已知ABC ∆中,a ,b ,c 分别是角A 、B 、C 的对边,且22,b c 是关于x 的一元二次方程22()0x a bc x m -++=的两根.(Ⅰ)求角A 的大小;(Ⅱ)若a ==B θ,ABC ∆的周长为y ,求()y f θ=的最大值.18.(本小题满分12分)在一次考试中,5名同学的数学、物理成绩如下表所示: (Ⅰ)根据表中数据,求物理分y 对数学分x 的回归直线方程;(Ⅱ)要从4名数学成绩在90分以上的同学中选出2名参加一项活动,以X 表示选中的同学中 物理成绩高于90分的人数,求随机变量X 的分布列及数学期望(X)E附:回归方程ˆˆˆybx a =+,12()(y )ˆ()niii nix x y b x x =--=-∑∑,ˆˆay bx =-,其中,x y 为样本平均数.19.(本小题满分12分)在三棱柱111ABC A B C -中,12AB BC CA AA ====, 侧棱1AA ⊥平面ABC ,且D ,E 分别是棱11A B ,1AA 的中点,点F 在棱AB 上,且14AF AB =. (Ⅰ)求证:||EF 平面1BDC ;(Ⅱ)求二面角1E BC D --的余弦值. 20.(本小题满分12分)已知椭圆M :2221(0)3x y a a +=>的一个焦点为(1,0)F -,左右顶点分别为A ,B . 经过点F 的直线l 与椭圆M 交于C ,D 两点.(Ⅰ)求椭圆方程;(Ⅱ)当直线l 的倾斜角为45 时,求线段CD 的长;(Ⅲ)记ABD ∆与ABC ∆的面积分别为1S 和2S ,求12||S S -的最大值.21.(本小题满分12分)已知函数2()(sin 2)x f x e x ax a e =-+-,其中a R ∈, 2.71828e = 为自然对数的底数. (Ⅰ)当0a =时,讨论函数()f x 的单调性; (Ⅱ)当112a ≤≤时,求证:对任意的[0,)x ∈+∞,()0f x <请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号.22.(本小题满分10分)选修4-1:几何证明选讲如图,ABC ∆内接于直径为BC 的圆O ,过点A 作圆O 的切线交CB 的延长线于点M ,BAC ∠的平分线分别交圆O 和BC 于点D ,E ,若5152MA MB ==. (Ⅰ)求证:52AC AB =(Ⅱ)求AE ·DE 的值.23.(本小题满分10分)选修4-4:坐标系与参数方程.(第19题图)(第22题图)已知直线l 的参数方程为431x t ay t =-+⎧⎨=-⎩(t 为参数),在直角坐标系o x y 中,以o 点为极点,x轴的非负半轴为极轴,以相同的长度单位建立极坐标系,设圆M 的方程为26sin 8ρρθ-=-. (Ⅰ)求圆M 的直角坐标方程;(Ⅱ)若直线l 截圆M a 的值.24.(本小题满分10分)选修4-5:不等式选讲已知不等式|2||2|18x x ++-<的解集为A . (Ⅰ)求集合A ;(Ⅱ)若,a b A ∀∈,(0,)x ∈+∞,不等式4a b x m x+<++ 恒成立,求实数m 的取值范围.2018年1月甘肃省河西五市部分普通高中高三第一次联合考试数学试卷(理科)参考答案一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的).13.45-; 14.1; 15.2; 16.2016.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17. (本小题满分12分)(Ⅰ)解:在△ABC 中,依题意有:222b c a bc +=+ 2分∴2221cos 22b c a A bc +-==,又(0)A π∈,,∴3A π= 6分(Ⅱ)解:由3a A π==及正弦定理得:2sin sin sin b c a B C A=== ∴222sin 2sin 2sin 2sin()2sin()33b Bc C B ππθθ====-=-, 8分故22sin 2sin()3y a b c πθθ=++=+- 即)6y πθ=+10分由203πθ<<得:5666πππθ<+<∴当62ππθ+=,即3πθ=时,max y = 12分 18. (本小题满分12分)解答:(Ⅰ) 1(8991939597)935x =++++=,1(8789899293)905y =++++= 2分∴52222221()=++0+2+4=40i i x x =-∑(-4)(-2)51()y )=30ii i xx y=--∑( ∴30ˆ=0.75,40b=ˆˆ20.5a y bx =-= 故物理分y 对数学分x 的回归直线方程是ˆ0.7520.25yx =+ 6分(Ⅱ)随机变量X 的所有可能取值为0,1,3. 7分22241P(X 0)6C C === 1122242P(X 1)3C C C === 22241P (X 2)6C C === 9分故X 的分布列为:∴121(X)0121636E =⨯+⨯+⨯= 12分19. (本小题满分12分)解答:(Ⅰ)证明(证法一):设O 为AB 的中点,连结A 1O ,∵AF =14AB ,O 为AB 的中点,∴F 为AO 的中点, 又E 为AA 1的中点,∴EF ∥A 1O .又∵D 为A 1B 1的中点,O 为AB 的中点,∴A 1D =OB . 又A 1D ∥OB ,∴四边形A 1DBO 为平行四边形. ∴A 1O ∥BD .又EF ∥A 1O ,∴EF ∥BD .又EF ⊄平面DBC 1,BD ⊂平面DBC 1.∴EF ∥平面DBC 1. 6分(证法二)建立如图所示的坐标系.(坐标系建立仅为参考) ∵AB =BC =CA =AA 1=2,D 、E 分别为A 1B 1、AA 1的中点, AF =14AB . E (-1,0,1),F (-12,0,0),B (1,0,0),D (0,0,2),C 1(0. 设平面DBC 1的法向量为n =(x ,y ,z ). yEF =(12,0,-1),BD =(-1,0,2),1BC=(-12).BD ·n =-x +2z =0,1BC ·n =-x+2z =0,令z =1,则y =0,x =2,∴n =(2,0,1).EF ·n =12×2+0×0+(-1)×1=0,∴EF ⊥n .又EF ⊄平面BDC 1,∴EF ∥平面BDC 1. 6分(Ⅱ)解:设平面EBC 1的法向量为m =(x ,y ,z ).BE =(-2,0,1),1BC =(-12).BE ·m =-2x +z =0,1BC ·n =-x+2z =0,令x =1,则z =2,ym =(1,2).cos< m ,n>=||||⋅==m n m n ||.∴二面角E -BC 1-D. 12分 20.(本小题满分12分) 解答:(I )因为(1,0)F -为椭圆的焦点,所以1,c =又23,b =所以24,a =所以椭圆方程为22143x y += 3分 (Ⅱ)因为直线的倾斜角为45 ,所以直线的斜率为1,所以直线方程为1y x =+,和椭圆方程联立得到221431x y y x ⎧+=⎪⎨⎪=+⎩,消掉y ,得到27880x x +-= 5分所以121288288,,77x x x x ∆=+=-=所以1224||||7CD x x =-=6分(Ⅲ)当直线l 无斜率时,直线方程为1x =-,此时33(1,),(1,)22D C ---, ,ABD ABC ∆∆面积相等,12||0S S -= 7分 当直线l 斜率存在(显然0k ≠)时,设直线方程为(1)(0)y k x k =+≠, 设1122(,),(,)C x y D x y和椭圆方程联立得到22143(1)x y y k x ⎧+=⎪⎨⎪=+⎩,消掉y 得2222(34)84120k x k x k +++-=显然0∆>,方程有根,且221212228412,3434k k x x x x k k-+=-=++ 8分 此时122121|||2||||||2||S S y y y y -=-=+212|(1)(1)|k x k x =+++21212||2|()2|34k k x x k k=++=+ 10分 因为0k ≠,上式1234||||k k =≤==+(k =所以12||S S -12分 (Ⅲ)另解:设直线l 的方程为:1-=my x ()R m ∈,则由⎪⎩⎪⎨⎧=+-=134122y x my x 得,()0964322=--+my y m .设()11y ,x C ,()22y ,x D ,则436221+=+m m y y ,0439221<+-=⋅m y y . 8分 所以,2121y AB S ⋅=,1221y AB S ⋅=, ()21122142121y y y y AB S S +⨯⨯=-=-43122+=m m 10分 当0m ≠时,=-21S S 343212431222=⨯≤+=mmm m ()R m ∈. 由432=m ,得 332±=m .当0=m 时,3021<=-S S 从而,当332±=m 时,21S S -取得最大值3. 12分 21.(本小题满分12分) 解答:(Ⅰ)当0a =时,()(sin )x f x e x e =-,x R ∈()(sin cos ))]4x x f x e x x e e x e π'=+-=+-, 2分当x R ∈)4x π+∴()0f x '<,∴()f x 在R 是单调递减的函数. 4分(Ⅱ)设2()sin 2g x x ax a e =-+-,[0,)x ∈+∞()cos 2g x x ax '=-,令()()cos 2h x g x x ax '==-,[0,)x ∈+∞则()sin 2h x x a '=--当112a ≤≤时,[0,)x ∈+∞,有()0h x '≤,∴()h x 在[0,)+∞上是减函数,即()g x '在[0,)+∞ 上是减函数. 6分又 (0)10g '=>,2()042g ππ'=<,∴()g x '存在唯一的0(0,)4x π∈,使得000()cos 2=0g x x ax '=-, 所以当00(0,)x x ∈时,()0g x '>,()g x 在区间0(0,)x 单调递增; 当00(,+)x x ∈∞时,()0g x '<,()g x 在区间0(+)x ∞,单调递减.因此在区间[0,)+∞ 2max 000()()sin 2g x g x x ax a e ==-+- 8分因为00cos 2=0x ax -,所以001=cos 2x x a,将其代入上式得 max ()=g x 220000111sin cos 2sin sin 2444x x a e x x a e a a a-+-=+-+-令00sin ,(0,)4t x x π=∈,则t ∈,即有()p t =211244t t a e a a +-+-,t ∈ 因为()p t 的对称轴20t a =-<,所以函数()p t在区间上是增函数,且112a ≤≤所以115()(2022828p t p a e e a <=-+-<+-<,(112a ≤≤),即任意[0,)x ∈+∞,()0g x <,所以()()0x f x e g x =<,因此任意[0,)x ∈+∞,()0f x < 12分 22.(本小题满分10分)解答:(Ⅰ)因为AM 是圆O 的切线,所以MAB ACB ∠=∠,且M ∠是公共角,所以ABM CAM ∆∆ ,所以52AC AM AB MB ==,所以52AC AB = 5分 (Ⅱ)由切割线定理得2MA MB =·MC ,所以75=2MC ,又6MB =,所以63=2BC又AD 是BAC ∠的角平分线,所以52AC CE AB BE ==,所以52CE BE =,所以452CE =, 9BE =.所以由相交弦定理得AE ·DE CE =·25405922BE =⨯= 10分23.(本小题满分10分)解答:(Ⅰ) 因为26sin 8ρρθ-=-⇒222268(3)1x y y x y +-=-⇒+-=所以圆M 的直角坐标方程为22(3)1x y +-= 5分 (Ⅱ) 把直线l 的参数方程431x t ay t =-+⎧⎨=-⎩(t 为参数)化为普通方程得: 34340x y a +-+=因为直线l 截圆M 所得弦长为,且圆M 的圆心M (0,3)到直线l 的距离|163|19522a a -=⇒=d=或376a = ,所以376a =或 92a = 10分 注:只要写对圆的方程,可以不化为标准方程,就可得5分,其它解法斟酌给分24.(本小题满分10分) 解答:(Ⅰ)若|2||2|18x x ++-<,则2(2)(2)18x x x <-⎧⎨-+--<⎩或22(2)(2)18x x x -≤≤⎧⎨+--<⎩或2(2)(2)18x x x >⎧⎨++-<⎩,解得99x -≤≤,(9,9)A ∴=- 5分(Ⅱ) ,,a b A a b ∀∈⇒∀∈ (-9,9),(18,18)a b ∴+∈-4x m m x ++≥ , min 4()4x m m x∴++=+,由题可知,418m +≥,14m ∴≥ 10分。
2018届高三上学期第一次联考数学试卷(理科) Word版含解析

2018届高三上学期第一次联考试卷数学(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.已知全集U=R ,集合A={x|x 2﹣2x <0},B={x|x ﹣1≥0},那么A ∩∁U B=( ) A .{x|0<x <1} B .{x|x <0} C .{x|x >2} D .{x|1<x <2}2.已知复数,其中a ,b ∈R ,i 是虚数单位,则|a+bi|=( )A .﹣1﹣3iB .C .10D .3.已知命题p :∃c >0,方程x 2﹣x+c=0 有解,则¬p 为( ) A .∀c >0,方程x 2﹣x+c=0无解 B .∀c ≤0,方程x 2﹣x+c=0有解 C .∃c >0,方程x 2﹣x+c=0无解 D .∃c <0,方程x 2﹣x+c=0有解4.函数的部分图象如图所示,则ω,ϕ的值为( )A .B .C .D .5.等比数列{a n }中,a 3=9,前3项和为,则公比q 的值是( )A .1B .C .1或D .﹣1或6.阅读算法框图,如果输出的函数值在区间[1,8]上,则输入的实数x 的取值范围是( )A.[0,2)B.[2,7] C.[2,4] D.[0,7]7.设向量=(,1),=(x,﹣3),且⊥,则向量﹣与的夹角为()A.30°B.60°C.120°D.150°8.已知函数y=a x,y=x b,y=logcx的图象如图所示,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a9.如图在直角梯形ABCD中AB=2AD=2DC,E为BC边上一点,,F为AE的中点,则=()A.B.C. D.10.已知函数f(x)=ax2﹣x,若对任意x1,x2∈[2,+∞),且x1≠x2,不等式>0恒成立,则实数a的取值范围是()A.B.C.D.11.已知函数f(x)=cos4x+sin2x,下列结论中错误的是()A.f(x)是偶函数B.函数f(x)最小值为C.函数f(x)在(0,)内是减函数D.是函数f(x)的一个周期12.已知函数f(x)的定义域为R.∀a,b∈R,若此函数同时满足:(i)当a+b=0时,有f(a)+f(b)=0;(ii)当a+b>0时,有f(a)+f(b)>0,则称函数f(x)为Ω函数.在下列函数中是Ω函数的是()①y=x+sinx;②y=3x﹣()x;③y=.A.①②B.①③C.②③D.①②③二、填空题:本题共4小题,每小题5分13.函数f(x)=的定义域为.14.(x+a)10的展开式中,x7的系数为15,则a= .15.若实数x,y满足约束条件,且z=x+2y有最大值8,则实数k= .16.《九章算术》是我国古代一部重要的数学著作,书中有如下问题:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢.”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”试确定离开长安后的第天,两马相逢.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.已知,其中ω>0,若f(x)的最小正周期为4π.(1)求函数f(x)的单调递增区间;(2)将函数y=f(x)图象上各点向左平移个单位长度,得到函数y=g(x)的图象,当x∈(﹣π,π)时,求函数g(x)的值域.18.已知数列{an }是公差为2的等差数列,数列{bn满足bn+1﹣bn=an,且b2=﹣18,b3=﹣24.(Ⅰ)求数列{an}的通项公式;(Ⅱ)求bn取得最小值时n的值.19.已知a,b,c分别为△ABC三个内角A,B,C的对边,且(Ⅰ)求∠B的大小;(Ⅱ)若a=2,AC边上的垂直平分线交边AB于点D且△DBC的面积为,求边c 的值.20.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).21.已知函数f(x)=e x(x2﹣a),a∈R.(Ⅰ)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若函数f(x)在(﹣3,0)上单调递减,试求a的取值范围;(Ⅲ)若函数f(x)的最小值为﹣2e,试求a的值.22.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.2018届高三上学期第一次联考试卷数学(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.