高中数学第三章导数及其应用3.2导数的运算课后导练
2019年高中数学第三章导数及其应用3.2导数的计算优化练习新人教A版选修1-1

3.2 导数的计算[课时作业] [A 组 基础巩固]1.下列结论正确的是( ) A .若y =cos x ,则y ′=sin x B .若y =sin x ,则y ′=-cos x C .若y =1x ,则y ′=-1x2D .若y =x ,则y ′=x2解析:A 项,y =cos x ,则y ′=-sin x ;答案:C2.函数y =x 3·a x的导数是( ) A .(3+x ln a )x 2a x B .(3+ln a ) x 3a xC .(3+ln a )xa xD .(3+ln a )a x解析:∵y =x 3·a x,∴y ′=(x 3·a x )′=(x 3)′a x +x 3(a x)′ =3x 2a x+x 3·a xln a =(3+x ln a )x 2a x.选A. 答案:A3.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=( ) A .-1 B .-2 C .2D .0解析:由f (x )=ax 4+bx 2+c 得f ′(x )=4ax 3+2bx ,又f ′(1)=2,所以4a +2b =2,即f ′(-1)=-4a -2b =-(4a +2b )=-2. 答案:B4.已知曲线y 1=2-1x与y 2=x 3-x 2+2x 在x =x 0处切线的斜率的乘积为3,则x 0的值为( )A .-2B .2 C.12D .1解析:由题知y ′1=1x 2,y ′2=3x 2-2x +2,所以两曲线在x =x 0处切线的斜率分别为1x 20,3x 20-2x 0+2,所以3x 20-2x 0+2x 2=3,所以x 0=1.答案:D5.若函数f (x )=(x -1)(x -2)(x -3)(x -4)(x -5),且f ′(x )是函数f (x )的导函数,则f ′(1)=( ) A .24 B .-24 C .10D .-10解析:∵f ′(x )=(x -1)′(x -2)(x -3)(x -4)(x -5)+(x -1)[(x -2)(x -3)(x -4)(x -5)]′ =(x -2)(x -3)(x -4)(x -5)+(x -1)[(x -2)(x -3)(x -4)(x -5)]′ ∴f ′(1)=(-1)×(-2)×(-3)×(-4)=24. 答案:A6.曲线y =4x 3在点Q (16,8)处的切线的斜率是________.7.设f (x )=ax 2-b sin x ,且f ′(0)=1,f ′⎝ ⎛⎭⎪⎫π3=12,则a =________, b =________.解析:∵f ′(x )=2ax -b cos x ,f ′(0)=-b =1得b =-1, f ′⎝ ⎛⎭⎪⎫π3=23πa +12=12,得a =0.答案:0 -18.(2015·高考陕西卷)设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.解析:y ′=e x,曲线在点(0,1)处的斜率k 1=e 0=1,设P (m ,n ),y =1x (x >0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m2(m >0),由题意知k 1k 2=-1,由此易得m =1,n =1,即点P 的坐标为(1,1). 答案:(1,1) 9.求导.y =(x +1)2(x -1).解析:法一 y ′=[(x +1)2]′(x -1)+(x +1)2(x -1)′=2(x +1)(x -1)+(x +1)2=3x 2+2x -1. 法二 y =(x 2+2x +1)(x -1) =x 3+x 2-x -1,y ′=(x 3+x 2-x -1)′=3x 2+2x -1.10.设f (x )=a ·e x+b ln x ,且f ′(1)=e ,f ′(-1)=1e ,求a ,b 的值.解析:由f (x )=a ·e x+b ln x ,根据题意应有⎩⎪⎨⎪⎧f =a e +b =e ,f -=a e -b =1e,解得⎩⎪⎨⎪⎧a =1,b =0,所以a ,b 的值分别是1,0.[B 组 能力提升]1.函数f (x )=e xcos x 的图象在点(0,f (0))处的切线的倾斜角为( ) A .0 B.π4 C .1 D.π2解析:f ′(x )=e x cos x -e xsin x , ∴f ′(0)=e 0(cos 0-sin 0)=1, ∴切线的倾斜角为π4.答案:B2.若曲线y =x 2+a ln x (a >0)上任意一点处的切线斜率为k ,若k 的最小值为4,则此时该切点的坐标为( ) A .(1,1) B .(2,3) C .(3,1) D .(1,4)解析:y =x 2+a ln x 的定义域为(0,+∞),由导数的几何意义知y ′=2x +a x≥22a =4,则a =2, 当且仅当x =1时等号成立,代入曲线方程得y =1, 故所求的切点坐标是(1,1). 答案:A3.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x 则f ′(e)=________. 解析:∵f (x )=2xf ′(e)+ln x , ∴f ′(x )=2f ′(e)+1x,令x =e ,得f ′(e)=2f ′(e)+1e ,∴f ′(e)=-1e .答案:-1e4.(2016·高考天津卷)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为________. 解析:由题意得f ′(x )=(2x +3)e x,则得f ′(0)=3. 答案:3 5.求曲线y =2x x 2+1在点(2,45)处的切线方程.∴y ′=x 2+-2x ·2xx 2+2=2-2x 2x 2+2. ∴y ′|x =2=2-8+2=-625.因此曲线y =2x x 2+1在点(2,45)处的切线方程为 y -45=-625(x -2),即6x +25y -32=0.6.求满足下列条件的函数f (x ):(1)f (x )是三次函数,且f (0)=3,f ′(0)=0,f ′(1)=-3,f ′(2)=0; (2)f ′(x )是一次函数,x 2f ′(x )-(2x -1)f (x )=1.解析:(1)设f (x )=ax 3+bx 2+cx +d (a ≠0),则f ′(x )=3ax 2+2bx +c .由f (0)=3,得d =3.由f ′(0)=0,得c =0.由f ′(1)=-3,f ′(2)=0可建立方程组⎩⎪⎨⎪⎧3a +2b =-3,12a +4b =0,解得⎩⎪⎨⎪⎧a =1,b =-3.所以f (x )=x 3-3x 2+3.(2)由f ′(x )为一次函数可知f (x )为二次函数, 设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b . 把f (x )、f ′(x )代入方程得x 2(2ax +b )-(2x -1)·(ax 2+bx +c )=1,即(a -b )x 2+(b -2c )x +c -1=0.要使对任意x 方程都成立,则需a =b ,b =2c ,c =1, 解得a =2,b =2,c =1,所以f (x )=2x 2+2x +1.。
高中数学 第三章 导数及其应用 3.2 导数的计算练习 新人教A版选修11

第三章 导数及其应用 3.2 导数的计算A 级 基础巩固一、选择题 1.给出下列结论:①(cos x )′=sin x ;②⎝ ⎛⎭⎪⎫sin π6′=cos π6;③若y =1x 2,则y ′=-1x ;④⎝ ⎛⎭⎪⎫-1x ′=12x x.其中正确的个数是( )A .0B .1C .2D .3解析:(cos x )′=-sin x ,所以①错误;sin π6=12,而⎝ ⎛⎭⎪⎫12′=0,所以②错误;⎝ ⎛⎭⎪⎫1x 2′=0-(x 2)′x 4=-2x x 4=-2x -3,所以③错误;⎝ ⎛⎭⎪⎫-1x ′=0-(x 12)′x =12x -12x=12x -32=12x x ,所以④正确. 答案:B2.f (x )=x 3,f ′(x 0)=6,则x 0等于( ) A. 2 B .- 2 C .± 2 D .±1解析:f ′(x )=3x 2,由f ′(x 0)=6,知3x 20=6,所以 x 0=± 2. 答案:C 3.函数y =x 2x +3的导数是( )A.x 2+6x (x +3)2 B.x 2+6x x +3C.-2x (x +3)2 D.3x 2+6x (x +3)2 解析:y ′=⎝ ⎛⎭⎪⎫x 2x +3′=(x 2)′(x +3)-x 2·(x +3)′(x +3)2=2x (x +3)-x 2(x +3)2=x 2+6x(x +3)2.答案:A4.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围成的三角形的面积为( ) A.94e 2 B .2e 2 C .e 2D.e 22解析:因为y =e x ,所以 y ′=e x ,所以 y ′|x =2=e 2=k ,所以 切线方程为y -e 2=e 2(x -2),即y =e 2x -e 2.在切线方程中,令x =0,得y =-e 2,令y =0,得x =1,所以 S 三角形=12×|-e 2|×1=e 22. 答案:D5.若f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N ,则f 2 013(x )=( )A .sin xB .-sin xC .cos xD .-cos x解析:因为f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=cos x ,所以循环周期为4,因此f 2 013(x )=f 1(x )=cos x .答案:C 二、填空题6.已知点P 在曲线f (x )=x 4-x 上,曲线在点P 处的切线平行于直线3x -y =0,则点P 的坐标为________.解析:设点P 的坐标为(x 0,y 0),因为f ′(x )=4x 3-1,所以 4x 30-1=3,所以 x 0=1. 所以 y 0=14-1=0,所以 即得P (1,0). 答案:(1,0)7.已知f (x )=13x 3+3xf ′(0),则f ′(1)=________.解析:由于f ′(0)是一常数,所以f ′(x )=x 2+3f ′(0),令x =0,则f ′(0)=0,所以 f ′(1)=12+3f ′(0)=1.答案:18.曲线y =x 3+3x 2+6x -10的切线中,斜率最小的切线方程是____________________. 解析:y ′=3x 2+6x +6=3[(x +1)2+1],所以 当x =-1时,y ′取最小值3.此时切点坐标为(-1,-14). 所以 切线方程为y +14=3(x +1),即3x -y -11=0. 答案:3x -y -11=0 三、解答题9.求下列函数的导数:(1)y =(2x 2+3)(3x -1); (2)y =(x -2)2; (3)y =x -sin x 2cos x2.解:(1)法一:y ′=(2x 2+3)′(3x -1)+(2x 2+3)(3x -1)′=4x (3x -1)+3(2x 2+3)=18x 2-4x +9.法二:因为y =(2x 2+3)(3x -1)=6x 3-2x 2+9x -3, 所以 y ′=(6x 3-2x 2+9x -3)′=18x 2-4x +9. (2)因为y =(x -2)2=x -4x +4,所以 y ′=x ′-(4x )′+4′=1-4×12x -12=1-2x -12.(3)因为y =x -sin x 2cos x 2=x -12sin x ,所以 y ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .10.已知曲线f (x )=x 3-3x ,过点A (0,16)作曲线f (x )的切线,求曲线的切线方程. 解:设切点为(x 0,y 0).则由导数定义得切线的斜率k =f ′(x 0)=3x 20-3, 所以 切线方程为y =(3x 20-3)x +16, 又切点(x 0,y 0)在切线上, 所以 y 0=3(x 20-1)x 0+16,即x 30-3x 0=3(x 20-1)x 0+16,解得x 0=-2, 所以 切线方程为9x -y +16=0.B 级 能力提升1.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A .[0,π4)B .[π4,π2)C .(π2,3π4]D .[3π4,π)解析:y ′=-4e x(e x +1)2=-4exe 2x +2e x+1, 设t =e x∈(0,+∞),则y ′=-4tt 2+2t +1=-4t +1t+2,因为t +1t ≥2,所以 y ′∈[-1,0),α∈⎣⎢⎡⎭⎪⎫3π4,π.答案:D2.点P 是曲线y =ex 上任意一点,则点P 到直线y =x 的最小距离为________. 解析:根据题意设平行于直线y =x 的直线与曲线y =e x相切于点(x 0,y 0),该切点即为与y =x 距离最近的点,如图,则在点(x 0,y 0)处的切线斜率为1,即=1.因为y ′=(e x)′=e x,所以 e x 0=1, 得x 0=0,代入y =e x,得y 0=1,即P (0,1). 利用点到直线的距离公式得距离为22. 答案:223.设函数f (x )=ax -bx,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;(2)证明:曲线y =f (x )上任意一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.(1)解:f ′(x )=a +b x2.因为点(2,f (2))在切线7x -4y -12=0上, 所以 f (2)=2×7-124=12.又曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0,所以 ⎩⎪⎨⎪⎧f ′(2)=74,f (2)=12,⇒⎩⎪⎨⎪⎧a +b 4=74,2a -b 2=12,⇒⎩⎪⎨⎪⎧a =1,b =3.所以 f (x )的解析式为f (x )=x -3x.(2)证明:设⎝⎛⎭⎪⎫x 0,x 0-3x为曲线y =f (x )上任意一点,则切线斜率k =1+3x 20,切线方程为y -⎝⎛⎭⎪⎫x 0-3x=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),令x =0,得y =-6x 0. 由⎩⎪⎨⎪⎧y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),y =x得⎩⎪⎨⎪⎧x =2x 0,y =2x 0.所以 曲线y =f (x )上任意一点处的切线与直线x =0和直线y =x 所围成的三角形的面积S =12|2x 0||-6x 0|=6,为定值.。