已知全集U=R,集合A={x|x2﹣2x<0},B={x|x﹣1≥0},那么A∩∁B=()UA.{x|0<x<1} B.{x|x<0} C.{x|x>2} D.{x|1<x<2}【考点】交、并、补集的混合运算.【分析】分别求出A与B中不等式的解集,确定出A与B,找出A与B补集的交集即可.【解答】解:由A中的不等式变形得:x(x﹣2)<0,解得:0<x<2,即A={x|0<x<2},由B中的不等式解得:x≥1,即B={x|x≥1},∵全集U=R,B={x|x<1},∴∁UB)={x|0<x<1}.则A∩(∁U故选:A.2.已知复数,其中a,b∈R,i是虚数单位,则|a+bi|=()A.﹣1﹣3i B.C.10 D.【考点】复数代数形式的乘除运算.【分析】利用复数代数形式的乘除运算化简,再由复数相等的条件求得a,b的值,则答案可求.【解答】解:∵,∴由,得﹣a﹣2i=1+bi,∴,则a=﹣1,b=﹣2.∴|a+bi|=|﹣2﹣i|=.故选:B.3.已知命题p:∃c>0,方程x2﹣x+c=0 有解,则¬p为()A.∀c>0,方程x2﹣x+c=0无解B.∀c≤0,方程x2﹣x+c=0有解C.∃c>0,方程x2﹣x+c=0无解D.∃c<0,方程x2﹣x+c=0有解【考点】命题的否定.【分析】直接利用特称命题的否定是全称命题写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以,命题p :∃c >0,方程x 2﹣x+c=0 有解,则¬p 为∀c >0,方程x 2﹣x+c=0无解. 故选:A .4.函数的部分图象如图所示,则ω,ϕ的值为( )A .B .C .D .【考点】正弦函数的图象.【分析】结合函数的图象,由周期求出ω,再由函数图象经过点(,2),代入解析式Φ的值.【解答】解:由函数的图象可知,周期T=,可得T=π,∴ω=2函数图象经过点(,2),可得2=2sin (2×+Φ),∵Φ<,∴Φ=.故选B .5.等比数列{a n }中,a 3=9,前3项和为,则公比q 的值是( )A .1B .C .1或D .﹣1或 【考点】等比数列的通项公式;定积分.【分析】=3×=17=,a 3=9=,联立解出即可得出.【解答】解: =3×=27=,a=9=,3解得q=1或﹣.故选:C.6.阅读算法框图,如果输出的函数值在区间[1,8]上,则输入的实数x的取值范围是()A.[0,2)B.[2,7] C.[2,4] D.[0,7]【考点】程序框图.【分析】模拟程序框图的运行过程,得出该程序运行输出的是什么,由此得出解答来.【解答】解:根据题意,得当x∈(﹣2,2)时,f(x)=2x,∴1≤2x≤8,∴0≤x≤3;当x∉(﹣2,2)时,f(x)=x+1,∴1≤x+1≤8,∴0≤x≤7,∴x的取值范围是[0,7].故选:D.7.设向量=(,1),=(x,﹣3),且⊥,则向量﹣与的夹角为()A.30°B.60°C.120°D.150°【考点】平面向量数量积的运算.【分析】先根据向量的垂直求出x的值,再根据向量的夹角公式即可求出.【解答】解:向量=(,1),=(x,﹣3),且⊥,∴x﹣3=0,解得x=,∴﹣=(,1)﹣(,﹣3)=(0,4),∴|﹣|=4,||=2,(﹣)•=4,设向量﹣与的夹角为θ,∴cosθ===,∵0°≤θ≤180°,∴θ=60°.故选:B.8.已知函数y=a x,y=x b,y=logcx的图象如图所示,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a【考点】指数函数的单调性与特殊点.【分析】根据指数函数、对数函数与幂函数的图象与性质,用特殊值即可判断a、b、c的大小.【解答】解:根据函数的图象知,函数y=a x是指数函数,且x=1时,y=a∈(1,2);函数y=x b是幂函数,且x=2时,y=2b∈(1,2),∴b∈(0,1);函数y=logc x是对数函数,且x=2时,y=logc2∈(0,1),∴c>2;综上,a、b、c的大小是c>a>b.故选:C.9.如图在直角梯形ABCD中AB=2AD=2DC,E为BC边上一点,,F为AE的中点,则=()A.B.C. D.【考点】向量的线性运算性质及几何意义.【分析】如图所示,利用向量平行四边形法则、三角形法则、向量共线定理可得【解答】解:如图所示:=+, =, =﹣, =+, =,∴=﹣+(+﹣)=﹣+,故选:C10.已知函数f(x)=ax2﹣x,若对任意x1,x2∈[2,+∞),且x1≠x2,不等式>0恒成立,则实数a的取值范围是()A.B.C.D.【考点】函数单调性的判断与证明.【分析】对进行化简,转化为a(x1+x2)﹣1>0恒成立,再将不等式变形,得到a>,从而将恒成立问题转变成求的最大值,即可求出a的取值范围【解答】解:不妨设x2>x1≥2,====a(x1+x2)﹣1,∵对任意x1,x2∈[2,+∞),且x1≠x2,>0恒成立,∴x2>x1≥2时,a(x1+x2)﹣1>0,即a>恒成立∵x2>x1≥2∴∴a,即a的取值范围为[,+∞)故本题选D11.已知函数f(x)=cos4x+sin2x,下列结论中错误的是()A.f(x)是偶函数B.函数f(x)最小值为C.函数f(x)在(0,)内是减函数D.是函数f(x)的一个周期【考点】三角函数的化简求值.【分析】将函数化成只有一个函数名,结合三角函数的性质求解即可.【解答】解:函数f(x)=cos4x+sin2x=(1﹣sin2x)2+sin2x=sin4x﹣sin2x+1=(sin2x﹣)+.∵f(﹣x)=[(﹣sinx)2﹣]+=f(x),∴f(x)是偶函数.∴A选项对.当sin2x=时,函数f(x)取得最小值为.∴B选项对.当x=和时,f(x)的值相等,函数f(x)在(0,)不是单调函数,.∴C 选项不对.由f(x)的解析式可得,是函数f(x)的一个周期..∴D选项对.故选:C12.已知函数f(x)的定义域为R.∀a,b∈R,若此函数同时满足:(i)当a+b=0时,有f(a)+f(b)=0;(ii)当a+b>0时,有f(a)+f(b)>0,则称函数f(x)为Ω函数.在下列函数中是Ω函数的是()①y=x+sinx;②y=3x﹣()x;③y=.A.①②B.①③C.②③D.①②③【考点】分段函数的应用.【分析】容易判断函数①②为奇函数,且在定义域R上为增函数,可设y=f(x),容易得出这两函数满足Ω函数的两条,而函数③是奇函数,不是增函数,这样显然不能满足Ω函数的第②条,这样即可找出为Ω函数的函数序号.【解答】解:容易判断①②③都是奇函数;y′=1﹣cosx≥0,y′=ln3(3x+3﹣x)>0;∴①②都在定义域R上单调递增;③在定义域R上没有单调性;设y=f(x),从而对于函数①②:a+b=0时,a=﹣b,f(a)=f(﹣b)=﹣f(b);∴f(a)+f(b)=0;a+b>0时,a>﹣b;∴f(a)>f(﹣b)=﹣f(b);∴f(a)+f(b)>0;∴①②是Ω函数;对于函数③,a+b>0时,得到a>﹣b;∵f(x)不是增函数;∴得不到f(a)>f(﹣b),即得不出f(a)+f(b)>0.故选:A二、填空题:本题共4小题,每小题5分13.函数f(x)=的定义域为(0,)∪(2,+∞).【考点】对数函数的定义域.【分析】根据偶次根号下的被开方数大于等于零,分母不为0,对数的真数大于零,列出不等式组,进行求解再用集合或区间的形式表示出来.【解答】解:要使函数有意义,则∵∴log2x>1或log2x<﹣1解得:x>2或x所以不等式的解集为:0<x或x>2则函数的定义域是(0,)∪(2,+∞).故答案为:(0,)∪(2,+∞).14.(x+a)10的展开式中,x7的系数为15,则a= .【考点】二项式系数的性质.【分析】在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得x7的系数,再根据x7的系数为15,求得a的值.【解答】解:(x+a)10的展开式的通项公式为 Tr+1=•x10﹣r•a r,令10﹣r=7,求得r=3,可得x7的系数为a3•=120a3=15,∴a=,故答案为:.15.若实数x,y满足约束条件,且z=x+2y有最大值8,则实数k= ﹣4 .【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用z的几何意义即可得到结论.【解答】解:作出不等式组对应的平面区域,∵z=x+2y有最大值8,∴平面区域在直线x+2y=8的下方,由z=x+2y,得y=,平移直线y=,由图象可知当直线经过点B时,直线y=的截距最大,此时z最大为x+2y=8,由,得,即B(0,4),同时B也在2x﹣y=k上,∴﹣y=4,解得k=﹣4,故答案为:﹣416.《九章算术》是我国古代一部重要的数学著作,书中有如下问题:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢.”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”试确定离开长安后的第24 天,两马相逢.【考点】等差数列的前n项和.【分析】利用等差数列的求和公式与不等式的解法即可得出.【解答】解:由题意知,良马每日行的距离成等差数列,记为{an },其中a1=193,d=13;驽马每日行的距离成等差数列,记为{bn },其中b1=97,d=﹣0.5;设第m天相逢,则a1+a2+…+am+b1+b2+…+bm=193m++97m+=290m+×12.5≥2×3000,化为5m2+227m﹣1200≥0,解得m≥,取m=24.故答案为:24.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.已知,其中ω>0,若f(x)的最小正周期为4π.(1)求函数f(x)的单调递增区间;(2)将函数y=f(x)图象上各点向左平移个单位长度,得到函数y=g(x)的图象,当x∈(﹣π,π)时,求函数g(x)的值域.【考点】三角函数中的恒等变换应用;正弦函数的图象;函数y=Asin(ωx+φ)的图象变换.【分析】(1)化简函数,利用正弦函数的单调性,求函数f(x)的单调递增区间;(2)求出g(x)=sin(+),即可求出当x∈(﹣π,π)时,函数g(x)的值域.【解答】解:(1)=sin2ωx+cosωx=sin(2ωx+)…最小正周期为4π,∴=4π,∴ω=,∴f(x)=sin(+),由…得4kπ﹣≤x≤4kπ+,k∈Z,∴f(x)的单调递增区间为[4kπ﹣,4kπ+],k∈Z…(2)由(1)知f(x)=sin(2ωx+),将函数y=f(x)图象上各点向左平移个单位长度后,得到函数y=g(x)的图象,∴g(x)=sin(+)…∵,∴…10分∴函数g(x)的值域为…18.已知数列{an}是公差为2的等差数列,数列{bn满足bn+1﹣bn=an,且b2=﹣18,b3=﹣24.(Ⅰ)求数列{an}的通项公式;(Ⅱ)求bn取得最小值时n的值.【考点】数列递推式.【分析】(Ⅰ)由已知求得a2,结合公差求得首项,则数列{an}的通项公式可求;(Ⅱ)把数列{an}的通项公式代入bn+1﹣bn=an,利用累加法求得bn,结合二次函数求得bn取得最小值时n的值.【解答】解:(Ⅰ)由题意知d=2,再由bn+1﹣bn=an,且b2=﹣18,b3=﹣24,得a2=b3﹣b2=﹣6,则a1=a2﹣d=﹣6﹣2=﹣8,∴an=﹣8+2(n﹣1)=2n﹣10;(Ⅱ)bn+1﹣bn=2n﹣10,∴b2﹣b1=2×1﹣10,b3﹣b2=2×2﹣10,…bn﹣bn﹣1=2(n﹣1)﹣10(n≥2),累加得:bn=b1+2[1+2+…+(n﹣1)]﹣10(n﹣1)=b2﹣a1+2[1+2+…+(n﹣1)]﹣10(n﹣1),=﹣10+=.∴当n=5或6时,bn取得最小值为b5=b6=﹣30.19.已知a,b,c分别为△ABC三个内角A,B,C的对边,且(Ⅰ)求∠B的大小;(Ⅱ)若a=2,AC边上的垂直平分线交边AB于点D且△DBC的面积为,求边c 的值.【考点】余弦定理;三角函数的化简求值;正弦定理.【分析】(I)利用正弦定理、和差公式即可得出.(II)利用三角形面积计算公式、余弦定理即可得出.【解答】解:(Ⅰ)∵,…∴,…∴3sinBcosC+sinBsinC=3sinBcosC+3sinCcosB,∴,∵sinC≠0.∴,即,∴.…(Ⅱ)由,∴BD=1,…∴在△DBC中,,…∴,∴.…20.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).【考点】函数模型的选择与应用;基本不等式在最值问题中的应用.【分析】(Ⅰ)根据题意,函数v(x)表达式为分段函数的形式,关键在于求函数v(x)在20≤x≤200时的表达式,根据一次函数表达式的形式,用待定系数法可求得;(Ⅱ)先在区间(0,20]上,函数f(x)为增函数,得最大值为f(20)=1200,然后在区间[20,200]上用基本不等式求出函数f(x)的最大值,用基本不等式取等号的条件求出相应的x值,两个区间内较大的最大值即为函数在区间(0,200]上的最大值.【解答】解:(Ⅰ)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为.(Ⅱ)依题并由(Ⅰ)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200当20≤x≤200时,当且仅当x=200﹣x,即x=100时,等号成立.所以,当x=100时,f(x)在区间(20,200]上取得最大值.综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.答:(Ⅰ)函数v(x)的表达式(Ⅱ)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.21.已知函数f(x)=e x(x2﹣a),a∈R.(Ⅰ)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若函数f(x)在(﹣3,0)上单调递减,试求a的取值范围;(Ⅲ)若函数f(x)的最小值为﹣2e,试求a的值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)利用导数求出x=0处的切线斜率,根据点斜式写出切线方程;(2)函数f(x)在(﹣3,0)上单调递减,即当x∈(﹣3,0)时,x2+2x﹣a≤0恒成立.要使得“当x∈(﹣3,0)时,x2+2x﹣a≤0恒成立”,等价于即所以a≥3.(3)根据函数的单调性,得出函数f(x)的最小值只能在处取得.【解答】解:由题意可知f'(x)=e x(x2+2x﹣a).(Ⅰ)因为a=1,则f(0)=﹣1,f'(0)=﹣1,所以函数f(x)在点(0,f(0))处的切线方程为y﹣(﹣1)=﹣(x﹣0).即x+y+1=0.(Ⅱ)因为函数f(x)在(﹣3,0)上单调递减,所以当x∈(﹣3,0)时,f'(x)=e x(x2+2x﹣a)≤0恒成立.即当x∈(﹣3,0)时,x2+2x﹣a≤0恒成立.显然,当x∈(﹣3,﹣1)时,函数g(x)=x2+2x﹣a单调递减,当x∈(﹣1,0)时,函数g(x)=x2+2x﹣a单调递增.所以要使得“当x∈(﹣3,0)时,x2+2x﹣a≤0恒成立”,等价于即所以a≥3.(Ⅲ)设g(x)=x2+2x﹣a,则△=4+4a.①当△=4+4a≤0,即a≤﹣1时,g(x)≥0,所以f'(x)≥0.所以函数f(x)在(﹣∞,+∞)单增,所以函数f(x)没有最小值.②当△=4+4a>0,即a>﹣1时,令f'(x)=e x(x2+2x﹣a)=0得x2+2x﹣a=0,解得当x∈时,.所以.所以f(x)=e x(x2﹣a)>0.又因为函数f(x)的最小值为﹣2e<0,所以函数f(x)的最小值只能在处取得.所以.所以.易得.解得a=3.以下证明解的唯一性,仅供参考:设因为a>0,所以,.设,则.设h(x)=﹣xe x,则h'(x)=﹣e x(x+1).当x>0时,h'(x)<0,从而易知g(a)为减函数.当a∈(0,3),g(a)>0;当a∈(3,+∞),g(a)<0.所以方程只有唯一解a=3.22.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)运用两边平方和同角的平方关系,即可得到C1的普通方程,运用x=ρcosθ,y=ρsinθ,以及两角和的正弦公式,化简可得C2的直角坐标方程;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,代入椭圆方程,运用判别式为0,求得t,再由平行线的距离公式,可得|PQ|的最小值,解方程可得P的直角坐标.另外:设P(cosα,sinα),由点到直线的距离公式,结合辅助角公式和正弦函数的值域,即可得到所求最小值和P的坐标.【解答】解:(1)曲线C1的参数方程为(α为参数),移项后两边平方可得+y2=cos2α+sin2α=1,即有椭圆C1: +y2=1;曲线C2的极坐标方程为ρsin(θ+)=2,即有ρ(sinθ+cosθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,即有C2的直角坐标方程为直线x+y﹣4=0;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2﹣3=0,由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,解得t=±2,显然t=﹣2时,|PQ|取得最小值,即有|PQ|==,此时4x2﹣12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).。
2018年甘肃省河西五市部分普通高中高考数学一模试卷(理科)

2018年甘肃省河西五市部分普通高中高考数学一模试卷(理科)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目要求的.1. 设全集U=R,A={x|x2−2x>0},B={x|y=√x−1},则A∪∁U B=()A.(2, +∞)B.(−∞, 0)∪(2, +∞)C.(−∞, 1)∪(2, +∞)D.(−∞, 0)【答案】C【考点】交、并、补集的混合运算【解析】可解出A={x|x<0, 或x>2},B={x|x≥1},然后进行并集、补集的运算即可.【解答】A={x|x<0, 或x>2},B={x|x≥1};∴∁U B={x|x<1};∴A∪∁UB={x|x<1, 或x>2}=(−∞, 1)∪(2, +∞).2. 已知复数z=31−2i(i是虚数单位),则z=()A.3 5+65i B.35−65i C.15−25i D.15+25i【答案】B【考点】复数的运算【解析】利用复数代数形式的乘除运算化简求得z,再由共轭复数的概念得答案案.【解答】∵z=31−2i =3(1+2i)(1−2i)(1+2i)=35+65i,∴z=35−65i,3. 已知向量m→=(λ+1,1),n→=(λ+2,2),若(m→+n→)⊥(m→−n→),则λ=()A.−4B.−3C.−2D.−1【答案】B【考点】数量积判断两个平面向量的垂直关系【解析】直接利用向量的数量积化简求解即可.【解答】m→+n→=(2λ+3,3),m→−n→=(−1,−1),∴(2λ+3)×(−1)−3=0,∴λ=−3.4. 下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x=−1”是“x2−5x−6=0”的必要不充分条件C.命题“∃x>0,使得x2+x+1<0”的否定是:“∀x>0,均有x2+x+1≥0”D.命题“若x>y,则sinx>siny”的逆否命题为真命题【答案】C【考点】必要条件、充分条件与充要条件的判断命题的否定【解析】此题主要考查命题的否定以及必要条件、充要条件与充要条件的判断,对于命题的否命题和否定形式要注意区分,是易错点.【解答】解:对于A:因为否命题应为“若x2≠1,则x≠1”,故错误.对于B:因为x=−1⇒x2−5x−6=0,应为充分条件,故错误.对于D:因为逆否命题为若sinx≤siny,则x≤y,故错误.由排除法得到C正确.故选C.5. 如图所示的程序框图,程序运行时,若输入的S=−12,则输出的S的值为()A.4B.5C.8D.9【答案】C【考点】程序框图【解析】关键框图的流程依次计算程序运行的结果,直到不满足条件S≤n,跳出循环,确定输出S的值【解答】由程序框图知:第一次循环S=−12+2=−10,n=2;第二次循环S=−10+4=−6,n=3;第三次循环S=−6+6=0,n=4;第四次循环S=0+8=8,n=5.不满足条件S≤n,跳出循环,输出S=8.6. 某学校为了更好的培养尖子生,使其全面发展,决定由3名教师对5个尖子生进行“包教”,要求每名教师的“包教”学生不超过2人,则不同的“包教”方案有()A.60B.90C.150D.120【答案】B【考点】计数原理的应用【解析】先分组5个尖子生分为(2, 2, 1),再分配即可.【解答】5个尖子生分为(2, 2, 1),故其分组的方法有C52C32C11A22=15种,再分配给3名教师,共有15A33=90种,7. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A.163π B.112π C.173π D.356π【答案】A【考点】由三视图求体积【解析】判断三视图对应的解得组合体的形状,利用三视图数据求解几何体的体积即可.【解答】该几何体可以看成:在一个半球上叠加一个14圆锥,然后挖掉一个相同的14圆锥,所以该几何体的体积和半球的体积相等,因此V=23πr3=16π3,8. 若(x+1x +1)n的展开式中各项的系数之和为81,则分别在区间[0, π]和[0, n4]内任取两个实数x,y,满足y>sinx的概率为()A.1−1πB.1−2πC.1−3πD.12【答案】B【考点】二项式定理的应用【解析】根据几何概型的概率公式,求出对应事件对应的平面区域的面积,进行求解即可【解答】由题意知,令x=1,得到3n=81,解得n=4,∴0≤x≤π,0≤y≤1.作出对应的图象如图所示:则此时对应的面积S=π×1=π,满足y≥sinx的点构成区域的面积为:S=∫πsinxdx=−cosx|0π=−cosπ+cos0=2,则满足y>sinx的概率为P=1−2π.故选:B.9. 已知函数f(x)=2√3sin(ωx2−π8)cos(ωx2−π8)(ω>0)的部分图象如图所示,△EFG是正三角形,为了得到g(x)=√3sin(ωx+π4)的图象,只需将f(x)的图象()A.向左平移π2个单位长度B.向右平移π2个单位长度C.向左平移1个单位长度D.向右平移1个单位长度【答案】C【考点】函数y=Asin(ωx+φ)的图象变换【解析】此题暂无解析【解答】解:f(x)=2√3sin(ωx2−π8)cos(ωx2−π8)=√3sin(ωx−π4),由△EFG是正三角形可知|FG|=T2=2,即T=4,得ω=π2.所以f(x)=√3sin(π2x−π4)=√3sin[π2(x−1)+π4].又g(x)=√3sin(π2x+π4),故只需将f(x)的图象向左平移1个单位长度,即可得到g(x)的图象.故选C.10. 《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P−ABC为鳖臑,PA⊥平面ABC,PA=AB=2,AC=4,三棱锥P−ABC的四个顶点都在球O的球面上,则球O的表面积为()A.8πB.12πC.20πD.24π【答案】C【考点】球的体积和表面积【解析】由题意,PC为球O的直径,求出PC,可得球O的半径,即可求出球O的表面积.【解答】由题意,PC为球O的直径,PC=√4+16=2√5,∴球O的半径为√5,∴球O的表面积为4π⋅5=20π,11. 直线y=2b与双曲线x2a2−y2b2=1(a>0, b>0)的左、右两支分别交于B,C两点,A为右顶点,O为坐标原点,若∠AOC=∠BOC,则该双曲线的离心率为()A.√53B.√52C.√193D.√192【答案】D【考点】双曲线的特性【解析】根据图形对称性即可求出∠AOC=60∘,求出C点坐标即可得出a,b的关系,从而得出双曲线的离心率.【解答】设直线y=2b与y轴交于D点,由对称性可知∠BOD=∠COD,又∠AOC=∠BOC,∴∠AOC=2∠COD,又∠AOC+∠COD=90∘,∴∠AOC=60∘,把y=2b代入x2a2−y2b2=1可得x=±√5a,即C(√5a, 2b),∴√5a =tan60∘=√3,即b2=15a24,∴e=√a2+b2a =√192.12. 已知定义在R上的函数y=f(x)对任意的x都满足f(x+2)=f(x),当−1≤x<1时,f(x)=sinπ2x,若函数g(x)=f(x)−log a|x|至少6个零点,则a的取值范围是()A.(0, 15]∪(5, +∞) B.(0, 15)∪[5, +∞) C.(17, 15]∪(5, 7) D.(17, 15)∪[5, 7)【答案】 A【考点】函数零点的判定定理 【解析】分a >1与0<a <1讨论,结合题意作两个函数的图象,利用数形结合求解即可. 【解答】当a >1时,作函数f(x)与函数y =log a |x|的图象如下,,结合图象可知, {log a |−5|<1log a |5|<1, 故a >5;当0<a <1时,作函数f(x)与函数y =log a |x|的图象如下,,结合图象可知, {log a |−5|≥−1log a |5|≥−1 , 故0<a ≤15.二、填空题:本题共4小题,每小题5分.在△ABC 中,内角A ,B ,C 所对的边长分别为a ,b ,c .asinBcosC +csinBcosA =12b 且a >b ,则∠B =________. 【答案】 30∘【考点】两角和与差的三角函数 正弦定理 【解析】利用正弦定理化简已知等式,整理后求出sinB 的值,由a 大于b 得到A 大于B ,利用特殊角的三角函数值即可求出B 的度数. 【解答】利用正弦定理化简得:sinAsinBcosC +sinCsinBcosA =12sinB , ∵ sinB ≠0,∴ sinAcosC +cosAsinC =sin(A +C)=sinB =12,∵ a >b ,∴ ∠A >∠B , ∴ ∠B =30∘.甲、乙、丙三名同学中只有一人考了满分,当他们被问到谁考了满分时, 甲说:丙没有考满分; 乙说:是我考的; 丙说:甲说真话.事实证明:在这三名同学中,只有一人说的是假话,那么得满分的同学是________. 【答案】 甲【考点】进行简单的合情推理 【解析】利用反证法,即可得出结论. 【解答】假设甲说的是假话,即丙考满分,则乙也是假话,不成立;假设乙说的是假话,即乙没有考满分,又丙没有考满分,故甲考满分;已知点P(x, y)满足{x +y ≤7y ≥x x ≥2 ,过点P 的直线与圆x 2+y 2=50相交于A ,B 两点,则|AB|的最小值为________. 【答案】 2√21 【考点】 简单线性规划直线与圆的位置关系 【解析】由约束条件作出可行域,求出可行域内到原点距离最远的点,然后结合弦心距、圆的半径及弦长间的关系得答案. 【解答】由约束条件{x +y ≤7y ≥xx ≥2 作出可行域如图,联立{x =2x +y =7,解得A(2, 5). 由图可知,可行域内的点中,A 1 到原点的距离最大,为√29, ∴ |AB|的最小值为2√50−29=2√21.设函数f(x)=32x 2−2ax(a >0)与g(x)=a 2lnx +b 有公共点,且在公共点处的切线方程相同,则实数b 的最大值为________. 【答案】12e 2【考点】利用导数研究函数的最值 利用导数研究曲线上某点切线方程 【解析】设公共点坐标为(x 0, y 0),求出两个函数的导数,利用f ′(x 0)=g ′(x 0),推出b =32x 02−2ax 0−a 2lnx 0,然后构造函数,利用导函数单调性求解函数的最值即可.【解答】设公共点坐标为(x 0, y 0),则f ′(x)=3x −2a,g ′(x)=a 2x,所以有f ′(x 0)=g ′(x 0),即3x 0−2a =a 2x 0,解出x 0=a (x 0=−a3舍去),又y 0=f(x 0)=g(x 0),所以有32x 02−2ax 0=a 2lnx 0+b , 故b =32x 02−2ax 0−a 2lnx 0, 所以有b =−12a 2−a 2lna ,对b 求导有b ′=−2a(1+lna), 故b 关于a 的函数在(0,1e )为增函数,在(1e ,+∞)为减函数, 所以当a =1e 时b 有最大值12e 2.三、解答题:解答应写出文字说明、证明过程或演算步骤.设数列{a n }的前n 项和S n =2a n −a 1,且a 1,a 2+1,a 3成等差数列. (1)求数列{a n }的通项公式;(2)记数列{1a n}的前n 项和T n ,求得|T n −1|<11000成立的n 的最小值.【答案】由已知S n=2a n−a1,有a n=S n−S n−1=2a n−2a n−1(n>1),即a n=2a n−1(n>1).从而a2=2a1,a3=4a1.又∵a1,a2+1,a3成等差数列,即a1+a3=2(a2+1).∴a1+4a1=2(2a1+1),解得a1=2.∴数列{a n}是首项为2,公比为2的等比数列.故a n=2n;由(1)得1a n =12n.∴T n=12+122+123+⋯+12n=12[1−(12)n]1−12=1−12n.由|T n−1|<11000,得|1−12n−1|<11000,即2n>1000.∵29=512<1000<1024=210,∴n≥10.于是,使|T n−1|<11000成立的n的最小值为10.【考点】数列的求和【解析】(1)由已知S n=2a n−a1,有a n=S n−S n−1=2a n−2a n−1(n>1),得到a n=2a n−1(n>1).结合a1,a2+1,a3成等差数列列式求得a1=2.再由等比数列的通项公式求数列{a n}的通项公式;(2)由(1)得1a n =12n.利用等比数列的前n项和求得T n,代入|T n−1|<11000,去绝对值后求解指数不等式得答案.【解答】由已知S n=2a n−a1,有a n=S n−S n−1=2a n−2a n−1(n>1),即a n=2a n−1(n>1).从而a2=2a1,a3=4a1.又∵a1,a2+1,a3成等差数列,即a1+a3=2(a2+1).∴a1+4a1=2(2a1+1),解得a1=2.∴数列{a n}是首项为2,公比为2的等比数列.故a n=2n;由(1)得1a n =12n.∴T n=12+122+123+⋯+12n=12[1−(12)n]1−12=1−12n.由|T n−1|<11000,得|1−12n−1|<11000,即2n>1000.∵29=512<1000<1024=210,∴n≥10.于是,使|T n−1|<11000成立的n的最小值为10.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段[40, 50),[50, 60),[60, 70),[70, 80),[80, 90),[90, 100]进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如图).(Ⅰ)体育成绩大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;(Ⅱ)现从体育成绩在[60, 70)和[80, 90)的样本学生中随机抽取2人,求在抽取的2名学生中,体育成绩在[60, 70)的学生人数X的分布列及数学期望.【答案】(Ⅰ)由折线图知,样本中体育成绩大于或等于70分的学生有30人所以该校高一年级学生中,“体育良好”的学生人数大约为:1000×3040=750人.….. (Ⅱ)体育成绩在[60, 70)和[80, 90)的样本学生中各有学生人数为2人和3人,现从体育成绩在[60, 70)和[80, 90)的样本学生中随机抽取2人,由题意X的可能取值为0,1,2,P(X=0)=C32C52=310,P(X=1)=C21C31C52=35,P(X=2)=C22C52=110,X的分布列为:E(X)=0×310+1×35+2×110=45.….【考点】离散型随机变量的期望与方差【解析】(Ⅰ)由折线图知,样本中体育成绩大于或等于70分的学生有30人,由此能求出该校高一年级学生中,“体育良好”的学生人数.(Ⅱ)由题意X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】(Ⅰ)由折线图知,样本中体育成绩大于或等于70分的学生有30人所以该校高一年级学生中,“体育良好”的学生人数大约为:1000×3040=750人.…..(Ⅱ)体育成绩在[60, 70)和[80, 90)的样本学生中各有学生人数为2人和3人, 现从体育成绩在[60, 70)和[80, 90)的样本学生中随机抽取2人, 由题意X 的可能取值为0,1,2, P(X =0)=C 32C 52=310,P(X =1)=C 21C31C 52=35,P(X =2)=C 22C 52=110,X 的分布列为:E(X)=0×310+1×35+2×110=45.….如图,矩形ACEF 和等边三角形ABC 中,AC =2,CE =1,平面ABC ⊥平面ACEF . (1)在EF 上找一点M ,使BM ⊥AC ,并说明理由;(2)在(1)的条件下,求平面ABM 与平面CBE 所成锐二面角余弦值.【答案】解:(1)M 为线段EF 的中点,理由如下: 分别取AC ,EF 的中点O ,M ,连接OM , 在等边三角形ABC 中,AC ⊥BO ,又OM 为矩形ACEF 的中位线,AC ⊥OM , 而OM ∩OB =O , ∴ AC ⊥平面BOM , ∴ BM ⊥AC ;(2)由(1)知OA ,OB ,OM 两两互相垂直, 建立空间直角坐标系O −xyz ,AC =2,CE =1,三角形ABC 为等边三角形,O(0,0,0),B(0,√3,0),C(−1,0,0),E(−1,0,1),A(1,0,0),F(1,0,1). ∴ CB →=(1,√3,0),CE →=(0,0,1), 设平面BCE 的法向量n →=(x,y,z), ∴ {n →⋅CB →=0,n →⋅CE →=0,得{x +√3y =0,z =0,则平面BCE 的一个法向量n →=(√3,−1,0), 又M 是线段EF 的中点, 则M 的坐标为M(0, 0, 1),∴ AM →=(−1,0,1),且AB →=(−1,√3,0), 设平面ABM 的法向量m →=(a,b,c), 由{m →⋅AB →=0,m →⋅AM →=0, 得{−a +c =0,−a +√3b =0,取a =√3,则b =1,c =√3,∴ 平面ABM 的一个法向量m →=(√3,1,√3), ∴ cosθ=|m →⋅n →||m →|⋅|n →|=2√7=√77, ∴ 平面ABM 与平面CBE 所成锐二面角的余弦值为√77.