【2019-2020】高中数学第三章导数及其应用3-2导数的运算3-2-3导数的运算法则同步练习湘教版选修1_1

教学资料参考范本【2019-2020】高中数学第三章导数及其应用3-2导数的运算3-2-3导数的运算法则同步练习湘教版选修1_1撰写人:__________________部门:__________________时间:__________________1.设f(x)=xln x,若f′(x0)=2,则x0的值是( ).A.e2 B.eC. D.ln 22.函数f(x)=的导数是( ).A.(x>0) B.(x>0)C.(x>0) D.(x>0)3.下列求导运算,其中正确的有( ).①(2x3-cos x)′=6x2+sin x;②(2-)′=;③[(3+x2)(2-x3)]′=2x(2-x3)+3x2(3+x2);④()′=;⑤()′=;⑥(tan x)′=.A.①②③⑤ B.②④⑤⑥C.①②⑤⑥ D.①②③④⑤⑥4.已知函数f(x)=x(x2+1)(x3+2)…(x2 010+2 009),则f′(0)=( ).(注:1×2×3×…×n=n!)A.2 009! B.2 010!C.n! D.x!5.在平面直角坐标系xOy中,点P在曲线C:y=x3-10x+3上,且在第二象限内,已知曲线C在点P处的切线的斜率为2,则点P的坐标为( ).A.(2,15) B.(-15,2)C.(2,-15) D.(-2,15)6.线y=f (x)=在原点处的切线的倾斜角是__________.7.若曲线f(x)=ax5+ln x存在垂直于y轴的切线,则实数a的取值范围是__________.8.半径为r的圆的面积S(r)=πr2,周长C(r)=2πr,若将r看作(0,+∞)上的变量,则(πr2)′=2πr,①(1)①式可用语言叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R的球,若将R看作(0,+∞)上的变量,请你写出类似于①的式子:__________;②(2)②式可用语言叙述为__________.9.已知抛物线y=ax2+bx+c(a≠0)过点(1,1),且在点(2,-1)处与直线y=x-3相切,求a,b,c的值.10.求经过原点与曲线y=f(x)=相切的切线方程.参考答案1.B ∵f′(x)=(xln x)′=ln x+1,∴f′(x0)=ln x0+1=2,∴x0=e.2.C ∵f(x)=,17 1188 24x x x x⋅⋅=∴f′(x)=18 78x-3.C ③中,[(3+x2)(2-x3)]′=2x(2-x3)-3x2(3+x2).④中,′=,故③④错误,①②⑤⑥正确.4.A 设g(x)=(x2+1)(x3+2)…(x2 010+2 009 ),则g(0)=1×2×3×…×2 009=2 009!.又∵f(x)=xg(x),∴f′(x)=g(x)+xg′(x).∴f′(0)=g(0)+0×g′(0)=g(0)=2 009!!.5.D ∵y′=3x2-10,设切点P(x0,y0)(x0<0),则点P处的切线斜率k=3x02-10=2,∴x0=-2.∴x0=-2(x0<0).∴点P的坐标为(-2,15).6.f′(x)==,当x=0时,f′(0)==1.∴tan θ=1,∴θ=为所求的倾斜角.7.(-∞,0) ∵f′(x)=55ax4+,x∈(0,+∞),∴由题意,知5ax4+=0在(0,+∞)上有解,即a=-在(0,+∞)上有解.∵x∈(0,+∞),∴-∈(-∞,0).∴a∈(-∞,0).8.′=4πR2 球的体积函数的导数等于球的表面积函数 半径为R 的球的体积为V =πR3,表面积为S =4πR2.因为V′=′=4πR2=S ,所以有′=4πR2,用语言叙述为:球的体积函数的导数等于球的表面积函数.9.解:因为y =ax2+bx +c 过点(1,1), 所以a +b +c =1.①又y′=2ax +b ,曲线在点(2,-1)处的切线的斜率为1, 所以4a +2b +c =-1,② 4a +b =1.③联立①②③,解得a =3,b =-11,c =9. 10.解:设切点为M(x1,y1),则y1=. 又y′=′==, ∴f′(x1)=.设所求切线方程为y =kx ,则y1=kx1.由得⎩⎪⎨⎪⎧y1x1=-4(x1+5)2,y1=x1+9x1+5,解出x1=-3或x1=-15,得y1=3或y1=. 故切点为(-3,3)或(-15,),斜率为-1或-, 所以所求切线方程为x +y =0或x +25y =0.。
2019-2020学年高中数学 第三章 导数及其应用 3.2.2 导数的运算法则导学案 新人教A版选修1-1.doc

2019-2020学年高中数学 第三章 导数及其应用 3.2.2 导数的运算法则导学案 新人教A 版选修1-1能利用给出的基本初等函数的导数公式表和导数的四则运算法则求简单函数的导数. 重点:导数的四则运算法则及其运用. 难点:导数的四则运算法则的理解运用. 方 法:合作探究 一新知导学 思维导航我们已经会求幂函数、指数函数、对数函数及y =sinx ,y =cosx 的导数,那么怎样求f(x)与g(x)的和、差、积、商的导数呢? 1.设函数f (x )、g (x )是可导函数,则:(f (x )±g (x ))′=________________; (f (x )·g (x ))′=______________________.2.设函数f (x )、g (x )是可导函数,且g (x )≠0,⎝ ⎛⎭⎪⎪⎫f (x )g (x )′=____________________________.牛刀小试1.已知函数f (x )=ax 2+c ,且f ′(1)=2,则a 的值为( ) A .1 B . 2 C .-1 D .0 2.函数y =x4+sinx 的导数为( ) A .y ′=4x3 B .y ′=cosx C .y ′=4x3+sinxD .y ′=4x3+cosx3.下列运算中正确的是( )A .(sin x -2x 2)′=(sin x )′-2′(x 2)′ B .(ax 2+bx +c )′=a (x 2)′+bx ′ C .(sin x x 2)′=(sin x )′-(x 2)′x2D .(cos x ·sin x )′=(sin x )′cos x +(cos x )′cos x 4.求下列函数的导数(1)y =2x2-3x +1,y ′=__________. (2)y =(x +2)2,y ′=__________.课堂随笔:(3)y =sinx +cosx ,y ′=__________. (4)y =tanx ,y ′=__________.(5)y =(x +2)(3x -1),y ′=__________. 二.例题分析例1函数的下列导数求: (1)y =(x +1)2(x -1); (2)y =x 2sin x ; (3)y =1x +2x 2+3x3;(4)y =x tan x -2cos x .(5)y =sin2x练习:求下列函数的导数: (1)y =(2x 2+3)(3x -2); (2)y =x -sin x 2·cos x2.例2偶函数f(x)=ax4+bx3+cx2+dx +e 的图象过点P(0,1),且在x =1处的切线方程为y =x -2,求y =f(x)的解析式.练习:已知抛物线y =ax2+bx -7经过点(1,1),过点(1,1)的切线方程为4x -y -3=0,求a 、b 的值.例3已知直线l1为曲线y =x2+x -2在点(1,0)处的切线,l2为该曲线的另一条切线,且l1⊥l2. (1)求直线l2的方程;(2)求由直线l1,l2和x 轴所围成的三角形的面积.练习:已知函数f(x)=2x3+ax 与g(x)=bx2+c 的图象都过点P(2,0),且在点P 处有公共切线,求f(x),g(x)的表达式. 三.作业 基础题一、选择题1.曲线y =-x 2+3x 在点(1,2)处的切线方程为( ) A .y =x +1 B .y =-x +3 C .y =x +3 D .y =2x 2.函数y =x ·ln x 的导数是( )A .y ′=xB .y ′=1xC .y ′=ln x +1D .y ′=ln x +x3.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( ) A .193 B .163 C .133 D .1034.曲线运动方程为s =1-t t2+2t 2,则t =2时的速度为( )A .4B .8C .10D .12 5.函数y =cos xx的导数是( )A .y ′=-sin xx2B .y ′=-sin xC .y ′=-x sin x +cos xx 2D .y ′=-x cos x +cos xx 26.若函数f (x )=f ′(1)x 3-2x 2+3,则f ′(1)的值为( ) A .0 B .-1 C .1 D .2 二、填空题7.函数f (x )=x +1x,则f ′(x )=________.8.若函数f (x )=1-sin xx,则f ′(π)=________________.9.(2015·天津文)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.三、解答题10.函数f (x )=x 3-x 2-x +1的图象上有两点A (0,1)和B (1,0),在区间(0,1)内求实数a ,使得函数f (x )的图象在x =a 处的切线平行于直线AB .提高题一、选择题1.(2015·长安一中质检)设a ∈R ,函数f (x )=e x+a ·e -x的导函数是f ′(x ),且f ′(x )是奇函数.若曲线y =f (x )的一条切线的斜率是32,则切点的横坐标为( )A .ln2B .-ln2C .ln22D .-ln222.若函数f (x )=e xsin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为( )A .π2 B .0 C .钝角 D .锐角3.曲线y =xx +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -24.(2015·山西六校联考)已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e )+ln x ,则f ′(e )( )A .e -1B .-1C .-e -1D .-e 二、填空题后记与感悟:5.直线y =4x +b 是曲线y =13x 3+2x (x >0)的一条切线,则实数b =________.6.设a ∈R ,函数f (x )=x 3+ax 2+(a -3)x 的导函数是f ′(x ),若f ′(x )是偶函数,则曲线y =f (x )在原点处的切线方程为________. 三、解答题7.已知函数f (x )=x 3+bx 2+cx +d 的图象过点P (0,2),且在点M (-1,f (-1))处的切线方程为6x -y +7=0,求函数f (x )的解析式. 8.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标;(3)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.答案基础题acdbcd 7.1-1x28.π-1π2 9.310.[解析] 直线AB 的斜率k AB =-1,f ′(x )=3x 2-2x -1,令f ′(a )=-1 (0<a <1), 即3a 2-2a -1=-1, 解得a =23.提高题acac 5.-4236.y =-3x7.[解析] 由f (x )的图象经过点P (0,2),知d =2,所以f (x )=x 3+bx 2+cx +2.f ′(x )=3x 2+2bx +c .因为在M (-1,f (-1))处的切线方程是6x -y +7=0,可知-6-f (-1)+7=0, 即f (-1)=1,f ′(-1)=6.∴⎩⎪⎨⎪⎧3-2b +c =6,-1+b -c +2=1.即⎩⎪⎨⎪⎧2b -c =-3,b -c =0,解得b =c =-3.故所求的解析式是f (x )=x 3-3x 2-3x +2. 8.[解析] (1)∵f ′(x )=3x 2+1,∴f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. ∴切线的方程为13x -y -32=0. (2)解法一:设切点为(x 0,y 0), 则直线l 的斜率为f ′(x 0)=3x 20+1,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16, 又∵直线l 过原点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得,x 30=-8,∴x 0=-2,∴y 0=-26,k =13. ∴直线l 的方程为y =13x ,切点坐标为(-2,-26). 解法二:设直线l 的方程为y =kx ,切点为(x 0,y 0),则k =y 0-0x 0-0=x 30+x 0-16x 0,又∵k =f ′(x 0)=3x 20+1,∴x 30+x 0-16x 0=3x 20+1,解之得,x 0=-2,∴y 0=-26,k =13.∴直线l 的方程为y =13x ,切点坐标为(-2,-26). (3)∵切线与直线y =-x4+3垂直,∴切线的斜率k =4.设切点坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4,∴x 0=±1,∴⎩⎪⎨⎪⎧x 0=1y 0=-14,或⎩⎪⎨⎪⎧x 0=-1y 0=-18.∴切点坐标为(1,-14)或(-1,-18),切线方程为y =4x -18或y =4x -14.。
【2020】高中数学第三章导数及其应用3 2导数的运算3 2 1几个幂函数的导数3 2 2一些初等函数的导数表同步练

令f(x)=y= ,则f′(x)=( )′= ,
∴f′(x0)= =kl1.