【考点】用空间向量求平面间的夹角 两条直线垂直的判定 直线与平面垂直的判定 【解析】(1)分别取AC 、EF 的中点O 、M ,连接OM ,推导出AC ⊥BO ,AC ⊥OM ,从而AC ⊥面BOM ,由此能证明BM ⊥AC .(2)由OA ,OB ,OM 两两互相垂直,建立空间直角坐标系O −xyz ,由此能求出平面MAB 与平面BCE 所成锐二面角的余弦值. 【解答】解:(1)M 为线段EF 的中点,理由如下: 分别取AC ,EF 的中点O ,M ,连接OM , 在等边三角形ABC 中,AC ⊥BO ,又OM 为矩形ACEF 的中位线,AC ⊥OM , 而OM ∩OB =O , ∴ AC ⊥平面BOM , ∴ BM ⊥AC ;(2)由(1)知OA ,OB ,OM 两两互相垂直,建立空间直角坐标系O −xyz ,AC =2,CE =1,三角形ABC 为等边三角形,O(0,0,0),B(0,√3,0),C(−1,0,0),E(−1,0,1),A(1,0,0),F(1,0,1). ∴ CB →=(1,√3,0),CE →=(0,0,1), 设平面BCE 的法向量n →=(x,y,z), ∴ {n →⋅CB →=0,n →⋅CE →=0,得{x +√3y =0,z =0,则平面BCE 的一个法向量n →=(√3,−1,0), 又M 是线段EF 的中点, 则M 的坐标为M(0, 0, 1),∴ AM →=(−1,0,1),且AB →=(−1,√3,0), 设平面ABM 的法向量m →=(a,b,c), 由{m →⋅AB →=0,m →⋅AM →=0, 得{−a +c =0,−a +√3b =0,取a =√3,则b =1,c =√3,∴ 平面ABM 的一个法向量m →=(√3,1,√3), ∴ cosθ=|m →⋅n →||m →|⋅|n →|=2√7=√77, ∴ 平面ABM 与平面CBE 所成锐二面角的余弦值为√77.已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的离心率为12,以椭圆长、短轴四个端点为顶点的四边形的面积为4√3. (Ⅰ)求椭圆C 的方程;(Ⅱ)如图所示,记椭圆的左、右顶点分别为A 、B ,当动点M 在定直线x =4上运动时,直线AM 、BM 分别交椭圆于P 、Q 两点,求四边形APBQ 面积的最大值.【答案】(1)根据题意,椭圆C:x 2a2+y 2b 2=1(a >b >0)的离心率为12,则有a =2c ,以椭圆长、短轴四个端点为顶点的四边形的面积为4√3,则有2ab =4√3, 又a 2=b 2+c 2,解得a =2,b =√3,c =1, 故椭圆C 的方程为x 24+y 23=1;(2)由于对称性,可令点M(4, t),其中t >0. 将直线AM 的方程y =t6(x +2)代入椭圆方程x 24+y 23=1,得(27+t 2)x 2+4t 2x +4t 2−108=0, 由x A ⋅x P =4t 2−10827+t 2,x A =−2得x P =−2t 2−5427+t2,则y P =18t27+t 2. 再将直线BM 的方程y =t2(x −2)代入椭圆方程x 24+y 23=1得(3+t 2)x 2−4t 2x +4t 2−12=0, 由x B ⋅x Q =4t 2−123+t 2,x B =2得x Q =2t 2−63+t2,则y Q =−6t3+t 2. 故四边形APBQ 的面积为S =12|AB||y P −y Q |=2|y P −y Q |=2(18t27+t 2+6t3+t 2)=48t(9+t 2)(27+t 2)(3+t 2)=48t(9+t 2)(9+t 2)2+12t 2=489+t 2t+12t 9+t 2.由于λ=9+t2t≥6,且λ+12λ在[6, +∞)上单调递增,故λ+12λ≥8,从而,有S =48λ+12λ≤6.当且仅当λ=6,即t =3,也就是点M 的坐标为(4, 3)时,四边形APBQ 的面积取最大值6.【考点】 椭圆的离心率 椭圆的应用直线与椭圆的位置关系 【解析】(Ⅰ)根据题意,分析可得a =2c 且2ab =4√3,解可得a 、b 的值,将其代入椭圆的方程,即可得答案;(Ⅱ)令点M(4, t),其中t >0,将直线AM 的方程y =t6(x +2)代入椭圆方程x 24+y 23=1,得(27+t 2)x 2+4t 2x +4t 2−108=0,由根与系数的关系可以用t 表示x P 、y P .再将直线BM 的方程y =t2(x −2)代入椭圆方程x 24+y 23=1得(3+t 2)x 2−4t 2x +4t 2−12=0,同理可以用t 表示x Q 、y Q .进而可以用t 表示四边形APBQ 的面积为S ,结合基本不等式的性质分析可得答案. 【解答】(1)根据题意,椭圆C:x 2a 2+y 2b 2=1(a >b >0)的离心率为12,则有a =2c , 以椭圆长、短轴四个端点为顶点的四边形的面积为4√3,则有2ab =4√3,又a 2=b 2+c 2,解得a =2,b =√3,c =1, 故椭圆C 的方程为x 24+y 23=1;(2)由于对称性,可令点M(4, t),其中t >0. 将直线AM 的方程y =t6(x +2)代入椭圆方程x 24+y 23=1,得(27+t 2)x 2+4t 2x +4t 2−108=0, 由x A ⋅x P =4t 2−10827+t 2,x A =−2得x P =−2t 2−5427+t2,则y P =18t27+t 2. 再将直线BM 的方程y =t2(x −2)代入椭圆方程x 24+y 23=1得(3+t 2)x 2−4t 2x +4t 2−12=0, 由x B ⋅x Q =4t 2−123+t 2,x B =2得x Q =2t 2−63+t2,则y Q =−6t3+t 2. 故四边形APBQ 的面积为S =12|AB||y P −y Q |=2|y P −y Q |=2(18t27+t 2+6t3+t 2)=48t(9+t 2)(27+t )(3+t )=48t(9+t 2)(9+t )+12t =489+t 2t+12t9+t 2.由于λ=9+t2t≥6,且λ+12λ在[6, +∞)上单调递增,故λ+12λ≥8,从而,有S =48λ+12λ≤6.当且仅当λ=6,即t =3,也就是点M 的坐标为(4, 3)时,四边形APBQ 的面积取最大值6.已知f(x)=xlnx +mx ,且曲线y =f(x)在点(1, f(1))处的切线斜率为1. (1)求实数m 的值;(2)设g(x)=f(x)−a2x 2−x +a(a ∈R)在其定义域内有两个不同的极值点x 1,x 2,且x 1<x 2,已知λ>0,若不等式e 1+λ<x 1⋅x 2λ恒成立,求λ的范围. 【答案】f′(x)=1+lnx +m ,由题意知,f′(1)=1,即:m +1=1,解得 m =0;∵ e 1+λ<x 1⋅x 2λ 等价于1+λ<lnx 1+λlnx 2. g(x)=f(x)−a 2x 2−x +a =xlnx −a2x 2−x +a ,由题意可知x 1,x 2 分别是方程g′(x)=0,即:lnx −ax =0的两个根,即lnx 1=ax 1,lnx 2=ax 2.∴ 原式等价于1+λ<ax 1+λax 2=a(x 1+λx 2), ∵ λ>0,0<x 1<x 2,∴ 原式等价于a >1+λx 1+λx 2.又由lnx 1=ax 1,lnx 2=ax 2.作差得,ln x 1x 2=a(x 1−x 2),即a =lnx 1x 2x 1−x 2.∴ 原式等价于lnx 1x 2x 1−x 2>1+λx 1+λx 2,∵ 0<x 1<x 2,原式恒成立,即ln x1x 2<(1+λ)(x 1−x 2)x 1+λx 2恒成立.令t =x 1x 2,t ∈(0, 1), 则不等式lnt <(1+λ)(t−1)t+λ在t ∈(0, 1)上恒成立. 令ℎ(t)=lnt −(1+λ)(t−1)t+λ,又ℎ′(t)=1t −(1+λ)2(t+λ)2=(t−1)(t−λ2)t(t+λ)2,当λ2≥1时,可得t ∈(0, 1)时,ℎ′(t)>0, ∴ ℎ(t)在t ∈(0, 1)上单调增,又ℎ(1)=0, ℎ(t)<0在t ∈(0, 1)恒成立,符合题意.当λ2<1时,可得t ∈(0, λ2)时,ℎ′(t)>0,t ∈(λ2, 1)时,ℎ′(t)<0, ∴ ℎ(t)在t ∈(0, λ2)时单调增,在t ∈(λ2, 1)时单调减,又ℎ(1)=0, ∴ ℎ(t)在t ∈(0, 1)上不能恒小于0,不符合题意,舍去.综上所述,若不等式e 1+λ<x 1⋅x 2λ 恒成立,只须λ2≥1, 又λ>0,∴ λ≥1. 【考点】利用导数研究函数的极值利用导数研究曲线上某点切线方程 【解析】(1)求出原函数的导函数,得到f′(1),由f′(1)=1求得m 值;(2)求出g(x),求其导函数,可得lnx 1=ax 1,lnx 2=ax 2,不等式e 1+λ<x 1⋅x 2λ恒成立,转化为lnx 1x 2x 1−x 2>1+λx 1+λx 2恒成立,进一步转化为ln x1x 2<(1+λ)(x 1−x 2)x 1+λx 2恒成立.令t =x 1x 2,t ∈(0, 1),则不等式lnt <(1+λ)(t−1)t+λ在t ∈(0, 1)上恒成立.令ℎ(t)=lnt −(1+λ)(t−1)t+λ,求导可得满足条件的λ的范围. 【解答】f′(x)=1+lnx +m ,由题意知,f′(1)=1,即:m +1=1,解得 m =0;∵ e 1+λ<x 1⋅x 2λ 等价于1+λ<lnx 1+λlnx 2. g(x)=f(x)−a 2x 2−x +a =xlnx −a2x 2−x +a ,由题意可知x 1,x 2 分别是方程g′(x)=0,即:lnx −ax =0的两个根,即lnx 1=ax 1,lnx 2=ax 2.∴ 原式等价于1+λ<ax 1+λax 2=a(x 1+λx 2), ∵ λ>0,0<x 1<x 2,∴ 原式等价于a >1+λx 1+λx 2.又由lnx 1=ax 1,lnx 2=ax 2. 作差得,ln x 1x 2=a(x 1−x 2),即a =lnx 1x 2x 1−x 2.∴ 原式等价于lnx 1x 2x 1−x 2>1+λx1+λx 2,∵ 0<x 1<x 2,原式恒成立,即ln x1x 2<(1+λ)(x 1−x 2)x 1+λx 2恒成立.令t =x 1x 2,t ∈(0, 1), 则不等式lnt <(1+λ)(t−1)t+λ在t ∈(0, 1)上恒成立. 令ℎ(t)=lnt −(1+λ)(t−1)t+λ,又ℎ′(t)=1t −(1+λ)2(t+λ)2=(t−1)(t−λ2)t(t+λ)2,当λ2≥1时,可得t ∈(0, 1)时,ℎ′(t)>0, ∴ ℎ(t)在t ∈(0, 1)上单调增,又ℎ(1)=0, ℎ(t)<0在t ∈(0, 1)恒成立,符合题意.当λ2<1时,可得t ∈(0, λ2)时,ℎ′(t)>0,t ∈(λ2, 1)时,ℎ′(t)<0, ∴ ℎ(t)在t ∈(0, λ2)时单调增,在t ∈(λ2, 1)时单调减,又ℎ(1)=0, ∴ ℎ(t)在t ∈(0, 1)上不能恒小于0,不符合题意,舍去.综上所述,若不等式e 1+λ<x 1⋅x 2λ 恒成立,只须λ2≥1, 又λ>0,∴ λ≥1.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](本小题满分10分)已知平面直角坐标系中,曲线C:x 2+y 2−6x −8y =0,直线l 1:x −√3y =0,直线l 2:√3x −y =0,以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系. (1)写出曲线C 的参数方程以及直线l 1,l 2的极坐标方程;(2)若直线l 1与曲线C 分别交于O ,A 两点,直线l 2与曲线C 分别交于O ,B 两点,求△AOB 的面积. 【答案】依题意,曲线C :(x −3)2+(y −4)2=25,∴ 曲线C 的参数方程是{x =3+5cosαy =4+5sinα (α为参数),∵ 直线l 1:x −√3y =0,直线l 2:√3−y =0,∴ l 1,l 2的极坐标方程为l 1:θ=π6(ρ∈R),l 2:θ=π3(ρ∈R); ∵ 曲线C 的极坐标方程为ρ=6cosθ+8sinθ,把θ=π6代入ρ=6cosθ+8sinθ,得ρ1=4+3√3,∴ A(4+3√3,π6), 把θ=π3代入ρ=6cosθ+8sinθ,得ρ2=3+4√3,∴ B(3+4√3,π3), ∴ S △AOB =12ρ1ρ2sin∠AOB =12(4+3√3)(3+4√3)sin(π3−π6)=12+25√34. 【考点】圆的极坐标方程参数方程与普通方程的互化 【解析】(1)推导出曲线C :(x −3)2+(y −4)2=25,从而能求出曲线C 的参数方程,由直线l 1:x −√3y =0,直线l 2:√3−y =0,能求出l 1,l 2的极坐标方程.(2)曲线C 的极坐标方程为ρ=6cosθ+8sinθ,把θ=π6代入ρ=6cosθ+8sinθ,得A(4+3√3,π6),把θ=π3代入ρ=6cosθ+8sinθ,得B(3+4√3,π3),由此能求出△AOB的面积.【解答】依题意,曲线C:(x−3)2+(y−4)2=25,∴曲线C的参数方程是{x=3+5cosαy=4+5sinα(α为参数),∵直线l1:x−√3y=0,直线l2:√3−y=0,∴l1,l2的极坐标方程为l1:θ=π6(ρ∈R),l2:θ=π3(ρ∈R);∵曲线C的极坐标方程为ρ=6cosθ+8sinθ,把θ=π6代入ρ=6cosθ+8sinθ,得ρ1=4+3√3,∴A(4+3√3,π6),把θ=π3代入ρ=6cosθ+8sinθ,得ρ2=3+4√3,∴B(3+4√3,π3),∴S△AOB =12ρ1ρ2sin∠AOB=12(4+3√3)(3+4√3)sin(π3−π6)=12+25√34.[选修4-5:不等式选讲](本小题满分0分)已知函数f(x)=2−x2,g(x)=|x−a|.(1)若a=1,解不等式f(x)+g(x)≥3;(2)若不等式f(x)>g(x)至少有一个负数解,求实数a的取值范围.【答案】=0,得a=−94,数形结合知,当a≤−94时,不等式无负数解,则−94<a<0.当a=0时,满足f(x)>g(x)至少有一个负数解.当a>0时,g(x)的图象如折线②所示:此时当a=2时恰好无负数解,数形结合知,当a≥2时,不等式无负数解,则0<a<2.综上所述,若不等式f(x)>g(x)至少有一个负数解,则实数a的取值范围是(−94,.【考点】绝对值不等式的解法与证明【解析】(1)通过讨论x 的范围,得到关于x 的不等式,解出即可; (2)结合函数的图象以及二次函数的性质求出a 的范围即可. 【解答】若a =1,则不等式f(x)+g(x)≥3化为2−x 2+|x −1|≥3,当x ≥1时,2−x 2+x −1≥3,即x 2−x +2≤0,(x −12)2+74≤0不成立; 当x <1时,2−x 2−x +1≥3,即x 2+x ≤0,解得−1≤x ≤0. 综上,不等式f(x)+g(x)≥3的解集为{x|−1≤x ≤0}. 作出y =f(x)的图象。
甘肃省兰州市2018届高三一诊数学(理)试题有答案AlUHlH (2)