由l1与l2垂直,得kl2=-2 .
于是直线l2的方程为y-y0=-2 (x-x0).
令y=0,则-y0=-2 (x-x0),
∴- =-2 (x-x0),
由此继续求导下去,可发现从f1(x)开始,每4个循环一次,所以f2 009(x)=f4×502+1(x)=f1(x)=cosx.
9.解:时刻t时,∠POA=1·t=t(rad),
∴∠MPO=∠POA=t(rad).
∴OM=OPsin∠MPO=1·sint=sint.∴点M的运动方程为y=sint.∴v=(sint)′=cost(m/s),即时刻t时,点P在y轴上的射影点M的速度为costm/s.
【2020】高中数学第三章导数及其应用3 2导数的运算3 2 1几个幂函数的导数3 2 2一些初等函数的导数表同步练习湘教选修1_1
编 辑:__________________
时 间:__________________
3.2.1 几个幂函数的导数 3.2.2 一些初等函数的导数表
1.下列各式中,正确的是( ).
∴x= +x0,即xQ= +x0.而xK=x0,
于是|KQ|=|xQ-xK|=| +x0-x0|= .
8.cosxf0(x)=sinx,f1(x)=f0′(x)=(sinx)′=cosx,
f2(x)=f1′(x)=(cosx)′=-sinx,
f3(x)=f2′(x)=(-sinx)′=-cosx,
f4(x)=f3′(x)=(-cosx)′=sinx,
f5(x)=f4′(x)=(sinx)′=cosx.
2017年高中数学第三章导数及其应用3.2导数的运算3.2.3导数的运算法则同步练习湘教版选修1_120171019312

3.2.3 导数的运算法则1.设f(x)=x ln x,若f′(x0)=2,则x0的值是().A.e2 B.eln 2C.D.ln 222.函数f(x)=x x x的导数是().1 -7A.(x>0) B.(x>0)8 x88 x7 -1C.(x>0) D.(x>0)88 x88 x3.下列求导运算,其中正确的有().①(2x3-cos x)′=6x2+sin x;1 1②(2-)′=;x x2③[(3+x2)(2-x3)]′=2x(2-x3)+3x2(3+x2);1+cos x2x(1+cos x)+x2sin x④()′=;x2 x2x3 3x2sin x-x3cos x⑤()′=;sin x sin2x1⑥(tan x)′=.cos2xA.①②③⑤B.②④⑤⑥C.①②⑤⑥D.①②③④⑤⑥4.已知函数f(x)=x(x2+1)(x3+2)…(x2 010+2 009),则f′(0)=().(注:1×2×3×…×n=n!)A.2 009! B.2 010!C.n! D.x!5.在平面直角坐标系xOy中,点P在曲线C:y=x3-10x+3上,且在第二象限内,已知曲线C在点P处的切线的斜率为2,则点P的坐标为().A.(2,15) B.(-15,2)C.(2,-15) D.(-2,15)x6.线y=f(x)=在原点处的切线的倾斜角是__________.1+x27.若曲线f(x)=ax5+ln x存在垂直于y轴的切线,则实数a的取值范围是__________.8.半径为r的圆的面积S(r)=πr2,周长C(r)=2πr,若将r看作(0,+∞)上的变量,则(πr2)′=2πr,①(1)①式可用语言叙述为:圆的面积函数的导数等于圆的周长函数.1对于半径为R的球,若将R看作(0,+∞)上的变量,请你写出类似于①的式子:__________;②(2)②式可用语言叙述为__________.9.已知抛物线y=ax2+bx+c(a≠0)过点(1,1),且在点(2,-1)处与直线y=x-3相切,求a,b,c的值.x+910.求经过原点与曲线y=f(x)=相切的切线方程.x+52参考答案1.B∵f′(x)=(x ln x)′=ln x+1,∴f′(x0)=ln x0+1=2,∴x0=e.2.C∵f(x)=1117 x x x x,2488∴f′(x)=7818x1+cos x3.C③中,[(3+x2)(2-x3)]′=2x(2-x3)-3x2(3+x2).④中,(x2 )′=-sin x·x2-2x·(1+cos x),故③④错误,①②⑤⑥正确.x44.A设g(x)=(x2+1)(x3+2)…(x2 010+2 009 ),则g(0)=1×2×3×…×2 009=2 009!.又∵f(x)=xg(x),∴f′(x)=g(x)+xg′(x).∴f′(0)=g(0)+0×g′(0)=g(0)=2 009!!.5.D∵y′=3x2-10,设切点P(x0,y0)(x0<0),则点P处的切线斜率k=3x02-10=2,∴x0=-2.∴x0=-2(x0<0).∴点P的坐标为(-2,15).π1+x2-2x2 1-x26.f′(x)==,4 (1+x2)2 (1+x2)21-0当x=0时,f′(0)==1.(1+0)2π∴tanθ=1,∴θ=为所求的倾斜角.417.(-∞,0)∵f′(x)=55ax4+,x∈(0,+∞),x1∴由题意,知5ax4+=0在(0,+∞)上有解,x1即a=-在(0,+∞)上有解.5x5∵x∈(0,+∞),1∴-∈(-∞,0).∴a∈(-∞,0).5x548.(πR3)′=4πR2球的体积函数的导数等于球的表面积函数半径为R的球的体积为34 4 4V=3πR3,表面积为S=4πR2.因为V′=(πR3)′=4πR2=S,所以有(πR3)′=4πR2,用3 3语言叙述为:球的体积函数的导数等于球的表面积函数.39.解:因为y=ax2+bx+c过点(1,1),所以a+b+c=1.①又y′=2ax+b,曲线在点(2,-1)处的切线的斜率为1,所以4a+2b+c=-1,②4a+b=1.③联立①②③,解得a=3,b=-11,c=9.x1+910.解:设切点为M(x1,y1),则y1=.x1+5x+9 (x+9)′(x+5)-(x+9)(x+5)′-4又y′=(x+5 )′==,(x+5)2 (x+5)2-4∴f′(x1)=.(x1+5)2设所求切线方程为y=kx,则y1=kx1.由Error!得Error!3解出x1=-3或x1=-15,得y1=3或y1=.53 3故切点为(-3,3)或(-15,),斜率为-1或-,5 75所以所求切线方程为x+y=0或x+25y=0.4。
高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用练习 理

§3.2导数的应用考纲解读分析解读函数的单调性是函数的一条重要性质,也是高中阶段研究的重点.一是直接用导数研究函数的单调性、求函数的最值与极值,以及实际问题中的优化问题等,这是新课标的一个新要求.二是把导数与函数、方程、不等式、数列等知识相联系,综合考查函数的最值与参数的取值,常以解答题的形式出现.本节内容在高考中分值为17分左右,属难度较大题.1)函数f(x)的定义域为(-∞,+∞), f '(x)=2e2x-ae x-a2=(2e x+a)(e x-a).①若a=0,则f(x)=e2x,在(-∞,+∞)上单调递增.②若a>0,则由f '(x)=0得x=ln a.当x∈(-∞,ln a)时, f '(x)<0;当x∈(ln a,+∞)时, f '(x)>0.故f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增.③若a<0,则由f '(x)=0得x=ln.当x∈时, f '(x)<0;当x∈时, f '(x)>0.故f(x)在上单调递减,在上单调递增.(2)①若a=0,则f(x)=e2x,所以f(x)≥0.②若a>0,则由(1)得,当x=ln a时, f(x)取得最小值,最小值为f(ln a)=-a2ln a,从而当且仅当-a2ln a≥0,即a≤1时, f(x)≥0.③若a<0,则由(1)得,当x=ln时, f(x)取得最小值,最小值为f=a2.从而当且仅当a2≥0,即a≥-2时, f(x)≥0.综上,a的取值范围是[-2,1]五年高考考点一利用导数研究函数的单调性1.(2017山东,10,5分)若函数e x f(x)(e=2.718 28…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中具有M性质的是( )A.f(x)=2-xB.f(x)=x2C.f(x)=3-xD.f(x)=cos x答案 A2.(2016课标全国Ⅰ,12,5分)若函数f(x)=x-sin 2x+asin x在(-∞,+∞)单调递增,则a的取值范围是( )A.[-1,1]B.C.D.答案 C3.(2015课标Ⅱ,12,5分)设函数f(x)=ln(1+|x|)-,则使得f(x)>f(2x-1)成立的x的取值范围是( )A. B.∪(1,+∞)C. D.∪答案 A4.(2014课标Ⅱ,11,5分)若函数f(x)=kx-ln x在区间(1,+∞)单调递增,则k的取值范围是( )A.(-∞,-2]B.(-∞,-1]C.[2,+∞)D.[1,+∞)答案 D5.(2017江苏,11,5分)已知函数f(x)=x3-2x+e x-,其中e是自然对数的底数.若f(a-1)+f(2a2)≤0,则实数a 的取值范围是.答案6.(2017课标全国Ⅱ,21,12分)设函数f(x)=(1-x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时, f(x)≤ax+1,求a的取值范围.解析(1)f '(x)=(1-2x-x2)e x.令f '(x)=0,得x=-1-或x=-1+.当x∈(-∞,-1-)时, f '(x)<0;当x∈(-1-,-1+)时, f '(x)>0;当x∈(-1+,+∞)时, f '(x)<0.所以f(x)在(-∞,-1-),(-1+,+∞)上单调递减,在(-1-,-1+)上单调递增.(2)f(x)=(1+x)(1-x)e x.当a≥1时,设函数h(x)=(1-x)e x,h'(x)=-xe x<0(x>0),因此h(x)在[0,+∞)上单调递减,而h(0)=1,故h(x)≤1,所以f(x)=(x+1)h(x)≤x+1≤ax+1.当0<a<1时,设函数g(x)=e x-x-1,g'(x)=e x-1>0(x>0),所以g(x)在[0,+∞)上单调递增,而g(0)=0,故e x≥x+1.当0<x<1时, f(x)>(1-x)(1+x)2,(1-x)(1+x)2-ax-1=x(1-a-x-x2),取x0=,则x0∈(0,1),(1-x0)(1+x0)2-ax0-1=0,故f(x0)>ax0+1.当a≤0时,取x0=,则x0∈(0,1), f(x0)>(1-x0)(1+x0)2=1≥ax0+1.综上,a的取值范围是[1,+∞).7.(2017课标全国Ⅲ,21,12分)已知函数f(x)=ln x+ax2+(2a+1)x.(1)讨论f(x)的单调性;(2)当a<0时,证明f(x)≤--2.解析(1)f(x)的定义域为(0,+∞), f '(x)=+2ax+2a+1=.若a≥0,则当x∈(0,+∞)时, f '(x)>0,故f(x)在(0,+∞)上单调递增.若a<0,则当x∈时, f '(x)>0;当x∈时, f '(x)<0,故f(x)在上单调递增,在上单调递减.(2)由(1)知,当a<0时, f(x)在x=-处取得最大值,最大值为f=ln-1-.所以f(x)≤--2等价于ln-1-≤--2,即ln++1≤0.设g(x)=ln x-x+1,则g'(x)=-1.当x∈(0,1)时,g'(x)>0;当x∈(1,+∞)时,g'(x)<0.所以g(x)在(0,1)上单调递增,在(1,+∞)上单调递减.故当x=1时,g(x)取得最大值,最大值为g(1)=0.所以当x>0时,g(x)≤0.从而当a<0时,ln++1≤0,即f(x)≤--2.8.(2016课标全国Ⅲ,21,12分)设函数f(x)=ln x-x+1.(1)讨论f(x)的单调性;(2)证明当x∈(1,+∞)时,1<<x;(3)设c>1,证明当x∈(0,1)时,1+(c-1)x>c x.解析(1)由题设知, f(x)的定义域为(0,+∞), f '(x)=-1,令f '(x)=0,解得x=1.当0<x<1时, f '(x)>0, f(x)单调递增;当x>1时, f '(x)<0, f(x)单调递减.(4分)(2)证明:由(1)知f(x)在x=1处取得最大值,最大值为f(1)=0.所以当x≠1时,ln x<x-1.故当x∈(1,+∞)时,ln x<x-1,ln<-1,即1<<x.(7分)(3)证明:由题设c>1,设g(x)=1+(c-1)x-c x,则g'(x)=c-1-c x ln c,令g'(x)=0,解得x0=.当x<x0时,g'(x)>0,g(x)单调递增;当x>x0时,g'(x)<0,g(x)单调递减.(9分)由(2)知1<<c,故0<x0<1.又g(0)=g(1)=0,故当0<x<1时,g(x)>0.所以当x∈(0,1)时,1+(c-1)x>c x.(12分)教师用书专用(9—24)9.(2013浙江,8,5分)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f '(x)的图象如图所示,则该函数的图象是( )答案 B10.(2015四川,21,14分)已知函数f(x)=-2xln x+x2-2ax+a2,其中a>0.(1)设g(x)是f(x)的导函数,讨论g(x)的单调性;(2)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.解析(1)由已知,得函数f(x)的定义域为(0,+∞),g(x)=f '(x)=2(x-1-ln x-a),所以g'(x)=2-=.当x∈(0,1)时,g'(x)<0,g(x)单调递减;当x∈(1,+∞)时,g'(x)>0,g(x)单调递增.(2)证明:由f '(x)=2(x-1-ln x-a)=0,解得a=x-1-ln x.令φ(x)=-2xln x+x2-2x(x-1-ln x)+(x-1-ln x)2=(1+ln x)2-2xln x,则φ(1)=1>0,φ(e)=2(2-e)<0.于是,存在x0∈(1,e),使得φ(x0)=0.令a0=x0-1-ln x0=u(x0),其中u(x)=x-1-ln x(x≥1).由u'(x)=1-≥0知,函数u(x)在区间(1,+∞)上单调递增.故0=u(1)<a0=u(x0)<u(e)=e-2<1.即a0∈(0,1).当a=a0时,有f '(x0)=0, f(x0)=φ(x0)=0.再由(1)知, f '(x)在区间(1,+∞)上单调递增,当x∈(1,x0)时, f '(x)<0,从而f(x)>f(x0)=0;当x∈(x0,+∞)时, f '(x)>0,从而f(x)>f(x0)=0;又当x∈(0,1]时, f(x)=(x-a0)2-2xln x>0.故x∈(0,+∞)时, f(x)≥0.综上所述,存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.11.(2015天津,20,14分)已知函数f(x)=4x-x4,x∈R.(1)求f(x)的单调区间;(2)设曲线y=f(x)与x轴正半轴的交点为P,曲线在点P处的切线方程为y=g(x),求证:对于任意的实数x,都有f(x)≤g(x);(3)若方程f(x)=a(a为实数)有两个实数根x1,x2,且x1<x2,求证:x2-x1≤-+.解析(1)由f(x)=4x-x4,可得f '(x)=4-4x3.当f '(x)>0,即x<1时,函数f(x)单调递增;当f '(x)<0,即x>1时,函数f(x)单调递减.所以, f(x)的单调递增区间为(-∞,1),单调递减区间为(1,+∞).(2)证明:设点P的坐标为(x0,0),则x0=, f '(x0)=-12.曲线y=f(x)在点P处的切线方程为y=f '(x0)(x-x0),即g(x)=f '(x0)(x-x0).令函数F(x)=f(x)-g(x),即F(x)=f(x)-f '(x0)(x-x0),则F'(x)=f '(x)-f '(x0).由于 f '(x)=-4x3+4在(-∞,+∞)上单调递减,故F'(x)在(-∞,+∞)上单调递减.又因为F'(x0)=0,所以当x∈(-∞,x0)时,F'(x)>0,当x∈(x0,+∞)时,F'(x)<0,所以F(x)在(-∞,x0)上单调递增,在(x0,+∞)上单调递减,所以对于任意的实数x,F(x)≤F(x0)=0,即对于任意的实数x,都有f(x)≤g(x).(3)证明:由(2)知g(x)=-12(x-).设方程g(x)=a的根为x2',可得x2'=-+.因为g(x)在(-∞,+∞)上单调递减,又由(2)知g(x2)≥f(x2)=a=g(x2'),因此x2≤x2'.类似地,设曲线y=f(x)在原点处的切线方程为y=h(x),可得h(x)=4x.对于任意的x∈(-∞,+∞),有f(x)-h(x)=-x4≤0,即f(x)≤h(x).设方程h(x)=a的根为x1',可得x1'=.因为h(x)=4x在(-∞,+∞)上单调递增,且h(x1')=a=f(x1)≤h(x1),因此x1'≤x1.由此可得x2-x1≤x2'-x1'=-+.12.(2015福建,22,14分)已知函数f(x)=ln x-.(1)求函数f(x)的单调递增区间;(2)证明:当x>1时, f(x)<x-1;(3)确定实数k的所有可能取值,使得存在x0>1,当x∈(1,x0)时,恒有f(x)>k(x-1).解析(1)f '(x)=-x+1=,x∈(0,+∞).由f '(x)>0得解得0<x<.故f(x)的单调递增区间是.(2)证明:令F(x)=f(x)-(x-1),x∈(0,+∞).则有F'(x)=.当x∈(1,+∞)时,F'(x)<0,所以F(x)在[1,+∞)上单调递减,故当x>1时,F(x)<F(1)=0,即当x>1时, f(x)<x-1.(3)由(2)知,当k=1时,不存在x0>1满足题意.当k>1时,对于x>1,有f(x)<x-1<k(x-1),则f(x)<k(x-1),从而不存在x0>1满足题意.当k<1时,令G(x)=f(x)-k(x-1),x∈(0,+∞),则有G'(x)=-x+1-k=.由G'(x)=0得,-x2+(1-k)x+1=0.解得x1=<0,x2=>1.当x∈(1,x2)时,G'(x)>0,故G(x)在[1,x2)内单调递增.从而当x∈(1,x2)时,G(x)>G(1)=0,即f(x)>k(x-1),综上,k的取值范围是(-∞,1).13.(2015重庆,19,12分)已知函数f(x)=ax3+x2(a∈R)在x=-处取得极值.(1)确定a的值;(2)若g(x)=f(x)e x,讨论g(x)的单调性.解析(1)对f(x)求导得f '(x)=3ax2+2x,因为f(x)在x=-处取得极值,所以f '=0,即3a·+2·=-=0,解得a=.(2)由(1)得g(x)=e x,故g'(x)=e x+e x=e x=x(x+1)(x+4)e x.令g'(x)=0,解得x=0,x=-1或x=-4.当x<-4时,g'(x)<0,故g(x)为减函数;当-4<x<-1时,g'(x)>0,故g(x)为增函数;当-1<x<0时,g'(x)<0,故g(x)为减函数;当x>0时,g'(x)>0,故g(x)为增函数.综上,知g(x)在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数.14.(2014安徽,20,13分)设函数f(x)=1+(1+a)x-x2-x3,其中a>0.(1)讨论f(x)在其定义域上的单调性;(2)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.解析(1)f(x)的定义域为(-∞,+∞), f '(x)=1+a-2x-3x2.令f '(x)=0,得x1=,x2=,x1<x2,所以f '(x)=-3(x-x1)(x-x2).当x<x1或x>x2时, f '(x)<0;当x1<x<x2时, f '(x)>0.故f(x)在(-∞,x1)和(x2,+∞)内单调递减,在[x1,x2]内单调递增.(2)因为a>0,所以x1<0,x2>0.(i)当a≥4时,x2≥1,由(1)知, f(x)在[0,1]上单调递增,所以f(x)在x=0和x=1处分别取得最小值和最大值.(ii)当0<a<4时,x2<1.由(1)知, f(x)在[0,x2]上单调递增,在[x2,1]上单调递减,因此f(x)在x=x2=处取得最大值.又f(0)=1, f(1)=a,所以当0<a<1时, f(x)在x=1处取得最小值;当a=1时, f(x)在x=0和x=1处同时取得最小值;当1<a<4时, f(x)在x=0处取得最小值.15.(2014重庆,19,12分)已知函数f(x)=+-ln x-,其中a∈R,且曲线y=f(x)在点(1, f(1))处的切线垂直于直线y=x.(1)求a的值;(2)求函数f(x)的单调区间与极值.解析(1)对f(x)求导得f '(x)=--,由f(x)在点(1, f(1))处的切线垂直于直线y=x知f '(1)=--a=-2,解得a=.(2)由(1)知f(x)=+-ln x-,则f '(x)=,令f '(x)=0,解得x=-1或x=5.因x=-1不在f(x)的定义域(0,+∞)内,故舍去.当x∈(0,5)时, f '(x)<0,故f(x)在(0,5)内为减函数;当x∈(5,+∞)时, f '(x)>0,故f(x)在(5,+∞)内为增函数.由此知函数f(x)在x=5时取得极小值f(5)=-ln 5.16.(2014湖北,21,14分)π为圆周率,e=2.718 28…为自然对数的底数.(1)求函数f(x)=的单调区间;(2)求e3,3e,eπ,πe,3π,π3这6个数中的最大数与最小数.解析(1)函数f(x)的定义域为(0,+∞).因为f(x)=,所以f '(x)=.