兰州市2018年高三诊断考试数学(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U R =,集合{|0}M x x =≥,集合2{|1}N x x =<,则()U M C N =I ( )A .(0,1)B .[0,1]C .[1,)+∞D .(1,)+∞2.已知复数512z i =-+(i 是虚数单位),则下列说法正确的是( ) A .复数z 的实部为5B .复数z 的虚部为12i C .复数z 的共轭复数为512i + D .复数z 的模为133.已知数列{}n a 为等比数列,且22642a a a π+=,则35tan()a a =( )A 3.3-.3.34.双曲线22221x y a b-=的一条渐近线与抛物线21y x =+只有一个公共点,则双曲线的离心率为( )A .54B .5C .54D 55.在ABC ∆中,M 是BC 的中点,1AM =,点P 在AM 上且满足2AP PM =u u u r u u u u r,则()PA PB PC ⋅+u u u r u u u r u u u r 等于( ) A .49-B .43-C .43D .496.数列{}n a 中,11a =,对任意*n N ∈,有11n n a n a +=++,令1i ib a =,*()i N ∈,则122018b b b ++⋅⋅⋅+=( ) A .20171009B .20172018C .20182019 D .403620197.若1(1)n x x ++的展开式中各项的系数之和为81,则分别在区间[0,]π和[0,]4n内任取两个实数x ,y ,满足sin y x >的概率为( ) A .11π-B .21π-C .31π-D .128.刘徽《九章算术注》记载:“邪解立方有两堑堵,邪解堑堵,其一为阳马,一为鳖臑,阳马居二,鳖臑居一,不易之率也”.意即把一长方体沿对角面一分为二,这相同的两块叫做堑堵,沿堑堵的一顶点与其相对的面的对角线剖开成两块,大的叫阳马,小的叫鳖臑,两者体积之比为定值2:1,这一结论今称刘徽原理.如图是一个阳马的三视图,则其外接球的体积为( )A .3π B .3π C .3π D .4π 9.某程序框图如图所示,则程序运行后输出的S 的值是( )A .1008B .2017C .2018D .302510.设p :实数x ,y 满足22(1)[(22)]x y -+-322≤-;q :实数x ,y 满足111x y x y y -≤⎧⎪+≥⎨⎪≤⎩,则p 是q的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要的条件11.已知圆C :22(1)(4)10x y -+-=和点(5,)M t ,若圆C 上存在两点A ,B 使得MA MB ⊥,则实数t 的取值范围是( )A .[2,6]-B .[3,5]-C .[2,6]D .[3,5] 12.定义在(0,)2π上的函数()f x ,已知'()f x 是它的导函数,且恒有cos '()sin ()0x f x x f x ⋅+⋅<成立,则有( ) A .()2()64f ππ>B 3()()63f ππ>C .()3()63f ππ>D .()3()64f ππ>二、填空题:本大题共4小题,每小题5分,共20分. 13.若2sin()45πα-=-,则cos()4πα+=. 14.已知样本数据1a ,2a ,……2018a 的方差是4,如果有2i i b a =-(1,2,,2018)i =⋅⋅⋅,那么数据1b ,2b ,……2018b 的均方差为.15.设函数()sin(2)f x x ϕ=+()2πϕ<向左平移3π个单位长度后得到的函数是一个奇函数,则ϕ=. 16.函数23()123x x f x x =+-+,23()123x x g x x =-+-,若函数()(3)(4)F x f x g x =+-,且函数()F x 的零点均在[,](,,)a b a b a b Z <∈内,则b a -的最小值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知向量(cos 2,sin 2)a x x =r ,(3,1)b =r ,函数()f x a b m =⋅+r r.(1)求()f x 的最小正周期; (2)当[0,]2x π∈时,()f x 的最小值为5,求m 的值.18.如图所示,矩形ABCD 中,AC BD G =I ,AD ⊥平面ABE ,2AE EB BC ===,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥平面BCE ;(2)求平面BCE 与平面CDE 所成角的余弦值.19.某地一商场记录了12月份某5天当中某商品的销售量y (单位:kg )与该地当日最高气温x (单位:C o)的相关数据,如下表:x119 8 5 2y7881012(1)试求y 与x 的回归方程y bxa =+; (2)判断y 与x 之间是正相关还是负相关;若该地12月某日的最高气温是6C o,试用所求回归方程预测这天该商品的销售量;(3)假定该地12月份的日最高气温2(,)X N μσ:,其中μ近似取样本平均数x ,2σ近似取样本方差2s ,试求(3.813.4)P X <<.附:参考公式和有关数据$1122211()()()nni i iii i nni ii i x y nx y x x y y b x nx x x a y bx====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑$$3.2≈1.8≈,若2(,)X N μσ:,则()0.6826P X μσμσ-<<+=,且(22)0.9544P X μσμσ-<<+=.20.已知圆C :22(1)8x y ++=,过(1,0)D 且与圆C 相切的动圆圆心为P . (1)求点P 的轨迹E 的方程;(2)设过点C 的直线1l 交曲线E 于Q ,S 两点,过点D 的直线2l 交曲线E 于R ,T 两点,且12l l ⊥,垂足为W (Q ,R ,S ,T 为不同的四个点).①设00(,)W x y ,证明:220012x y +<; ②求四边形QRST 的面积的最小值. 21.已知函数1()1x x t f x e x -+=-,其中e 为自然对数的底数. (1)证明:当1x >时,①1,②1x e x ->;(2)证明:对任意1x >,1t >-,有1()ln )2f x x >+.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题评分. 22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.已知直线l的参数方程是2x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 是参数),圆C 的极坐标方程为2cos()4πρθ=+. (1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,并切线长的最小值. 23.[选修4-5:不等式选讲]设函数()2f x x a x =-+,其中0a >.(1)当2a =时,求不等式()21f x x ≥+的解集; (2)若(2,)x ∈-+∞时,恒有()0f x >,求a 的取值范围.兰州市2018年高三诊断考试 数学(理科)试题参考答案及评分参考一、选择题1-5: CDADA 6-10: DBBAB 11、12:CC 二、填空题 13. 25-14. 2 15. 3π16. 10 三、解答题17.(1)由题意知:()cos(2,sin 2)f x x x =m ⋅+2sin 2x x m =++2sin(2)3x m π=++,所以()f x 的最小正周期为T π=. (2)由(1)知:()2sin(2)3f x x m π=++,当[0,]2x π∈时,42[,]333x πππ+∈.所以当4233x ππ+=时,()f x 的最小值为m .又∵()f x 的最小值为5,∴5m =,即5m =18.(1)因为AD ⊥面ABE ,所以AD AE ⊥, 又//BC AD ,所以BC AE ⊥. 因为BF ⊥面ACE ,所以BF AE ⊥.又BC BF B =I ,所以AE ⊥面BCF ,即AE ⊥平面BCE .(2)方法1:因为BF ⊥面ACE ,CE ⊂面ACE ,所以BF CE ⊥, 又BC BE =,所以F 为CE 中点,在DEC ∆中,22DE CE CD ===DF CE ⊥,BFD ∠为二面角B CE D --的平面角,222cos 2BF DF BD BFD BF DF +-∠=⋅⋅33226==-⋅⋅. ∴平面BCE 与平面CDE 3. 方法2:以E 为原点,EB 所在直线为x 轴,EA 所在直线为y 轴,过E 且垂直于平面ABE 的直线为z 轴建立空间直角坐标系,则相关点的坐标为(0,0,0)E ,(2,0,0)B ,(2,0,2)C ,(0,2,2)D ,设平面BCE 的法向量1n u r ,平面CDE 的法向量为2n u u r ,易知1(0,1,0)n =u r,令2(,,)n x y z =u u r ,则2200n EC n ED ⎧⋅=⎪⎨⋅=⎪⎩u u r u u u r u u r u u u r,故220220x z y z +=⎧⎨+=⎩,令1x =,得111x y z =⎧⎪=⎨⎪=-⎩,2(1,1,1)n =-u u r , 于是,12cos ,n n <>u r u u r 121213n n n n ⋅==⋅u r u u ru r u u r 33=此即平面BCE 与平面CDE 所成角的余弦值. 19.(1)由题意,7x =,9y =,1ni ii x y nx y =-∑28757928=-⋅⋅=-,221nii x nx =-∑22955750=-⋅=,280.5650b =-=-$,$a y bx =-$9(0.56)712.92=--⋅=. 所以所求回归直线方程为$0.5612.92y x =-+.(2)由0.560b=-<$知,y 与x 负相关.将6x =代入回归方程可得, $0.56612.929.56y =-⋅+=,即可预测当日销售量为9.56kg .(3)由(1)知7x μ≈=,23.2S σ≈=,所以(3.813.4)P X <<(2)P X μσμσ=-<<+1()2P X μσμσ=-<<+1(22)2P X μσμσ+-<<+0.8185=.20.解:(1)设动圆半径为r ,由于D 在圆内,圆P 与圆C 内切,则PC r =,PD r =,PC PD +=2CD >=, 由椭圆定义可知,点P 的轨迹E是椭圆,a =1c =,1b ==,E 的方程为2212x y +=.(2)①证明:由已知条件可知,垂足W 在以CD 为直径的圆周上,则有22001x y +=,又因Q ,R ,S ,T 为不同的四个点,220012x y +<. ②解:若1l 或2l 的斜率不存在,四边形QRST 的面积为2. 若两条直线的斜率存在,设1l 的斜率为1k , 则1l 的方程为1(1)y k x =+,解方程组122(1)12y k x x y =+⎧⎪⎨+=⎪⎩,得222(21)4k x k x ++2220k +-=,则QS =,同理得RT =∴12QSRTS QS RT =⋅2222(1)4(21)(2)k k k +=++2222(1)49(1)4k k +≥+169=, 当且仅当22212k k +=+,即1k =±时等号成立.综上所述,当1k =±时,四边形QRST 的面积取得最小值为169. 21.解:(1)令()ln 1)m x =,则1'()2m x x =-1)0=<,()m x 为(1,)+∞上的减函数,而(1)0m =,所以()ln 1)0m x =<,1<成立;令1()x n x ex -=-,则1'()10x n x e -=->,()n x 为(1,)+∞上的增函数,而(1)0n =,所以1()0x n x e x -=->,1x e x ->成立.(2)1()ln )2f x x >+,即11x x t e x -+-1ln )2x >+ln =+,由(1)1<,所以1+<,ln+x <=,所以,只需证11x x t x e x -+<-,即12()x x t e x x -+>-, 由(1)1x e x ->,所以只需证2()x x t x x +>-,只需证1x t x +>-,即1t >-, 上式已知成立,故原式成立,得证. 22.解:(1)∵ρθθ=,∴2cos sin ρθθ=,∴圆C的直角坐标方程为220x y +-=,即22((1x y -++=,∴圆心直角坐标为. (2)方法1:直线l 上的点向圆C 引切线长是==≥, ∴直线l 上的点向圆C引的切线长的最小值是方法2:直线l的普通方程为0x y -+=,∴圆心C 到直线l|5=,∴直线l 上的点向圆C=23.解:(1)当2a =时,2221x x x -+≥+, 所以21x -≥,所以3x ≥或1x ≤, 解集为(,1][3,)-∞+∞U . (2)3,(),x a x af x x a x a-≥⎧=⎨+<⎩,因为0a >,∴x a ≥时,320x a a -≥>恒成立,又x a <时,当2x >-时,2x a a +>-+,∴只需20a -+≥即可,所以2a ≥.。
2018年甘肃省第一次高考诊断理科数学试卷及解析

2018年甘肃省第一次高考诊断考试理科数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.1.设全集U R =,集合{}2A x x =≥,{}06B x x =≤<,则集合()U ()A.{}02x x <<B.{}02x x <≤C.{}02x x ≤<D.{}02x x ≤≤2.在复平面内复数34iz i+=、(i 是虚数单位)对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.向量(,1)a m =,(1,)b m =,则“1m =”是“//a b ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.若实数x ,y 满足10,10,0,x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩则2z x y =+的最大值是()A.-1B.1C.2D.35.某几何体挖去两个半球体后的三视图如图所示,若剩余几何体的体积为23π,则a 的值为()A.1B.2 C.22D.326.已知{}n a 是各项均为正数的等比数列,n S 为其前n 项和,若11a =,3564a a ⋅=,则6S =()A.65B.64C.63D.627.中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明.如图所示,在“勾股弦方图”中,以弦为边长得到的正方形ABCD 是由4个全等的直角三角形和中间的小正方形组成,这一图形被称作“赵爽弦图”.若7cos 225BAE ∠=,则在正方形ABCD 内随机取一点,该点恰好在正方形EFGH 内的概率为()A.2425B.45C.35D.1258.过直线23y x =+上的点作圆2246120x y x y +-++=的切线,则切线长的最小值为()A.19B.25C.21D.5559.如图所示,若程序框图输出的所有实数对(,)x y 所对应的点都在函数2()f x ax bx c =++的图象上,则1()0f x dx =⎰()A.1011B.1112C.1312D.121110.过双曲线2222:1x y C a b-=(0a >,0b >)的右焦点(22,0)F 作两条渐近线的垂线,垂足分别为,A B ,点O 为坐标原点,若四边形OAFB 的面积为4,则双曲线的离心率为()A.22B.2+1C.3D.211.如图,四棱锥P ABCD -的底面是边长为2的正方形,PA ⊥平面ABCD ,且4PA =,M 是PB 上的一个动点,过点M 作平面//α平面PAD ,截棱锥所得图形面积为y ,若平面α与平面PAD 之间的距离为x ,则函数()y f x =的图象是()A.B. C.D.12.对于任意0b >,a R ∈,不等式[][]222(2)ln (1)b a b a m m --+--≥-恒成立,则实数m 的最大值为()A.eB.2 C.eD.3第Ⅱ卷(共90分)二、填空题:本题共4小题(每题5分,满分20分,将答案填在答题纸上)13.二项式62()x x-的展开式中的常数项是.(用数字作答)14.已知数列{}n a 满足115a =,12()n n a a n N n *+-=∈,则n an的最小值为.15.在某班举行的成人典礼上,甲、乙、丙三名同学中的一人获得了礼物.甲说:“礼物不在我这”;乙说:“礼物在我这”;丙说:“礼物不在乙处”.如果三人中只有一人说的是真的,请问(填“甲”、“乙”或“丙”)获得了礼物.16.抛物线2:4C y x =的焦点为F ,过准线上一点N 作NF 的垂线交y 轴于点M ,若抛物线C 上存在点E ,满足2NE NM NF =+,则MNF ∆的面积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.ABC ∆中,三个内角,,A B C 的对边分别为,,a b c ,若(cos ,cos )m B C =,(2,)n a c b =+,且m n ⊥.(Ⅰ)求角B 的大小;(Ⅱ)若6b =,求ABC ∆周长的取值范围.18.四棱台被过点11,,A C D 的平面截去一部分后得到如图所示的几何体,其下底面四边形ABCD 是边长为2的菱形,60BAD ∠=︒,1BB ⊥平面ABCD ,12BB =.(Ⅰ)求证:平面1AB C ⊥平面1BB D ;(Ⅱ)若1AA 与底面ABCD 所成角的正切值为2,求二面角11A BD C --的余弦值.19.2017年12月,针对国内天然气供应紧张的问题,某市政府及时安排部署,加气站采取了紧急限气措施,全市居民打响了节约能源的攻坚战.某研究人员为了了解天然气的需求状况,对该地区某些年份天然气需求量进行了统计,并绘制了相应的折线图.(Ⅰ)由折线图可以看出,可用线性回归模型拟合年度天然气需示量y (单位:千万立方米)与年份x (单位:年)之间的关系.并且已知y 关于x 的线性回归方程是ˆˆ6.5yx a =+,试确定ˆa 的值,并预测2018年该地区的天然气需求量;(Ⅱ)政府部门为节约能源出台了《购置新能源汽车补贴方案》,该方案对新能源汽车的续航里程做出了严格规定,根据续航里程的不同,将补贴金额划分为三类,A 类:每车补贴1万元,B 类:每车补贴2.5万元,C 类:每车补贴3.4万元.某出租车公司对该公司60辆新能源汽车的补贴情况进行了统计,结果如下表:类型A 类B 类C 类车辆数目102030为了制定更合理的补贴方案,政府部门决定利用分层抽样的方式了解出租车公司新能源汽车的补贴情况,在该出租车公司的60辆车中抽取6辆车作为样本,再从6辆车中抽取2辆车进一步跟踪调查.若抽取的2辆车享受的补贴金额之和记为“ξ”,求ξ的分布列及期望.20.椭圆2222:1x y E a b+=(0a b >>)的左、右焦点分别为1F ,2F ,过2F 作垂直于x 轴的直线l 与椭圆E在第一象限交于点P ,若15PF =,且23a b =.