当f '(x)>0,即0<x<e时,函数f(x)单调递增;当f '(x)<0,即x>e时,函数f(x)单调递减.故函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞).(2)因为e<3<π,所以eln 3<eln π,πln e<πln 3,即ln 3e<ln πe,ln eπ<ln 3π.于是根据函数y=ln x,y=e x,y=πx在定义域上单调递增,可得3e<πe<π3,e3<eπ<3π.故这6个数的最大数在π3与3π之中,最小数在3e与e3之中.由e<3<π及(1)的结论,得f(π)<f(3)<f(e),即<<.由<,得ln π3<ln 3π,所以3π>π3;由<,得ln 3e<ln e3,所以3e<e3.综上,6个数中的最大数是3π,最小数是3e.17.(2014湖南,21,13分)已知函数f(x)=xcos x-sin x+1(x>0).(1)求f(x)的单调区间;(2)记x i为f(x)的从小到大的第i(i∈N*)个零点,证明:对一切n∈N*,有++…+<.解析(1)f '(x)=cos x-xsin x-cos x=-xsin x.令f '(x)=0,得x=kπ(k∈N*).当x∈(2kπ,(2k+1)π)(k∈N)时,sin x>0,此时f '(x)<0;当x∈((2k+1)π,(2k+2)π)(k∈N)时,sin x<0,此时f '(x)>0,故f(x)的单调递减区间为(2kπ,(2k+1)π)(k∈N),单调递增区间为((2k+1)π,(2k+2)π)(k∈N).(2)由(1)知, f(x)在区间(0,π)上单调递减,又f=0,故x1=,当n∈N*时,因为f(nπ)f((n+1)π)=[(-1)n nπ+1]·[(-1)n+1(n+1)n+1]<0,且函数f(x)的图象是连续不断的,所以f(x)在区间(nπ,(n+1)π)内至少存在一个零点.又f(x)在区间(nπ,(n+1)π)上是单调的,故nπ<x n+1<(n+1)π.因此当n=1时,=<;当n=2时,+<(4+1)<;当n≥3时,++…+<<==<<.综上所述,对一切n∈N*,++…+<.18.(2014江西,18,12分)已知函数f(x)=(4x2+4ax+a2),其中a<0.(1)当a=-4时,求f(x)的单调递增区间;(2)若f(x)在区间[1,4]上的最小值为8,求a的值.解析(1)f(x)的定义域为[0,+∞).当a=-4时,由f '(x)==0得x=或x=2,由f '(x)>0得x∈或x∈(2,+∞),故函数f(x)的单调递增区间为和(2,+∞).(2)f '(x)=,a<0,由f '(x)=0得x=-或x=-.当x∈时,f(x)单调递增;当x∈时,f(x)单调递减;当x∈时,f(x)单调递增.易知 f(x)=(2x+a)2≥0,且f=0.①当-≤1,即-2≤a<0时,f(x)在[1,4]上的最小值为f(1),由f(1)=4+4a+a2=8,得a=±2-2,均不符合题意.②当1<-≤4,即-8≤a<-2时, f(x)在[1,4]上的最小值为f=0,不符合题意.③当->4,即a<-8时,f(x)在[1,4]上的最小值可能在x=1或x=4处取得,而f(1)≠8,由f(4)=2(64+16a+a2)=8得a=-10或a=-6(舍去),当a=-10时,f(x)在(1,4)上单调递减, f(x)在[1,4]上的最小值为f(4)=8,符合题意. 综上,a=-10.19.(2013课标全国Ⅰ,20,12分)已知函数f(x)=e x(ax+b)-x2-4x,曲线y=f(x)在点(0, f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.解析(1)f '(x)=e x(ax+a+b)-2x-4.由已知得f(0)=4, f '(0)=4.故b=4,a+b=8.从而a=4,b=4.(2)由(1)知f(x)=4e x(x+1)-x2-4x,f '(x)=4e x(x+2)-2x-4=4(x+2).令f '(x)=0,得x=-ln 2或x=-2.从而当x∈(-∞,-2)∪(-ln 2,+∞)时, f '(x)>0;当x∈(-2,-ln 2)时, f '(x)<0.故f(x)在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减.当x=-2时,函数f(x)取得极大值,极大值为f(-2)=4(1-e-2).20.(2013大纲全国,21,12分)已知函数f(x)=x3+3ax2+3x+1.(1)当a=-时,讨论f(x)的单调性;(2)若x∈[2,+∞)时, f(x)≥0,求a的取值范围.解析(1)当a=-时, f(x)=x3-3x2+3x+1,f '(x)=3x2-6x+3.令f '(x)=0,得x1=-1,x2=+1.(3分)当x∈(-∞,-1)时, f '(x)>0, f(x)在(-∞,-1)上是增函数;当x∈(-1,+1)时, f '(x)<0, f(x)在(-1,+1)上是减函数;当x∈(+1,+∞)时, f '(x)>0, f(x)在(+1,+∞)上是增函数.(6分)(2)由f(2)≥0得a≥-.(8分)当a≥-,x∈(2,+∞)时,f '(x)=3(x2+2ax+1)≥3=3(x-2)>0,所以f(x)在(2,+∞)上是增函数,于是当x∈[2,+∞)时,f(x)≥f(2)≥0.综上,a的取值范围是.(12分)21.(2013山东,21,12分)已知函数f(x)=ax2+bx-ln x(a,b∈R).(1)设a≥0,求f(x)的单调区间;(2)设a>0,且对任意x>0, f(x)≥f(1).试比较ln a与-2b的大小.解析(1)由f(x)=ax2+bx-ln x,x∈(0,+∞),得f '(x)=.①当a=0时, f '(x)=.(i)若b≤0,当x>0时, f '(x)<0恒成立,所以函数f(x)的单调递减区间是(0,+∞).(ii)若b>0,当0<x<时, f '(x)<0,函数f(x)单调递减,当x>时, f '(x)>0,函数f(x)单调递增.所以函数f(x)的单调递减区间是,单调递增区间是.②当a>0时,令f '(x)=0,得2ax2+bx-1=0.由Δ=b2+8a>0得x1=,x2=.显然,x1<0,x2>0.当0<x<x2时, f '(x)<0,函数f(x)单调递减;当x>x2时, f '(x)>0,函数f(x)单调递增.所以函数f(x)的单调递减区间是,单调递增区间是.综上所述,当a=0,b≤0时,函数f(x)的单调递减区间是(0,+∞);当a=0,b>0时,函数f(x)的单调递减区间是,单调递增区间是;当a>0时,函数f(x)的单调递减区间是,单调递增区间是.(2)由题意,函数f(x)在x=1处取得最小值,由(1)知是f(x)的唯一极小值点,故=1,整理得2a+b=1,即b=1-2a.令g(x)=2-4x+ln x.则g'(x)=.令g'(x)=0,得x=.当0<x<时,g'(x)>0,g(x)单调递增;当x>时,g'(x)<0,g(x)单调递减.因此g(x)≤g=1+ln=1-ln 4<0.故g(a)<0,即2-4a+ln a=2b+ln a<0,即ln a<-2b.22.(2013天津,20,14分)设a∈[-2,0],已知函数f(x)=(1)证明f(x)在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增;(2)设曲线y=f(x)在点P i(x i, f(x i))(i=1,2,3)处的切线相互平行,且x1x2x3≠0.证明x1+x2+x3>-.证明(1)设函数f1(x)=x3-(a+5)x(x≤0),f2(x)=x3-x2+ax(x≥0),① f '1(x)=3x2-(a+5),由a∈[-2,0],从而当-1<x<0时,f '1(x)=3x2-(a+5)<3-a-5≤0,所以函数f1(x)在区间(-1,0]内单调递减.② f '2(x)=3x2-(a+3)x+a=(3x-a)(x-1),由于a∈[-2,0],所以当0<x<1时, f '2(x)<0;当x>1时, f '2(x)>0. 即函数f2(x)在区间[0,1)内单调递减,在区间(1,+∞)内单调递增.综合①,②及f1(0)=f2(0),可知函数f(x)在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增.(2)由(1)知f '(x)在区间(-∞,0)内单调递减,在区间内单调递减,在区间内单调递增.因为曲线y=f(x)在点P i(x i, f(x i))(i=1,2,3)处的切线相互平行,从而x1,x2,x3互不相等,且f '(x1)=f '(x2)=f '(x3).不妨设x1<0<x2<x3,由3-(a+5)=3-(a+3)x2+a=3-(a+3)x3+a,可得3-3-(a+3)(x2-x3)=0,解得x2+x3=,从而0<x2<<x3.设g(x)=3x2-(a+3)x+a,则g<g(x2)<g(0)=a.由3-(a+5)=g(x2)<a,解得-<x1<0,所以x1+x2+x3>-+,设t=,则a=,因为a∈[-2,0],所以t∈,故x1+x2+x3>-t+=(t-1)2-≥-,即x1+x2+x3>-.23.(2013湖北,21,13分)设a>0,b>0,已知函数f(x)=.(1)当a≠b时,讨论函数f(x)的单调性;(2)当x>0时,称f(x)为a、b关于x的加权平均数.(i)判断f(1),f ,f 是否成等比数列,并证明f ≤f ;(ii)a、b的几何平均数记为G.称为a、b的调和平均数,记为H.若H≤f(x)≤G,求x的取值范围. 解析(1)f(x)的定义域为(-∞,-1)∪(-1,+∞),f '(x)==.当a>b时, f '(x)>0,函数f(x)在(-∞,-1),(-1,+∞)上单调递增;当a<b时, f '(x)<0,函数f(x)在(-∞,-1),(-1,+∞)上单调递减.(2)(i)计算得f(1)=>0, f=>0,f =>0,故f(1)f=·=ab=,即f(1)f=.①所以f(1),f ,f 成等比数列.因为≥,所以f(1)≥f .由①得f ≤f .(ii)由(i)知f =H,f =G.故由H≤f(x)≤G,得f ≤f(x)≤f .②当a=b时,f =f(x)=f =a.这时,x的取值范围为(0,+∞);当a>b时,0<<1,从而<,由f(x)在(0,+∞)上单调递增与②式,得≤x≤,即x的取值范围为;当a<b时,>1,从而>,由f(x)在(0,+∞)上单调递减与②式,得≤x≤,即x的取值范围为.24.(2013江苏,20,16分)设函数f(x)=ln x-ax,g(x)=e x-ax,其中a为实数.(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;(2)若g(x)在(-1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.