(Ⅰ)求椭圆E 的方程;(Ⅱ)A ,B 是椭圆C 上位于直线l 两侧的两点.若直线AB 过点(1,1)-,且22APF BPF ∠=∠,求直线AB 的方程.21.已知函数()ln f x a x =,a R ∈.(Ⅰ)若曲线()y f x =与曲线()g x x =在公共点处有共同的切线,求实数a 的值;(Ⅱ)在(Ⅰ)的条件下,试问函数1()()12x xe F x xf x -=-+是否有零点?如果有,求出该零点;若没有,请说明理由.(二)选考题:共10分.请考生在第22、23题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑.按所涂题号进行评分不涂、多涂均按所答第一题评分;多答按所答第一题评分.22.选修4-4:坐标系与参数方程在平面直角坐标系中,曲线221:(3)(1)4C x y -+-=,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,将曲线1C 绕极点逆时针旋转6π后得到的曲线记为2C .(Ⅰ)求曲线1C ,2C 的极坐标方程;(Ⅱ)射线3πθ=(0p >)与曲线1C ,2C 分别交于异于极点O 的A ,B 两点,求AB .23.选修4-5:不等式选讲已知函数()2f x m x =--,m R ∈,且(1)0f x +≥的解集为[]0,2.(Ⅰ)求m 的值;(Ⅱ)若a ,b ,c R ∈,且11123m a b c++=,求证:239a b c ++≥.2018年甘肃省第一次高考诊断理科数学考试参考答案及评分标准一、选择题1-5:CDACB 6-10:CDABD11、12:DB二、填空题13.-16014.27415.甲16.322三、解答题17.解:(Ⅰ)∵m n ⊥,则有cos (2)cos 0B a c C b ⋅++⋅=,∴cos (2sin sin )cos sin 0B AC C B ⋅++⋅=∴2cos sin (sin cos cos sin )sin()sin B A C B C B B C A =-⋅+⋅=-+=-,∴1cos 2B =-,∴23B π=.(Ⅱ)根据余弦定理可知2222cos b a c ac B =+-,∴2236a c ac =++,又∵236()a c ac =+-,∴22()36()2a c a c ac ++-=≤,∴643a c <+≤,则ABC ∆周长的取值范围是(12,643⎤+⎦.18.解:(Ⅰ)∵1BB ⊥平面ABCD ,∴1BB AC ⊥.在菱形ABCD 中,BD AC ⊥,又1BD BB B ⋂=,∴AC ⊥平面1BB D ,∵AC ⊂平面1AB C ,∴平面1AB C ⊥平面1BB D .(Ⅱ)∵1BB ⊥平面ABCD∴1AA 与底面ABCD 所成角为1A AB ∠,∴1tan 2A AB ∠=,∴111A B =设BD ,AC 交于点O ,以O 为坐标原点,如图建立空间直角坐标系.则(0,1,0)B -,(0,1,0)D ,1(0,1,2)B -,(3,0,0)A .111131(,,2)222B A BA A =⇒- ,同理131(,,2)22C --,131(,,2)22BA = ,(0,2,0)BD = ,131(,,2)22BC =- .设平面1A BD 的法向量(,,)n x y z =,∴10,0,BA n BD n ⎧⋅=⎪⎨⋅=⎪⎩ 则(4,0,3)n =-,设平面1C BD 的法向量(,,)m x y z '''=,10,0,BD m BC m ⎧⋅=⎪⎨⋅=⎪⎩则(4,0,3)m =,设二面角11A BD C --为θ,13cos 19m n m n θ⋅==.19.解:(Ⅰ)如折线图数据可知2008201020122014201620125x ++++==236246257276286260.25y ++++==代入线性回归方程ˆˆ6.5yx a =+可得ˆ12817.8a =-.将2018x =代入方程可得ˆ299.2y=千万立方米.(Ⅱ)根据分层抽样可知A 类,B 类,C 类抽取人数分别为1辆,2辆,3辆则当A 类抽1辆,B 类抽1辆时,=3.5ξ,此时1112262( 3.5)15C C P C ξ===;当A 类抽1辆,C 类抽1辆时, 4.4ξ=,此时1113263( 4.4)15C C P C ξ===;当B 类抽1辆,C 类抽1辆时, 5.9ξ=,此时11232662( 5.9)155C C P C ξ====;当B 类抽2辆时,=5ξ,此时22261(5)15C P C ξ===;当C 类抽2辆时, 6.8ξ=,此时232631( 6.8)155C P C ξ====.所以ξ的分布列为:ξ3.54.45.956.8p2153152511515∴23211273.5 4.4 5.95 6.8151551555E ξ=⨯+⨯+⨯+⨯+⨯=(万元)20.解:(Ⅰ)由题可得223b PF a==,因为15PF =,由椭圆的定义得4a =,所以212b =,所以椭圆E 方程为2211612x y +=.(Ⅱ)易知点P 的坐标为(2,3).因为22APF BPF ∠=∠,所以直线PA ,PB 的斜率之和为0.设直线PA 的斜率为k ,则直线PB 的斜率为k -,设11(,)A x y ,22(,)B x y ,则直线PA 的方程为3(2)y k x -=-,由223(2)11612y k x x y -=-⎧⎪⎨+=⎪⎩可得222(3+4)8(32)4(32)480k x k k x k +-+--=,∴128(23)234k k x k ++=+同理直线PB 的方程为3(2)y k x -=--,可得2228(23)8(23)23434k k k k x k k---++==++,∴2122161234k x x k -+=+,1224834k x x k--=+,121212121212(2)3(2)3()412AB yy k x k x k x x k k x x x x x x --++--+-====---,∴满足条件的直线AB 的方程为11(1)2y x +=-,即为230x y --=.21.解:(Ⅰ)函数()ln f x a x =的定义域为(0)+∞,,()af x x '=,1()2g x x'=设曲线()y f x =与曲线()g x x =公共点为00(,)x y 由于在公共点处有共同的切线,所以0012a x x =,解得204x a =,0a >.由00()()f x g x =可得00ln a x x =.联立20004,ln ,x a a x x ⎧=⎪⎨=⎪⎩解得2ea =.(Ⅱ)函数1()()12xxe F x xf x -=-+是否有零点,转化为函数()()ln 2eH x xf x x x==与函数1()12xxe G x -=-在区间(0,)x ∈+∞是否有交点,()()ln 2eH x xf x x x ==,可得()ln (1ln )222eeeH x x x '=+=+,令()0H x '>,解得1(,)x e ∈+∞,此时函数()H x 单调递增;令()0H x '<,解得1(0,)x e ∈,此时函数()H x 单调递减.∴当1x e =-时,函数()H x 取得极小值即最小值,11()2H e =-.1()12xxe G x -=-可得11()(1)2xG x x e -'=-,令()0G x '>,解得01x <<,此时函数()G x 单调递增;令()0G x '<,解得1x >,此时函数()G x 单调递减.∴当1x =时,函数()G x 取得极大值即最大值,1(1)2G =-.因此两个函数无交点.即函数1()()12xxe F x xf x -=-+无零点.22.解:曲线221:(3)(1)4C x y -+-=化为极坐标方程是23cos 2sin ρθθ=+设曲线2C 上的点(,)Q ρθ绕极点顺时针旋转6π后得到(,)6P πρθ-在1C 上,代入可得2C 的极坐标方程是2cos 23sin ρθθ=+.(Ⅱ)将3πθ=(0ρ>)分别代入1C ,2C 的极坐标方程,得到123ρ=,24ρ=12423AB ρρ=-=-.23.(Ⅰ)()01011f x m x m x m≥⇒--≥⇒-≤≤+由(+1)0f x ≥的解集为[]02,可知1m =.(Ⅱ)111123a b c++=则111233223(22)()111232233b c a c a b a b c a b c a b c a a b b c c++=++++=++++++++233233692323b a c a c b a b a c b c=++++++≥+=当且仅当23a b c ==时等号成立,即3a =,32b =,1c =时等号成立.。
2018年甘肃省高考数学一诊试卷(理科)

2018年甘肃省高考数学一诊试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集U =R ,集合A ={x|x ≥2},B ={x|0≤x <6},则集合(∁U A)∩B =( ) A.{x|0<x <2} B.{x|0<x ≤2} C.{x|0≤x <2} D.{x|0≤x ≤2} 【答案】 C【考点】交、并、补集的混合运算 【解析】求出∁U A ,再由交集的定义,可得(∁U A)∩B . 【解答】全集U =R ,集合A ={x|x ≥2}, ∁U A ={x|x <2}, 又B ={x|0≤x <6},可得(∁U A)∩B ={x|0≤x <2},2. 在复平面内复数z =3+4i i(i 是虚数单位)对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】 D【考点】复数的代数表示法及其几何意义 【解析】利用复数代数形式的乘除运算化简,求出z 的坐标得答案. 【解答】 ∵ z =3+4i i=(3+4i)(−i)−i 2=4−3i ,∴ 在复平面内复数z 对应的点的坐标为(4, −3),在第四象限.3. 向量a →=(m, 1),b →=(1, m),则“m =1”是“a → // b →”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 【答案】 A【考点】充分条件、必要条件、充要条件 【解析】a → // b →⇔m 2−1=0,解得m ,即可判断出判断出结论. 【解答】a → // b →⇔m 2−1=0,解得m =±1. ∴ “m =1”是“a → // b →”的充分必要条件.4. 若实数x ,y 满足{x −y +1≥0x +y −1≤0y ≥0 ,则z =x +2y 的最大值是( )A.−1B.1C.2D.3【答案】 C【考点】 简单线性规划 【解析】作出不等式组对应的平面区域,利用z 的几何意义,利用数形结合即可得到结论. 【解答】作出不等式组对应的平面区域如图: 设z =x +2y 得y =−12x +12z ,平移直线y =−12x +12z ,由图象可知当直线y =−12x +12z 经过点A(0, 1)时, 直线y =−12x +12z 的截距最大,此时z 最大, 此时z =2,5. 某几何体挖去两个半球体后的三视图如图所示,若剩余几何体的体积为2π3,则a 的值为(A.2√2B.2C.1D.√23【答案】 B【考点】由三视图求体积 【解析】首先根据三视图整理出复原图,进一步利用体积公式求出结果. 【解答】该几何体是由一个圆柱体挖去两个半球, 则:2π3=π∗(a 2)2−4π(a 2)33,解得:a=26. 已知{a n}是各项均为正数的等比数列,S n为其前n项和,若a1=1,a3⋅a5=64,则S6=()A.65B.64C.63D.62【答案】C【考点】等比数列的性质等比数列的前n项和【解析】根据题意,数列{a n}的公比为q,由等比数列的通项公式可得a1q2×a1q4=q6=64,解可得q的值,由等比数列的前n项和公式计算可得答案.【解答】根据题意,各项均为正数的等比数列{a n}中,设其公比为q,若a1=1,a3⋅a5=64,则有a1q2×a1q4=q6=64,又由q>0,则q=2,S6=a1(1−q6)1−q=63;7. 中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明.如图所示,在“勾股弦方图”中,以弦为边长得到的正方形ABCD是由4个全等的直角三角形和中间的小正方形组成,这一图形被称作“赵爽弦图”.若cos2∠BAE=725,则在正方形ABCD内随机取一点,该点恰好在正方形EFGH内的概率为()A.24 25B.45C.35D.125【答案】D【考点】几何概型计算(与长度、角度、面积、体积有关的几何概型)【解析】由已知求得cos∠BAE=45,设勾股形的勾股数分别为3,4,则弦为5,利用面积比得答案.【解答】由cos2∠BAE=725,得2cos2∠BAE−1=725,∴cos∠BAE=45,设勾股形的勾股数分别为3,4,则弦为5,故大正方形的面积为25,小正方形的面积为(4−3)2=1,∴在正方形ABCD内随机取一点,该点恰好在正方形EFGH内的概率为125.8. 过直线y=2x+3上的点作圆x2+y2−4x+6y+12=0的切线,则切线长的最小值为()A.√19B.2√5C.√21D.√555【答案】A【考点】圆的切线方程直线与圆相交的性质【解析】要使切线长最小,需直线y=2x+3上的点和圆心之间的距离最短,求出圆心到直线y=2x+3的距离d,可得切线长的最小值为√d2−r2.【解答】化圆x2+y2−4x+6y+12=0为(x−2)2+(y+3)2=1,要使切线长最小,需直线y=2x+3上的点和圆心之间的距离最短,此最小值即为圆心(2, −3)到直线y=2x+3的距离d,d=√5=2√5,故切线长的最小值为√d2−r2=√19,9. 如图所示,若程序框图输出的所有实数对(x, y)所对应的点都在函数f(x)=ax2+bx+c的图象上,则∫1f(x)dx=()A.10 11B.1112C.1312D.1211【答案】B【考点】程序框图【解析】由已知中的程序框图给出满足条件的点,进而求出函数解析式,积分可得答案.【解答】当x =1,y =1时,满足进行循环的条件,输出(1, 1),x =2,y =2; 当x =2,y =2时,满足进行循环的条件,输出(2, 2),x =3,y =4; 当x =3,y =4时,满足进行循环的条件,输出(3, 4),x =4,y =8; 当x =4,y =8时,不满足进行循环的条件, 故{a +b +c =14a +2b +c =29a +3b +c =4,解得:{a =12b =−12c =1故f(x)=12x 2−12x +1,故∫1f(x)dx =(16x 3−14x 2+x)|01=1112,10. 过双曲线C:x 2a 2−y 2b 2=1(a >0, b >0)的右焦点F(2√2,0)作两条渐近线的垂线,垂足分别为A ,B ,点O 为坐标原点,若四边形OAFB 的面积为4,则双曲线的离心率为( )A.2√2B.√2+1C.√3D.√2【答案】 D【考点】 双曲线的特性 【解析】四边形OAFB 的面积为4,则S △OAF =2,运用三角形的面积公式,结合a ,b ,c 的关系,解得a =b =2,即可得到双曲线离心率的值. 【解答】过双曲线C:x 2a 2−y 2b 2=1(a >0, b >0)的右焦点F(2√2,0)作两条渐近线的垂线,垂足分别为A ,B ,点O 为坐标原点,若四边形OAFB 的面积为4,在Rt △OAF 中,|AF|=c ⋅sin∠AOF =c ⋅b c =b ,同理,|OA|=a ,∴ S △OAF =12|OA|⋅|AF|=12ab ,又S △OAF =2,∴ ab =4,而c =2√2,即a 2+b 2=8,∴ a =b =2,∴ e =√2.11. 如图,四棱锥P −ABCD 的底面是边长为2的正方形,PA ⊥平面ABCD ,且PA =4,M 是PB 上的一个动点,过点M 作平面α // 平面PAD ,截棱锥所得图形面积为y ,若平面α与平面PAD 之间的距离为x ,则函数y =f(x)的图象是( )A.B.C. D.【答案】D【考点】空间向量的夹角与距离求解公式【解析】过M作MN⊥平面ABCD,交AB于N,过N作NQ // AD,交CD于Q,过Q作QH // PD,交PC于H,连结MH,则平面MNQH是所求的平面α,由此能求出结果.【解答】过M作MN⊥平面ABCD,交AB于N,过N作NQ // AD,交CD于Q,过Q作QH // PD,交PC于H,连结MH,则平面MNQH是所求的平面α,∵过点M作平面α // 平面PAD,截棱锥所得图形面积为y,平面α与平面PAD之间的距离为x,∴2−x2=MN4,解得MN=4−2x,AN AB =PMPB=MHBC,即x2=MH2,∴MH=x,NQ=2,∴函数y=f(x)=x+22⋅(4−2x)=−x2+4,(0<x<2).∴函数y=f(x)的图象如下图.12. 对于任意b>0,a∈R,不等式[b−(a−2)]2+[lnb−(a−1)]2≥m2−m恒成立,则实数m的最大值为()A.√eB.2C.eD.3【答案】B【考点】函数与方程的综合运用【解析】根据两点间的距离公式和函数图象求出[b−(a−2)]2+[lnb−(a−1)]2的最小值,再解出m的范围.【解答】令A(b, lnb),B(a−2, a−1),则|AB|2=[b−(a−2)]2+[lnb−(a−1)]2.且A在函数y=lnx的图象上,B在直线y=x+1上.设直线y=x+c与y=lnx相切,切点为C(p, q),则{1p=1q=lnpq=p+c,解得p=1,q=0,c=−(1)∴|AB|的最小值为C(1, 0)到直线y=x+1的距离√2,∴[b−(a−2)]2+[lnb−(a−1)]2≥2,∴2≥m2−m,解得−1≤m≤(2)故选:B.二、填空题:本题共4小题(每题5分,满分20分,将答案填在答题纸上)二项式(√x−2x)6展开式中常数项为________.【答案】60【考点】二项式定理及相关概念【解析】先求得二项式展开式的通项公式,再令x的幂指数等于0,求得r的值,即可求得常数项的值.【解答】二项式(√x−2x )6的展开式的通项公式为Tr+1=C6r⋅(−2)r⋅x6−3r2,令6−3r2=0,求得r=2,故展开式中常数项为C62⋅22=60,已知数列{a n}满足a1=15,a n+1−a nn =2,则a nn的最小值为________.【答案】274【考点】数列递推式【解析】把已知数列递推式变形,利用累加法求出数列的通项公式,得到a nn关于n的函数,然后利用函数单调性求得最小值.【解答】由a n+1−a nn=2,得a n+1−a n=2n,∵a1=15,∴a n=a1+(a2−a1)+(a3−a2)+...+(a n−a n−1)=15+2+4+...+2(n−1)=15+2×n(n−1)2=n2−n+(15)∴a nn =n+15n−1,令f(x)=x+15x −1,得f′(x)=1−15x2=x2−15x2,∴当n取1,2,3时,n+15n −1减小,当n取大于等于4的自然数时n+15n−1的值增大.∵n=3时,a nn =3+5−1=7;n=4时,a nn=4+154−1=274.∴a nn 的最小值为274.在某班举行的成人典礼上,甲、乙、丙三名同学中的一人获得了礼物.甲说:“礼物不在我这”;乙说:“礼物在我这”;丙说:“礼物不在乙处”.如果三人中只有一人说的是真的,请问________(填“甲”、“乙”或“丙”)获得了礼物.【答案】甲【考点】进行简单的合情推理【解析】假设甲说的是真的,即礼物不在甲处,根据三人中只有一人说的是真的推出矛盾结论,可知假设错误,从而得到答案.【解答】假设甲说的是真的,即礼物不在甲处,∵三人中只有一人说的是真的,则乙、丙说的是假的,∴由乙说话可知礼物不在乙处,由并说话可知礼物在乙处,矛盾.故假设错误,即甲说的是假的,则礼物在甲处.抛物线C:y2=4x的焦点为F,过准线上一点N作NF的垂线交y轴于点M,若抛物线C上存在点E,满足2NE→=NM→+NF→,则△MNF的面积为________.【答案】3√22【考点】抛物线的求解【解析】根据抛物线的性质和2NE→=NM→+NF→可知NE // x轴,从而可得E点坐标,求出M、N的坐标,计算MN,NF即可求出三角形的面积.【解答】准线方程为x=−1,焦点为F(1, 0),不妨设N在第三象限,∵2NE→=NM→+NF→,∴E是MF的中点,∴NE=12MF=EF,∴NE // x轴,又E为MF的中点,E在抛物线y2=4x上,∴ E(12, −√2),∴ N(−1, −√2),M(0, −2√2), ∴ NF =√6,MN =√3, ∴ S △MNF =12×√6×√3=3√22三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若m →=(cosB, cosC),n →=(2a +c, b),且m →⊥n →. (Ⅰ)求角B 的大小;(Ⅱ)若b =6,求△ABC 周长的取值范围. 【答案】(1)∵ m ⊥n ,则有cosB ⋅(2a +c)+cosC ⋅b =0, ∴ cosB ⋅(2sinA +sinC)+cosC ⋅sinB =0∴ 2cosBsinA =−(sinC ⋅cosB +cosC ⋅sinB)=−sin(B +C)=−sinA , ∴ cosB =−12,∴ B =2π3.(2)根据余弦定理可知b 2=a 2+c 2−2accosB ,∴ 36=a 2+c 2+ac , 又∵ 36=(a +c)2−ac ,∴ (a +c)2−36=ac ≤(a+c 2)2,∴ 6<a +c ≤4√3,则△ABC 周长的取值范围是(12,6+4√3]. 【考点】 余弦定理 【解析】(Ⅰ)利用向量垂直,结合两角和与差的三角函数,转化求解角B 的大小;(Ⅱ)利用余弦定理以及基本不等式求出a +c 的范围,然后求解三角形的周长的范围即可. 【解答】(1)∵ m ⊥n ,则有cosB ⋅(2a +c)+cosC ⋅b =0, ∴ cosB ⋅(2sinA +sinC)+cosC ⋅sinB =0∴ 2cosBsinA =−(sinC ⋅cosB +cosC ⋅sinB)=−sin(B +C)=−sinA , ∴ cosB =−12,∴ B =2π3.(2)根据余弦定理可知b 2=a 2+c 2−2accosB ,∴ 36=a 2+c 2+ac , 又∵ 36=(a +c)2−ac ,∴ (a +c)2−36=ac ≤(a+c 2)2,∴ 6<a +c ≤4√3,则△ABC 周长的取值范围是(12,6+4√3].四棱台被过点A 1,C 1,D 的平面截去一部分后得到如图所示的几何体,其下底面四边形ABCD 是边长为2的菱形,∠BAD =60∘,BB 1⊥平面ABCD ,BB 1=2. (Ⅰ)求证:平面AB 1C ⊥平面BB 1D ;(Ⅱ)若AA 1与底面ABCD 所成角的正切值为2,求二面角A 1−BD −C 1的余弦值.【答案】(Ⅰ)证明:∵ BB 1⊥平面ABCD ,∴ BB 1⊥AC . 在菱形ABCD 中,BD ⊥AC ,又BD ∩BB 1=B ,∴ AC ⊥平面BB 1D ,∵ AC ⊂平面AB 1C ,∴ 平面AB 1C ⊥平面BB 1D . (Ⅱ)∵ BB 1⊥平面ABCD∴ AA 1与底面ABCD 所成角为∠A 1AB ,∴ tan∠A 1AB =2,∴ A 1B 1=1, 设BD ,AC 交于点O ,以O 为坐标原点,如图建立空间直角坐标系.则B(0, −1, 0),D(0, 1, 0),B 1(0, −1, 2),A(√3,0,0).B 1A 1→=12BA →⇒A 1(√32,−12,2),同理C 1(−√32,−12,2),BA 1→=(√32,12,2),BD →=(0,2,0),BC 1→=(−√32,12,2).设平面A 1BD 的法向量n →=(x,y,z), ∴ {BA 1→∗n →=0BD →∗n →=0则n →=(−4,0,√3),设平面C 1BD 的法向量m →=(x ′,y ′,z ′),{BD →∗m →=0BC 1→∗m →=0则m →=(4,0,√3),设二面角A 1−BD −C 1为θ,cosθ=|m →∗n →||m →||n →|=1319.【考点】平面与平面垂直二面角的平面角及求法 【解析】(Ⅰ)证明BB 1⊥AC .BD ⊥AC ,推出AC ⊥平面BB 1D ,然后证明平面AB 1C ⊥平面BB 1D . (Ⅱ)设BD ,AC 交于点O ,以O 为坐标原点,如图建立空间直角坐标系.求出相关点的坐标,平面A 1BD 的法向量,平面C 1BD 的法向量,二面角A 1−BD −C 1为θ,利用空间向量的数量积求解即可. 【解答】(Ⅰ)证明:∵ BB 1⊥平面ABCD ,∴ BB 1⊥AC . 在菱形ABCD 中,BD ⊥AC ,又BD ∩BB 1=B ,∴ AC ⊥平面BB 1D ,∵ AC ⊂平面AB 1C ,∴ 平面AB 1C ⊥平面BB 1D . (Ⅱ)∵ BB 1⊥平面ABCD∴ AA 1与底面ABCD 所成角为∠A 1AB ,∴ tan∠A 1AB =2,∴ A 1B 1=1, 设BD ,AC 交于点O ,以O 为坐标原点,如图建立空间直角坐标系.则B(0, −1, 0),D(0, 1, 0),B 1(0, −1, 2),A(√3,0,0).B 1A 1→=12BA →⇒A 1(√32,−12,2),同理C 1(−√32,−12,2),BA 1→=(√32,12,2),BD→=(0,2,0),BC 1→=(−√32,12,2).设平面A 1BD 的法向量n →=(x,y,z),∴ {BA 1→∗n →=0BD →∗n →=0则n →=(−4,0,√3),设平面C 1BD 的法向量m →=(x ′,y ′,z ′),{BD →∗m →=0BC 1→∗m →=0则m →=(4,0,√3),设二面角A 1−BD −C 1为θ,cosθ=|m →∗n →||m →||n →|=1319.2017年12月,针对国内天然气供应紧张的问题,某市政府及时安排部署,加气站采取了紧急限气措施,全市居民打响了节约能源的攻坚战.某研究人员为了了解天然气的需求状况,对该地区某些年份天然气需求量进行了统计,并绘制了相应的折线图. (Ⅰ)由折线图可以看出,可用线性回归模型拟合年度天然气需示量y (单位:千万立方米)与年份x (单位:年)之间的关系.并且已知y 关于x 的线性回归方程是yˆ=6.5x +aˆ,试确定a ˆ的值,并预测2018年该地区的天然气需求量; (Ⅱ)政府部门为节约能源出台了《购置新能源汽车补贴方案》,该方案对新能源汽车的续航里程做出了严格规定,根据续航里程的不同,将补贴金额划分为三类,A 类:每车补贴1万元,B 类:每车补贴2.5万元,C 类:每车补贴3.4万元.某出租车公司对该公司60辆新能源汽车的补贴情况进行了统计,结果如表:源汽车的补贴情况,在该出租车公司的60辆车中抽取6辆车作为样本,再从6辆车中抽取2辆车进一步跟踪调查.若抽取的2辆车享受的补贴金额之和记为“ξ”,求ξ的分布列及期望.【答案】(Ⅰ)如折线图数据可知x =2008+2010+2012+2014+20165=2012,y =236+246+257+276+2865=260.2代入线性回归方程yˆ=6.5x +a ˆ可得a ˆ=−12817.8. 将x =2018代入方程可得yˆ=299.2千万立方米. (Ⅱ)根据分层抽样可知A 类,B 类,C 类抽取人数分别为1辆,2辆,3辆 则当A 类抽1辆,B 类抽1辆时,ξ=3.5,此时P(ξ=3.5)=C 11C21C 62=215;当A 类抽1辆,C 类抽1辆时,ξ=4.4,此时P(ξ=4.4)=C 11C31C 62=315; 当B 类抽1辆,C 类抽1辆时,ξ=5.9,此时P(ξ=5.9)=C 21C31C 62=615=25;当B 类抽2辆时,ξ=5,此时P(ξ=5)=C 22C 62=115;当C 类抽2辆时,ξ=6.8,此时P(ξ=6.8)=C 32C 62=315=15.所以ξ的分布列为:∴ Eξ=3.5×215+4.4×315+5.9×25+5×115+6.8×15=275(万元)【考点】求解线性回归方程离散型随机变量及其分布列 离散型随机变量的期望与方差 【解析】(Ⅰ)由折线图数据求得样本中心,带入回归直线方程,求出a ,然后将x =2018代入方程可得yˆ=299.2千万立方米. (Ⅱ)根据分层抽样可知A 类,B 类,C 类抽取人数分别为1辆,2辆,3辆求出概率,得到分布列,然后求解期望即可. 【解答】(Ⅰ)如折线图数据可知x =2008+2010+2012+2014+20165=2012,y =236+246+257+276+2865=260.2代入线性回归方程y ˆ=6.5x +a ˆ可得a ˆ=−12817.8.将x =2018代入方程可得yˆ=299.2千万立方米. (Ⅱ)根据分层抽样可知A 类,B 类,C 类抽取人数分别为1辆,2辆,3辆 则当A 类抽1辆,B 类抽1辆时,ξ=3.5,此时P(ξ=3.5)=C 11C21C 62=215;当A 类抽1辆,C 类抽1辆时,ξ=4.4,此时P(ξ=4.4)=C 11C31C 62=315; 当B 类抽1辆,C 类抽1辆时,ξ=5.9,此时P(ξ=5.9)=C 21C31C 62=615=25;当B 类抽2辆时,ξ=5,此时P(ξ=5)=C 22C 62=115;当C 类抽2辆时,ξ=6.8,此时P(ξ=6.8)=C 32C 62=315=15.所以ξ的分布列为:∴ Eξ=3.5×215+4.4×315+5.9×25+5×115+6.8×15=275(万元)椭圆E:x 2a2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2作垂直于x 轴的直线l与椭圆E 在第一象限交于点P ,若|PF 1|=5,且3a =b 2. (Ⅰ)求椭圆E 的方程;(Ⅱ)A ,B 是椭圆C 上位于直线l 两侧的两点.若直线AB 过点(1, −1),且∠APF 2=∠BPF 2,求直线AB 的方程. 【答案】(Ⅰ)由题可得|PF 2|=b 2a=3,因为|PF 1|=5,由椭圆的定义得a =4,所以b 2=12,所以椭圆E 方程为x 216+y 212=1. (Ⅱ)易知点P 的坐标为(2, 3).因为∠APF 2=∠BPF 2,所以直线PA ,PB 的斜率之和为(0)设直线PA 的斜率为k ,则直线PB 的斜率为−k ,设A(x 1, y 1),B(x 2, y 2),则直线PA 的方程为y −3=k(x −2),由{y −3=k(x −2)x 216+y 212=1可得(3+4k 2)x 2+8k(3−2k)x +4(3−2k)2−48=0, ∴ x 1+2=8k(2k+3)3+4k 2同理直线PB 的方程为y −3=−k(x −2),可得x 2+2=−8k(−2k−3)3+4k 2=8k(2k+3)3+4k 2,∴ x 1+x 2=16k 2−123+4k 2,x 1−x 2=−48k 3+4k 2,k AB =y 1−y2x 1−x 2=k(x 1−2)+3+k(x 2−2)−3x 1−x 2=k(x 1+x 2)−4kx 1−x 2=12,∴ 满足条件的直线AB 的方程为y +1=12(x −1),即为x −2y −3=(0)【考点】椭圆的标准方程直线与椭圆结合的最值问题 【解析】(Ⅰ)由椭圆的定义以及已知条件求出a =4,b 2=12,可得椭圆E 方程.(Ⅱ)易知点P 的坐标为(2, 3).通过∠APF 2=∠BPF 2,设直线PA 的斜率为k ,则直线PB 的斜率为−k ,设A(x 1, y 1),B(x 2, y 2),则直线PA 的方程为y −3=k(x −2),联立直线与椭圆方程,利用韦达定理,求出直线的斜率,然后求解直线方程. 【解答】(Ⅰ)由题可得|PF 2|=b 2a=3,因为|PF 1|=5,由椭圆的定义得a =4,所以b 2=12,所以椭圆E 方程为x 216+y 212=1.(Ⅱ)易知点P 的坐标为(2, 3).因为∠APF 2=∠BPF 2,所以直线PA ,PB 的斜率之和为(0)设直线PA 的斜率为k ,则直线PB 的斜率为−k ,设A(x 1, y 1),B(x 2, y 2),则直线PA 的方程为y −3=k(x −2),由{y −3=k(x −2)x 216+y 212=1 可得(3+4k 2)x 2+8k(3−2k)x +4(3−2k)2−48=0, ∴ x 1+2=8k(2k+3)3+4k 2同理直线PB 的方程为y −3=−k(x −2),可得x 2+2=−8k(−2k−3)3+4k 2=8k(2k+3)3+4k 2,∴ x 1+x 2=16k 2−123+4k 2,x 1−x 2=−48k 3+4k 2,k AB =y 1−y2x 1−x 2=k(x 1−2)+3+k(x 2−2)−3x 1−x 2=k(x 1+x 2)−4kx 1−x 2=12,∴ 满足条件的直线AB 的方程为y +1=12(x −1),即为x −2y −3=(0)已知函数f(x)=alnx ,a ∈R .(Ⅰ)若曲线y =f(x)与曲线g(x)=√x 在公共点处有共同的切线,求实数a 的值; (Ⅱ)在(Ⅰ)的条件下,试问函数F(x)=xf(x)−xe 1−x 2+1是否有零点?如果有,求出该零点;若没有,请说明理由. 【答案】(Ⅰ)函数f(x)=alnx 的定义域为(0, +∞),f ′(x)=ax ,g ′(x)=2√x设曲线y =f(x)与曲线g(x)=√x 公共点为(x 0, y 0)由于在公共点处有共同的切线,所以ax 0=2x ,解得x 0=4a 2,a >(0) 由f(x 0)=g(x 0)可得alnx 0=√x 0.联立{x 0=4a 2alnx 0=√x 0 解得a =e2. (Ⅱ)函数F(x)=xf(x)−xe 1−x 2+1是否有零点,转化为函数H(x)=xf(x)=e2xlnx与函数G(x)=xe 1−x 2−1在区间x ∈(0, +∞)是否有交点,H(x)=xf(x)=e2xlnx ,可得H ′(x)=e2lnx +e2=e2(1+lnx),令H ′(x)>0,解得x ∈(1e ,+∞),此时函数H(x)单调递增; 令H ′(x)<0,解得x ∈(0,1e ),此时函数H(x)单调递减.∴ 当x =1e 时,函数H(x)取得极小值即最小值,H(1e)=−12.G(x)=xe 1−x 2−1可得G ′(x)=12(1−x)e 1−x ,令G ′(x)>0,解得0<x <1,此时函数G(x)单调递增; 令G ′(x)<0,解得x >1,此时函数G(x)单调递减.∴ 当x =1时,函数G(x)取得极大值即最大值,G(1)=−12. 因此两个函数无交点.即函数F(x)=xf(x)−xe 1−x 2+1无零点.