解析(1)令f '(x)=-a=<0,考虑到f(x)的定义域为(0,+∞),故a>0,进而解得x>a-1,即f(x)在(a-1,+∞)上是单调减函数.同理, f(x)在(0,a-1)上是单调增函数.由于f(x)在(1,+∞)上是单调减函数,故(1,+∞)⊆(a-1,+∞),从而a-1≤1,即a≥1.令g'(x)=e x-a=0,得x=ln a.当x<ln a时,g'(x)<0;当x>ln a时,g'(x)>0.又g(x)在(1,+∞)上有最小值,所以ln a>1,即a>e.综上,有a∈(e,+∞).(2)当a≤0时,g(x)必为单调增函数;当a>0时,令g'(x)=e x-a>0,解得a<e x,即x>ln a,因为g(x)在(-1,+∞)上是单调增函数,类似(1)有ln a≤-1,即0<a≤e-1.结合上述两种情况,有a≤e-1.(i)当a=0时,由f(1)=0以及f '(x)=>0,得f(x)存在唯一的零点.(ii)当a<0时,由于f(e a)=a-ae a=a(1-e a)<0, f(1)=-a>0,且函数f(x)在[e a,1]上的图象不间断,所以f(x)在(e a,1)上存在零点.另外,当x>0时, f '(x)=-a>0,故f(x)在(0,+∞)上是单调增函数,所以f(x)只有一个零点.(iii)当0<a≤e-1时,令f '(x)=-a=0,解得x=a-1.当0<x<a-1时, f '(x)>0,当x>a-1时, f '(x)<0,所以,x=a-1是f(x)的最大值点,且最大值为f(a-1)=-ln a-1.①当-ln a-1=0,即a=e-1时, f(x)有一个零点x=e.②当-ln a-1>0,即0<a<e-1时, f(x)有两个零点.实际上,对于0<a<e-1,由于f(e-1)=-1-ae-1<0, f(a-1)>0,且函数f(x)在[e-1,a-1]上的图象不间断,所以f(x)在(e-1,a-1)上存在零点.另外,当x∈(0,a-1)时, f '(x)=-a>0,故f(x)在(0,a-1)上是单调增函数,所以f(x)在(0,a-1)上只有一个零点.下面考虑f(x)在(a-1,+∞)上的情况.先证f(e a-1)=a(a-2-e a-1)<0.为此,我们要证明:当x>e时,e x>x2.设h(x)=e x-x2,则h'(x)=e x-2x,再设l(x)=h'(x)=e x-2x,则l'(x)=e x-2.当x>1时,l'(x)=e x-2>e-2>0,所以l(x)=h'(x)在(1,+∞)上是单调增函数.故当x>2时,h'(x)=e x-2x>h'(2)=e2-4>0,从而h(x)在(2,+∞)上是单调增函数,进而当x>e时,h(x)=e x-x2>h(e)=e e-e2>0.即当x>e时,e x>x2.当0<a<e-1,即a-1>e时, f(e a-1)=a-1-ae a-1=a(a-2-e a-1)<0,又f(a-1)>0,且函数f(x)在[a-1,e a-1]上的图象不间断,所以f(x)在(a-1,e a-1)上存在零点.又当x>a-1时, f '(x)=-a<0,故f(x)在(a-1,+∞)上是单调减函数,所以f(x)在(a-1,+∞)上只有一个零点.综合(i),(ii),(iii),当a≤0或a=e-1时, f(x)的零点个数为1,当0<a<e-1时,f(x)的零点个数为2.考点二利用导数研究函数的极值与最值1.(2016四川,6,5分)已知a为函数f(x)=x3-12x的极小值点,则a=( )A.-4B.-2C.4D.2答案 D2.(2014辽宁,12,5分)当x∈[-2,1]时,不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是( )A.[-5,-3]B.C.[-6,-2]D.[-4,-3]答案 C3.(2015陕西,15,5分)函数y=xe x在其极值点处的切线方程为.答案y=-4.(2017北京,20,13分)已知函数f(x)=e x cos x-x.(1)求曲线y=f(x)在点(0, f(0))处的切线方程;(2)求函数f(x)在区间上的最大值和最小值.解析(1)因为f(x)=e x cos x-x,所以f '(x)=e x(cos x-sin x)-1, f '(0)=0.又因为f(0)=1,所以曲线y=f(x)在点(0, f(0))处的切线方程为y=1.(2)设h(x)=e x(cos x-sin x)-1,则h'(x)=e x(cos x-sin x-sin x-cos x)=-2e x sin x.当x∈时,h'(x)<0,所以h(x)在区间上单调递减.所以对任意x∈,有h(x)<h(0)=0,即f '(x)<0.所以函数f(x)在区间上单调递减.因此f(x)在区间上的最大值为f(0)=1,最小值为f=-.5.(2017江苏,20,16分)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f '(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x), f '(x)这两个函数的所有极值之和不小于-,求a的取值范围.解析(1)由f(x)=x3+ax2+bx+1,得f '(x)=3x2+2ax+b=3+b-.当x=-时, f '(x)有极小值b-.因为f '(x)的极值点是f(x)的零点,所以f =-+-+1=0,又a>0,故b=+.因为f(x)有极值,故f '(x)=0有实根,从而b-=(27-a3)≤0,即a≥3.当a=3时, f '(x)>0(x≠-1),故f(x)在R上是增函数, f(x)没有极值;当a>3时, f '(x)=0有两个相异的实根x1=,x2=.列表如下:故f(x)的极值点是x1,x2.从而a>3.因此b=+,定义域为(3,+∞).(2)证明:由(1)知,=+.设g(t)=+,则g'(t)=-=.当t∈时,g'(t)>0,从而g(t)在上单调递增.因为a>3,所以a>3,故g(a )>g(3)=,即>.因此b2>3a.(3)由(1)知, f(x)的极值点是x1,x2,且x1+x2=-a,+=.从而f(x1)+f(x2)=+a+bx1+1++a+bx2+1=(3+2ax1+b)+(3+2ax2+b)+a(+)+b(x1+x2)+2=-+2=0. 记f(x), f '(x)所有极值之和为h(a),因为f '(x)的极值为b-=-a2+,所以h(a)=-a2+,a>3.因为h'(a)=-a-<0,于是h(a)在(3,+∞)上单调递减.因为h(6)=-,于是h(a)≥h(6),故a≤6.因此a的取值范围为(3,6].6.(2015安徽,21,13分)已知函数f(x)=(a>0,r>0).(1)求f(x)的定义域,并讨论f(x)的单调性;(2)若=400,求f(x)在(0,+∞)内的极值.解析(1)由题意知x≠-r,所求的定义域为(-∞,-r)∪(-r,+∞).f(x)==,f '(x)==,所以当x<-r或x>r时,f '(x)<0,当-r<x<r时,f '(x)>0,因此,f(x)的单调递减区间为(-∞,-r),(r,+∞);f(x)的单调递增区间为(-r,r).(2)由(1)的解答可知f '(r)=0,f(x)在(0,r)上单调递增,在(r,+∞)上单调递减.因此,x=r是f(x)的极大值点,所以f(x)在(0,+∞)内的极大值为f(r)====100.教师用书专用(7—15)7.(2013福建,12,5分)设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是( )A.∀x∈R, f(x)≤f(x0)B.-x0是f(-x)的极小值点C.-x0是-f(x)的极小值点D.-x0是-f(-x)的极小值点答案 D8.(2016天津,20,14分)设函数f(x)=x3-ax-b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[-1,1]上的最大值.解析(1)由f(x)=x3-ax-b,可得f '(x)=3x2-a.下面分两种情况讨论:①当a≤0时,有f '(x)=3x2-a≥0恒成立,所以f(x)的单调递增区间为(-∞,+∞).②当a>0时,令f '(x)=0,解得x=,或x=-.当x变化时所以f(x)的单调递减区间为,单调递增区间为,.(2)证明:因为f(x)存在极值点,所以由(1)知a>0,且x0≠0.由题意,得 f '(x0)=3-a=0,即=,进而f(x0)=-ax0-b=-x0-b.又f(-2x0)=-8+2ax0-b=-x0+2ax0-b=-x0-b=f(x0),且-2x0≠x0,由题意及(1)知,存在唯一实数x1满足 f(x1)=f(x0),且x1≠x0,因此x1=-2x0.所以x1+2x0=0.(3)证明:设g(x)在区间[-1,1]上的最大值为M,max{x,y}表示x,y两数的最大值.下面分三种情况讨论:①当a≥3时,-≤-1<1≤,由(1)知, f(x)在区间[-1,1]上单调递减,所以f(x)在区间[-1,1]上的取值范围为[f(1), f(-1)],因此M=max{|f(1)|,|f(-1)|}=max{|1-a-b|,|-1+a-b|}=max{|a-1+b|,|a-1-b|}=所以M=a-1+|b|≥2.②当≤a<3时,-≤-1<-<<1≤,由(1)和(2)知f(-1)≥f =f , f(1)≤f =f ,所以f(x)在区间[-1,1]上的取值范围为 f , f ,因此M=max,=max=max=+|b|≥××=.③当0<a<时,-1<-<<1,由(1)和(2)知f(-1)<f =f , f(1)>f =f ,所以f(x)在区间[-1,1]上的取值范围为[f(-1), f(1)],因此M=max{|f(-1)|,|f(1)|}=max{|-1+a-b|,|1-a-b|}=max{|1-a+b|,|1-a-b|}=1-a+|b|>.综上所述,当a>0时,g(x)在区间[-1,1]上的最大值不小于.9.(2014天津,19,14分)已知函数f(x)=x2-ax3(a>0),x∈R.(1)求f(x)的单调区间和极值;(2)若对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)·f(x2)=1.求a的取值范围.解析(1)由已知,有f '(x)=2x-2ax2(a>0).令f '(x)=0,解得x=0或x=.当x变化时, f '(x), f(x)所以, f(x)的单调递增区间是;单调递减区间是(-∞,0),.当x=0时, f(x)有极小值,且极小值f(0)=0;当x=时,f(x)有极大值,且极大值f=.(2)由f(0)=f=0及(1)知,当x∈时, f(x)>0;当x∈时, f(x)<0.设集合A={f(x)|x∈(2,+∞)},集合B=.则“对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)·f(x2)=1”等价于A⊆B.