【考点】利用导数研究函数的极值利用导数研究曲线上某点切线方程 【解析】(Ⅰ)函数f(x)=alnx 的定义域为(0, +∞),求出导函数,利用曲线y =f(x)与曲线g(x)=√x 公共点为(x 0, y 0)由于在公共点处有共同的切线,解得x 0=4a 2,a >(0)f(x 0)=g(x 0)解得a =e2即可. (Ⅱ)函数F(x)=xf(x)−xe 1−x 2+1是否有零点,转化为函数H(x)=xf(x)=e2xlnx 与函数G(x)=xe 1−x 2−1在区间x ∈(0, +∞)是否有交点,构造函数H(x)=xf(x)=e2xlnx ,可得H ′(x)=e2lnx +e2=e2(1+lnx),利用函数的单调性,求解函数的最小值以及极大值,推出结果即可. 【解答】(Ⅰ)函数f(x)=alnx 的定义域为(0, +∞),f ′(x)=ax ,g ′(x)=2√x 设曲线y =f(x)与曲线g(x)=√x 公共点为(x 0, y 0)由于在公共点处有共同的切线,所以ax 0=2x ,解得x 0=4a 2,a >(0) 由f(x 0)=g(x 0)可得alnx 0=√x 0.联立{x 0=4a 2alnx 0=√x 0 解得a =e2. (Ⅱ)函数F(x)=xf(x)−xe 1−x 2+1是否有零点,转化为函数H(x)=xf(x)=e2xlnx与函数G(x)=xe 1−x 2−1在区间x ∈(0, +∞)是否有交点,H(x)=xf(x)=e2xlnx ,可得H ′(x)=e2lnx +e2=e2(1+lnx),令H ′(x)>0,解得x ∈(1e ,+∞),此时函数H(x)单调递增;令H ′(x)<0,解得x ∈(0,1e ),此时函数H(x)单调递减.∴ 当x =1e 时,函数H(x)取得极小值即最小值,H(1e)=−12.G(x)=xe 1−x 2−1可得G ′(x)=12(1−x)e 1−x ,令G ′(x)>0,解得0<x <1,此时函数G(x)单调递增; 令G ′(x)<0,解得x >1,此时函数G(x)单调递减.∴ 当x =1时,函数G(x)取得极大值即最大值,G(1)=−12. 因此两个函数无交点.即函数F(x)=xf(x)−xe 1−x 2+1无零点.[选修4-4:坐标系与参数方程]在平面直角坐标系中,曲线C 1:(x −√3)2+(y −1)2=4,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,将曲线C 1绕极点逆时针旋转π6后得到的曲线记为C 2. (Ⅰ)求曲线C 1,C 2的极坐标方程;(Ⅱ)射线θ=π3(p >0)与曲线C 1,C 2分别交于异于极点O 的A ,B 两点,求|AB|. 【答案】(Ⅰ)曲线C 1:(x −√3)2+(y −1)2=4化为极坐标方程是ρ=2√3cosθ+2sinθ, 设曲线C 2上的点Q(ρ, θ),绕极点顺时针旋转π6后得到P(ρ,θ−π6), 在C 1上代入可得C 2的极坐标方程是ρ=2cosθ+2√3sinθ. (Ⅱ)将θ=π3(ρ>0)分别代入C 1,C 2的极坐标方程,得到ρ1=2√3,ρ2=4,∴ |AB|=|ρ1−ρ2|=4−2√3. 【考点】圆的极坐标方程 【解析】(Ⅰ)曲线C 1化为极坐标方程是ρ=2√3cosθ+2sinθ,设曲线C 2上的点Q(ρ, θ),绕极点顺时针旋转π6后得到P(ρ,θ−π6),在C 1上代入可得C 2的极坐标方程.(Ⅱ)将θ=π3(ρ>0)分别代入C 1,C 2的极坐标方程,得到ρ1=2√3,ρ2=4,由此能求出|AB|. 【解答】(Ⅰ)曲线C 1:(x −√3)2+(y −1)2=4化为极坐标方程是ρ=2√3cosθ+2sinθ, 设曲线C 2上的点Q(ρ, θ),绕极点顺时针旋转π6后得到P(ρ,θ−π6), 在C 1上代入可得C 2的极坐标方程是ρ=2cosθ+2√3sinθ. (Ⅱ)将θ=π3(ρ>0)分别代入C 1,C 2的极坐标方程, 得到ρ1=2√3,ρ2=4,∴ |AB|=|ρ1−ρ2|=4−2√3.[选修4-5:不等式选讲]已知函数f(x)=m−|x−2|,m∈R,且f(x+2)≥0的解集为[−1, 1].(Ⅰ)求m的值;(Ⅱ)若a,b,c∈R,且1a +12b+13c=m,求证:a+2b+3c≥9.【答案】(Ⅰ)函数f(x)=m−|x−2|,m∈R,故f(x+2)=m−|x|,由题意可得m−|x|≥0的解集为[−1, 1],即|x|≤m的解集为[−1, 1],故m=(1)(Ⅱ)由a,b,c∈R,且1a +12b+13c=m=1,∴a+2b+3c=(a+2b+3c)(1a +12b+13c)=1+2ba +3ca+a2b+1+3c2b+a3c+2b3c+1=3+2ba +3ca+a2b+3c2b+a3c+2b3c≥3+6=9,当且仅当2ba=3ca=a2b=3c2b=a3c=2b3c=1时,等号成立.所以a+2b+3c≥9【考点】带绝对值的函数不等式的证明【解析】(Ⅰ)由条件可得f(x+2)=m−|x|,故有m−|x|≥0的解集为[−1, 1],即|x|≤m的解集为[−1, 1],故m=(1)(Ⅱ)根据a+2b+3c=(a+2b+3c)(1a +12b+13c)=1+2ba+3ca+a2b+1+3c2b+a3c+2b3c+1,利用基本不等式证明它大于或等于(9)【解答】(Ⅰ)函数f(x)=m−|x−2|,m∈R,故f(x+2)=m−|x|,由题意可得m−|x|≥0的解集为[−1, 1],即|x|≤m的解集为[−1, 1],故m=(1)(Ⅱ)由a,b,c∈R,且1a +12b+13c=m=1,∴a+2b+3c=(a+2b+3c)(1a +12b+13c)=1+2ba +3ca+a2b+1+3c2b+a3c+2b3c+1=3+2ba +3ca+a2b+3c2b+a3c+2b3c≥3+6=9,当且仅当2ba=3ca=a2b=3c2b=a3c=2b3c=1时,等号成立.所以a+2b+3c≥9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项是符合题目要求的) 1.已知集合{}{}2104M x x ,N x x ,=+≥=<则M N = ( ) A.(],1-∞- B.()2,+∞ C.(]1,2- D.[)1,2- 2.已知命题x x R x p 32,:<∈∀命题231,:x x R x q -=∈∃,则下列命题中为真命题的是:( ) A.B.C.D.3.“0<x ”是“0)1ln(<+x ”的( )条件A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要4.下列函数中,在区间(0,)+∞为增函数的是( )A.y =.2(1)y x =- C .2x y -= D .0.5log (1)y x =+5.函数223,0()2ln ,0⎧+-≤=⎨-+>⎩x x x f x x x 的零点个数为( )A.0B.1C.2D.3 6.已知132a -=,21211log ,log 33b c ==,则( )A .a b c >>B .a c b >>C .c a b >>D .c b a >>7.函数3()f x ax x =-在R 上为减函数,则( ) A .0a ≤ B .1a < C .0a < D .1a ≤ 8.函数的图象大致为( ) 2sin ()1xf x x =+9.直线12y x b =+与曲线1ln 2y x x =-+相切,则b 的值为( ) A .-2 B .-1 C .-12 D .110.设()f x 与()g x 是定义在同一区间[a ,b ]上的两个函数,若函数()()y f x g x =-在[,]x a b ∈上有两个不同的零点,则称()f x 和()g x 在[,]a b 上是“关联函数”,区间[,]a b 称为“关联区间”.若2()34f x x x =-+与()2g x x m =+在[0,3]上是“关联函数”,则m 的取值范围是( )A. 9,24⎛⎤-- ⎥⎝⎦B .[-1,0]C .(-∞,-2] D. 9,4⎛⎫--∞ ⎪⎝⎭11.设函数()f x 在R 上可导,其导函数为'()f x ,且函数'(1)()y x f x =-的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)12.已知函数1()()2ln ()f x a x x a R x=--∈,()a g x x=-,若至少存在一个0[1,e]x ∈,使00()()f x g x >成立,则实数a 的范围为( )A .[2e ,+∞) B .(0,+∞) C .[0,+∞) D .(2e,+∞)第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤13.将5位志愿者分成3组,其中两组各2人,另一组1人,分赴青奥会的三个不同场馆服务,不同的分配方案有 种(用数字作答).14.42()x x-的展开式中的常数项为______________(用数字作答) 15.已知随机变量2(,)N ξμσ ,且P 1(1)2ξ<=,P (2)0.4ξ>=,则P(01ξ<<)= .16.设)(x f 是定义在R 上的偶函数,且对于R x ∈∀恒有)1()1(-=+x f x f ,已知当][1,0∈x 时,,)21()(1x x f -=则(1))(x f 的周期是2; (2))(x f 在(1,2)上递减,在(2,3)上递增;(3))(x f 的最大值是1,最小值是0; (4)当)4,3(∈x 时,3)21()(-=x x f 其中正确的命题的序号是 .三、解答题本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤17.(本小题满分12分)设命题p:实数x 满足22430x ax a -+<,其中0a >,命题:q 实数x 满足2260,280.x x x x ⎧--≤⎪⎨+->⎪⎩.(1)若1,a =且p q ∧为真,求实数x 的取值范围; (2)若p ⌝是⌝q 的充分不必要条件,求实数a 的取值范围.18.(本小题满分12分)某市公租房的房源位于,,A B C 三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任意4位申请人中:(1)恰有2人申请A 片区房源的概率;(2)申请的房源所在片区的个数ξ的分布列和期望.19.(本小题满分12分)设函数2()ln f x x ax b x =++,曲线()y f x =在点P (1,0)处的切线斜率为2.(1)求a ,b 的值;(2)证明:()22f x x ≤-. 20.(本小题满分12分)为加快新能源汽车产业发展,推进节能减排,国家对消费者购买新能源汽车给予补贴,其中对纯电动乘用车补贴标准如下表:某校研究性学习小组,从汽车市场上随机选取了M 辆纯电动乘用车,根据其续驶里程R (单次充电后能行驶的最大里程)作出了频率与频数的统计表:(1)求x ,y ,z ,M 的值;(2)若从这M 辆纯电动乘用车中任选2辆,求选到的2辆车续驶里程都不低于150公里的概率;(3)若以频率作为概率,设X 为购买一辆纯电动乘用车获得的补贴,求X 的分布列和数学期望()E X .21.(本小题满分12分)已知函数2()e 1x f x ax bx =---,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设()g x 是函数()f x 的导函数,求函数g (x )在区间[0,1]上的最小值;(2)若f (1)=0,函数()f x 在区间(0,1)内有零点,求a 的取值范围.请考生在第22、23、24题中任选择一题作答,如果多做,则按所作的第一题计分,作答时请写清题号.22.(本小题满分10分) 选修4-1:几何证明选讲如图,ABC ∆的角平分线AD 的延长线交它的外接圆于点.E(Ⅰ)证明:ABE ∆∽△ADC ;(Ⅱ)若ABC ∆的面积12S AD AE =⋅,求BAC ∠的大小.23.(本小题满分10分) 选修4—4:坐标系与参数方程以直角坐标系的原点o 为极点,x 轴的正半轴为极轴,已知点P 的直角坐标为(1,-5),点M 的极坐标为(4,2π),若直线l 过点P ,且倾斜角为3π,圆C 以M 为圆心,4为半径。
(I )求直线l 的参数方程和圆C 的极坐标方程。
(II )试判定直线l 与圆C 的位置关系。
24.(本小题满分10分) 选修4—5,不等式选讲已知函数()1,()3f x x g x x a =-=-++ a R ∈ (I ) 解关于x 的不等式 ()6g x >(II )若函数2()y f x =的图象恒在函数()y g x =的上方,求实数a 的取值范围。
9月河西三校普通高中高三第一次联考理科数学试题 参考答案及评分标准一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项是符合题目要求的)三、解答题:(解答题本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分) 解:(1)当1a =时,{}:13p x x <<,{}:23q x x <≤,………………………………3分又p q ∧为真,所以p 真且q 真,由1323x x <<⎧⎨<≤⎩,得23x <<所以实数a 的取值范围为(2,3)………………………………6分 (2) 因为p ⌝是⌝q 的充分不必要条件,所以q 是p 的充分不必要条件, (8)分又{}:3p x a x a <<,{}:23q x x <≤,所以0233a a a >⎧⎪≤⎨⎪>⎩,解得12a <≤所以实数a 的取值范围为(]1,2………………………………12分 18.(1)解:所有可能的申请方式有43种,恰有2人申请A 片区房源的申请方式有2242C 种,………………………………3分 从而恰有2人申请A片区房源的概率为224428327C =………………………………6分 (2)的所有取值为1、2、3421322324424121342431(1);327()14(2):3274(3)39p C C C C C p C C C p ξξξ===+======………………………………9分所以ξ的分布列为114465()123.2727927E ξ=⨯+⨯+⨯=………………………………12分(3)X 的可能取值为3.5、5、6( 3.5)0.2;(5)0.5;(6)0.3() 3.50.250.560.35p X P X P X E X =======⨯+⨯+⨯=………………………………10分………………………………12分21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b .所以g ′(x )=e x -2a .当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a≥e2时,g′(x)≤0,所以g(x)在[0,1]上单调递减,因此g(x)在[0,1]上的最小值是g(1)=e-2a-b;………………3分当12<a<e2时,令g′(x)=0,得x=ln(2a)∈(0,1),所以函数g(x)在区间g(1)=e-2a-b.………………………………6分(2)设x0为f(x)在区间(0,1)内的一个零点,则由f(0)=f(x0)=0可知,f(x)在区间(0,x0)上不可能单调递增,也不可能单调递减.则g(x)不可能恒为正,也不可能恒为负.故g(x)在区间(0,x0)内存在零点x1.同理g(x)在区间(x0,1)内存在零点x2.故g(x)在区间(0,1)内至少有两个零点.由(1)知,当a≤12时,g(x)在[0,1]上单调递增,故g(x)在(0,1)内至多有一个零点;当a≥e2时,g(x)在[0,1]上单调递减,故g(x)在(0,1)内至多有一个零点,都不合题意.所以12<a<e2.此时g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增.因此x1∈(0,ln(2a)],x2∈(ln(2a),1),必有g(0)=1-b>0,g(1)=e-2a-b>0.由f(1)=0得a+b=e-1<2,则g(0)=a-e+2>0,g(1)=1-a>0,解得e-2<a<1.当e-2<a<1时,g(x)在区间[0,1]内有最小值g(ln(2a)).………………………………9分若g(ln(2a))≥0,则g(x)≥0(x∈[0,1]),从而f(x)在区间[0,1]内单调递增,这与f(0)=f(1)=0矛盾,所以g(ln(2a))<0.又g(0)=a-e+2>0,g(1)=1-a>0.故此时g(x)在(0,ln(2a))和(ln(2a),1)内各只有一个零点x1和x2.由此可知f(x)在[0,x1]上单调递增,在(x1,x2)上单调递减,在[x2,1]上单调递增.所以f(x1)>f(0)=0,f(x2)<f(1)=0,故f (x )在(x 1,x 2)内有零点.综上可知,a 的取值范围是(e -2,1).故g (x )≤0,即f (x )≤2x -2.………………………………12分23.解:(1)直线l的参数方程111cos 235sin 53x t x t y t y ππ⎧⎧=+=+⋅⎪⎪⎪⎪⇒⎨⎨⎪⎪=-+⋅=-+⎪⎪⎩⎩(t 为参数)M 点的直角坐标为(0, 4) 圆C 半径图C 方程 22(4)16x y +-= 得⎩⎨⎧==θρθρsin cos y x 代入 得圆C 极坐标方程 θρsin 8= ………………………………5分(2)直线l50y --=圆心M 到l的距离为4d ==> ∴直线l 与圆C 相离。