显然,0∉B.下面分三种情况讨论:①当>2,即0<a<时,由f=0可知,0∈A,而0∉B,所以A不是B的子集.②当1≤≤2,即≤a≤时,有f(2)≤0,且此时f(x)在(2,+∞)上单调递减,故A=(-∞, f(2)),因而A⊆(-∞,0);由f(1)≥0,有f(x)在(1,+∞)上的取值范围包含(-∞,0),则(-∞,0)⊆B.所以,A⊆B.③当<1,即a>时,有f(1)<0,且此时f(x)在(1,+∞)上单调递减,故B=,A=(-∞,f(2)),所以A不是B 的子集.综上,a的取值范围是.10.(2014浙江,21,15分)已知函数f(x)=x3+3|x-a|(a>0).若f(x)在[-1,1]上的最小值记为g(a).(1)求g(a);(2)证明:当x∈[-1,1]时,恒有f(x)≤g(a)+4.解析(1)因为a>0,-1≤x≤1,所以(i)当0<a<1时,若x∈[-1,a],则f(x)=x3-3x+3a, f '(x)=3x2-3<0,故f(x)在(-1,a)上是减函数;若x∈[a,1],则f(x)=x3+3x-3a, f '(x)=3x2+3>0,故f(x)在(a,1)上是增函数.所以g(a)=f(a)=a3.(ii)当a≥1时,有x≤a,则f(x)=x3-3x+3a, f '(x)=3x2-3<0,故f(x)在(-1,1)上是减函数,所以g(a)=f(1)=-2+3a.综上,g(a)=(2)令h(x)=f(x)-g(a),(i)当0<a<1时,g(a)=a3,若x∈[a,1],h(x)=x3+3x-3a-a3,得h'(x)=3x2+3,则h(x)在(a,1)上是增函数,所以,h(x)在[a,1]上的最大值是h(1)=4-3a-a3,且0<a<1,所以h(1)≤4.故f(x)≤g(a)+4;若x∈[-1,a],h(x)=x3-3x+3a-a3,得h'(x)=3x2-3,则h(x)在(-1,a)上是减函数,所以,h(x)在[-1,a]上的最大值是h(-1)=2+3a-a3.令t(a)=2+3a-a3,则t'(a)=3-3a2>0,知t(a)在(0,1)上是增函数,所以,t(a)<t(1)=4,即h(-1)<4.故f(x)≤g(a)+4.(ii)当a≥1时,g(a)=-2+3a,故h(x)=x3-3x+2,得h'(x)=3x2-3,此时h(x)在(-1,1)上是减函数,因此h(x)在[-1,1]上的最大值是h(-1)=4.故f(x)≤g(a)+4.综上,当x∈[-1,1]时,恒有f(x)≤g(a)+4.11.(2014四川,21,14分)已知函数f(x)=e x-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,证明:e-2<a<1.解析(1)由f(x)=e x-ax2-bx-1,有g(x)=f '(x)=e x-2ax-b,所以g'(x)=e x-2a.当x∈[0,1]时,g'(x)∈[1-2a,e-2a],当a≤时,g'(x)≥0,所以g(x)在[0,1]上单调递增,因此g(x)在[0,1]上的最小值是g(0)=1-b;当a≥时,g'(x)≤0,所以g(x)在[0,1]上单调递减.因此g(x)在[0,1]上的最小值是g(1)=e-2a-b;当<a<时,令g'(x)=0,得x=ln(2a)∈(0,1).所以函数g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增.于是,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b.综上所述,当a≤时,g(x)在[0,1]上的最小值是g(0)=1-b;当<a<时,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b;当a≥时,g(x)在[0,1]上的最小值是g(1)=e-2a-b.(2)设x0为f(x)在区间(0,1)内的一个零点,则由f(0)=f(x0)=0可知f(x)在区间(0,x0)上不可能单调递增,也不可能单调递减.则g(x)不可能恒为正,也不可能恒为负.故g(x)在区间(0,x0)内存在零点x1,同理,g(x)在区间(x0,1)内存在零点x2,所以g(x)在区间(0,1)内至少有两个零点.由(1)知,当a≤时,g(x)在[0,1]上单调递增,故g(x)在(0,1)内至多有一个零点.当a≥时,g(x)在[0,1]上单调递减,故g(x)在(0,1)内至多有一个零点,所以<a<.此时g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增,因此x1∈(0,ln(2a)],x2∈(ln(2a),1),必有g(0)=1-b>0,g(1)=e-2a-b>0.由f(1)=0有a+b=e-1<2,有g(0)=a-e+2>0,g(1)=1-a>0,解得e-2<a<1.所以函数f(x)在区间(0,1)内有零点时,e-2<a<1.12.(2014陕西,21,14分)设函数f(x)=ln x+,m∈R.(1)当m=e(e为自然对数的底数)时,求f(x)的极小值;(2)讨论函数g(x)=f '(x)-零点的个数;(3)若对任意b>a>0,<1恒成立,求m的取值范围.解析(1)当m=e时, f(x)=ln x+,则 f '(x)=,∴当x∈(0,e)时, f '(x)<0, f(x)在(0,e)上单调递减;当x∈(e,+∞)时, f '(x)>0, f(x)在(e,+∞)上单调递增.∴当x=e时, f(x)取得极小值f(e)=ln e+=2,∴f(x)的极小值为2.(2)由题设知,g(x)=f '(x)-=--(x>0),令g(x)=0,得m=-x3+x(x>0).设φ(x)=-x3+x(x≥0),则φ'(x)=-x2+1=-(x-1)(x+1),当x∈(0,1)时,φ'(x)>0,∴φ(x)在(0,1)上单调递增;当x∈(1,+∞)时,φ'(x)<0,∴φ(x)在(1,+∞)上单调递减.∴x=1是φ(x)的唯一极值点,且是极大值点,因此x=1也是φ(x)的最大值点,∴φ(x)的最大值为φ(1)=.又φ(0)=0,结合y=φ(x)的图象(如图),可知①当m>时,函数g(x)无零点;②当m=时,函数g(x)有且只有一个零点;③当0<m<时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点.综上所述,当m>时,函数g(x)无零点;当m=或m≤0时,函数g(x)有且只有一个零点;当0<m<时,函数g(x)有两个零点.(3)对任意的b>a>0,<1恒成立,等价于f(b)-b<f(a)-a恒成立.(*)设h(x)=f(x)-x=ln x+-x(x>0),∴(*)等价于h(x)在(0,+∞)上单调递减.由h'(x)=--1≤0在(0,+∞)上恒成立,得m≥-x2+x=-+(x>0)恒成立,∴m≥,∴m的取值范围是.13.(2013广东,21,14分)设函数f(x)=x3-kx2+x(k∈R).(1)当k=1时,求函数f(x)的单调区间;(2)当k<0时,求函数f(x)在[k,-k]上的最小值m和最大值M.解析 f '(x)=3x2-2kx+1.(1)当k=1时, f '(x)=3x2-2x+1,Δ=4-12=-8<0,∴f '(x)>0, f(x)在R上单调递增.(2)当k<0时, f '(x)=3x2-2kx+1,其图象开口向上,对称轴为直线x=,且过(0,1).(i)当Δ=4k2-12=4(k+)(k-)≤0,即-≤k<0时, f '(x)≥0, f(x)在[k,-k]上单调递增,从而当x=k时, f(x)取得最小值m=f(k)=k,当x=-k时, f(x)取得最大值M=f(-k)=-k3-k3-k=-2k3-k.(ii)当Δ=4k2-12=4(k+)(k-)>0,即k<-时,令f '(x)=3x2-2kx+1=0,解得x1=,x2=,注意到k<x2<x1<0,∴m=min{f(k), f(x1)},M=max{f(-k), f(x2)}.∵f(x1)-f(k)=-k+x1-k=(x1-k)(+1)>0,∴f(x)的最小值m=f(k)=k.∵f(x2)-f(-k)=-k+x2-(-k3-k·k2-k)=(x2+k)[(x2-k)2+k2+1]<0,∴f(x)的最大值M=f(-k)=-2k3-k.综上所述,当k<0时, f(x)的最小值m=f(k)=k,最大值M=f(-k)=-2k3-k.14.(2013浙江,21,15分)已知a∈R,函数f(x)=2x3-3(a+1)x2+6ax.(1)若a=1,求曲线y=f(x)在点(2, f(2))处的切线方程;(2)若|a|>1,求f(x)在闭区间[0,2|a|]上的最小值.解析(1)当a=1时, f '(x)=6x2-12x+6,所以f '(2)=6.又因为f(2)=4,所以切线方程为y=6x-8.(2)记g(a)为f(x)在闭区间[0,2|a|]上的最小值.f '(x)=6x2-6(a+1)x+6a=6(x-1)(x-a).令f '(x)=0,得到x1=1,x2=a.当a>1时,比较f(0)=0和f(a)=a2(3-a)的大小可得g(a)=当a<-1时,得g(a)=3a-1.综上所述, f(x)在闭区间[0,2|a|]上的最小值为g(a)=15.(2013重庆,20,12分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V表示成r的函数V(r),并求该函数的定义域;(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.解析(1)因为蓄水池侧面的建造成本为100·2πrh=200πrh元,底面的建造成本为160πr2元,所以蓄水池的总建造成本为(200πrh+160πr2)元.所以200πrh+160πr2=12 000π,所以h=(300-4r2),从而V(r)=πr2h=(300r-4r3).因为r>0,h>0,所以0<r<5,故函数V(r)的定义域为(0,5).(2)因为V(r)=(300r-4r3),故V'(r)=(300-12r2).令V'(r)=0,解得r1=5,r2=-5(r2=-5不在定义域内,舍去).当r∈(0,5)时,V'(r)>0,故V(r)在(0,5)上为增函数;当r∈(5,5)时,V'(r)<0,故V(r)在(5,5)上为减函数.由此可知,V(r)在r=5处取得最大值,此时h=8.即当r=5,h=8时,该蓄水池的体积最大.考点三导数的综合应用1.(2015安徽,10,5分)函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是( )A.a>0,b<0,c>0,d>0B.a>0,b<0,c<0,d>0C.a<0,b<0,c>0,d>0D.a>0,b>0,c>0,d<0答案 A2.(2014课标Ⅰ,12,5分)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是( )A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1)答案 C3.(2017山东,20,13分)已知函数f(x)=x3-ax2,a∈R.(1)当a=2时,求曲线y=f(x)在点(3, f(3))处的切线方程;(2)设函数g(x)=f(x)+(x-a)cos x-sin x,讨论g(x)的单调性并判断有无极值,有极值时求出极值.解析(1)由题意得f '(x)=x2-ax,所以当a=2时, f(3)=0, f '(x)=x2-2x,所以f '(3)=3,因此,当a=2时,曲线y=f(x)在点(3, f(3))处的切线方程是y=3(x-3),即3x-y-9=0.(2)因为g(x)=f(x)+(x-a)cos x-sin x,所以g'(x)=f '(x)+cos x-(x-a)sin x-cos x=x(x-a)-(x-a)sin x=(x-a)(x-sin x),令h(x)=x-sin x,则h'(x)=1-cos x≥0,所以h(x)在R上单调递增.因为h(0)=0,所以当x>0时,h(x)>0;当x<0时,h(x)<0.①当a<0时,g'(x)=(x-a)(x-sin x),当x∈(-∞,a)时,x-a<0,g'(x)>0,g(x)单调递增;当x∈(a,0)时,x-a>0,g'(x)<0,g(x)单调递减;当x∈(0,+∞)时,x-a>0,g'(x)>0,g(x)单调递增.所以当x=a时g(x)取到极大值,极大值是g(a)=-a3-sin a,当x=0时g(x)取到极小值,极小值是g(0)=-a.②当a=0时,g'(x)=x(x-sin x),当x∈(-∞,+∞)时,g'(x)≥0,g(x)单调递增;所以g(x)在(-∞,+∞)上单调递增,g(x)无极大值也无极小值.③当a>0时,g'(x)=(x-a)(x-sin x),当x∈(-∞,0)时,x-a<0,g'(x)>0,g(x)单调递增;当x∈(0,a)时,x-a<0,g'(x)<0,g(x)单调递减;当x∈(a,+∞)时,x-a>0,g'(x)>0,g(x)单调递增.所以当x=0时g(x)取到极大值,极大值是g(0)=-a;当x=a时g(x)取到极小值,极小值是g(a)=-a3-sin a.综上所述:当a<0时,函数g(x)在(-∞,a)和(0,+∞)上单调递增,在(a,0)上单调递减,函数既有极大值,又有极小值,极大值是g(a)=-a3-sin a,极小值是g(0)=-a;当a=0时,函数g(x)在(-∞,+∞)上单调递增,无极值;当a>0时,函数g(x)在(-∞,0)和(a,+∞)上单调递增,在(0,a)上单调递减,函数既有极大值,又有极小值,极大值是g(0)=-a,极小值是g(a)=-a3-sin a.4.(2017天津,19,14分)设a,b∈R,|a|≤1.已知函数f(x)=x3-6x2-3a(a-4)x+b,g(x)=e x f(x).(1)求f(x)的单调区间;(2)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0;(ii)若关于x的不等式g(x)≤e x在区间[x0-1,x0+1]上恒成立,求b的取值范围.解析(1)由f(x)=x3-6x2-3a(a-4)x+b,可得f '(x)=3x2-12x-3a(a-4)=3(x-a)[x-(4-a)].令f '(x)=0,解得x=a,或x=4-a.由|a|≤1,得a<4-a.当x变化时, f '(x), f(x)所以, f(x)的单调递增区间为(-∞,a),(4-a,+∞),单调递减区间为(a,4-a).(2)(i)证明:因为g'(x)=e x[f(x)+f '(x)],由题意知所以解得所以, f(x)在x=x0处的导数等于0.(ii)因为g(x)≤e x,x∈[x0-1,x0+1],g(x)=e x f(x),所以由e x>0,可得f(x)≤1.又因为f(x0)=1, f '(x0)=0,故x0为f(x)的极大值点,由(1)知x0=a.由于|a|≤1,故a+1<4-a,由(1)知f(x)在(a-1,a)内单调递增,在(a,a+1)内单调递减,故当x0=a时, f(x)≤f(a)=1在[a-1,a+1]上恒成立,从而g(x)≤e x在[x0-1,x0+1]上恒成立.由f(a)=a3-6a2-3a(a-4)a+b=1,得b=2a3-6a2+1,-1≤a≤1.令t(x)=2x3-6x2+1,x∈[-1,1],所以t'(x)=6x2-12x,令t'(x)=0,解得x=2(舍去),或x=0.因为t(-1)=-7,t(1)=-3,t(0)=1,因此,t(x)的值域为[-7,1].所以,b的取值范围是[-7,1].5.(2015课标Ⅰ,21,12分)设函数f(x)=e2x-aln x.(1)讨论f(x)的导函数f '(x)零点的个数;(2)证明:当a>0时, f(x)≥2a+aln.解析(1)f(x)的定义域为(0,+∞), f '(x)=2e2x-(x>0).当a≤0时, f '(x)>0, f '(x)没有零点;当a>0时,因为y=e2x单调递增,y=-单调递增,所以f '(x)在(0,+∞)上单调递增.又f '(a)>0,当b满足0<b<且b<时, f '(b)<0,。
高中数学第三章导数及其应用3.2导数的计算3.2.2导数的运算法则课时作业(含解析)新人教A版选修1_1

课时作业25一、选择题1.甲、乙两个物体沿直线运动的方程分别是s 1=t 3-2t 2+t 和s 2=3t 2-t -1,则在t =2时两个物体的瞬时速度的关系是( )A. 甲大B. 乙大C. 相等D. 无法比较解析:v 1=s ′1=3t 2-4t +1,v 2=s ′2=6t -1,所以在t =2时两个物体的瞬时速度分别是5和11,故乙的瞬时速度大.答案:B2.下列求导数运算正确的是( ) A .(x +1x )′=1+1x2B .(log 2x )′=1x ln2C .(3x)′=3xlog 3e D .(x 2cos x )′=-2x sin x解析:对于A ,(x +1x )′=1-1x 2;对于B ,由导数公式(log a x )′=1x ln a 知正确,故选B.答案:B3.[2014·湖南模拟]曲线y =sin x sin x +cos x -12在点M (π4,0)处的切线的斜率为( )A. -12B. 12C. -22D.22 解析:y ′=cos xx +cos x -sin xx -sin xx +cos x2=11+sin2x ,把x =π4代入得导数值为12.答案:B4.点P 是曲线y =-x 2上任意一点,则点P 到直线y =x +2的最小距离为( )A .1 B.728C.528D. 3解析:依据题意知,当曲线y =-x 2在P 点处的切线与直线y =x +2平行时,点P 到直线y =x +2的距离最小,设此时P 点的坐标为(x 0,y 0).根据导数的运算法则可以求得y ′=-2x ,所以曲线在P 点处的切线的斜率k =-2x 0,因为该切线与直线y =x +2平行,所以有-2x 0=1,得x 0=-12.故P 点的坐标为(-12,-14),这时点P 到直线y =x +2的距离d =|-12+14+2|2=728.答案:B 二、填空题5.[2013·江西高考]设函数f (x )在(0,+∞)内可导,且f (e x)=x +e x,则f ′(1)=________.解析:令t =e x,故x =ln t ,所以f (t )=ln t +t ,即f (x )=ln x +x ,所以f ′(x )=1x+1,所以f ′(1)=1+1=2.答案:26.已知a 为实数,f (x )=(x 2-4)(x -a ),且f ′(-1)=0,则a =__________. 解析:f (x )=(x 2-4)(x -a ) =x 3-ax 2-4x +4a ,∴f ′(x )=3x 2-2ax -4,又f ′(-1)=0, 即3×(-1)2-2a ×(-1)-4=0, ∴a =12.答案:127.已知函数f (x )=f ′(π4)cos x +sin x ,则f (π4)的值为__________.解析:∵f (x )=f ′(π4)cos x +sin x ,∴f ′(x )=-f ′(π4)sin x +cos x .∴f ′(π4)=-f ′(π4)sin π4+cos π4.∴f ′(π4)=2-1.从而有f (π4)=(2-1)cos π4+sin π4=1.答案:1 三、解答题8.求下列函数的导数. (1)y =sin x -2x 2; (2)y =cos x ·ln x ; (3)y =exsin x.解:(1)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′ =cos x -4x .(2)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′ =-sin x ·ln x +cos xx.(3)y ′=(e xsin x)′=xx -e xxsin 2x=e x·sin x -e x·cos x sin 2x =exx -cos xsin 2x. 9.已知函数f (x )=x ,g (x )=a ln x ,a ∈R .若曲线y =f (x )与曲线y =g (x )相交且在交点处有相同的切线,求a 的值及该切线的方程.解:f ′(x )=12x,g ′(x )=ax (x >0),由已知得⎩⎪⎨⎪⎧x =a ln x ,12x =ax,解得a =e 2,x =e 2,∴两条曲线交点的坐标为(e 2,e). 切线的斜率为k =f ′(e 2)=12e, ∴切线的方程为y -e =12e(x -e 2),即x-2e y+e2=0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2 导数的运算课后导练基础达标1.下列运算正确的是( )A.(ax 2-bx +c )′=a (x 2)′+b (-x )′B.(s in x -2x 2)′=(s in x )′-(2)′(x 2)′C.(cos x ·s in x )′=(s in x )′cos x +(cos x )′·cos xD.222)()(cos cos x x x x x '-'=')( 答案:A2.y =c o tx 的导数是( )A.y ′=x 2sin 1B.y ′=x 2cos 1-C.y ′=-x2sin 1D.y ′=x2cos 1答案:C3.曲线f (x )=x 3+x -2在P 0点处的切线平行于直线y =4x -1,则P 0点的坐标为( ) A.(1,0)或(-1,-4) B.(0,1) C.(-1,0) D.(1,4) 答案:A4.设y =-2e xs in x ,则y ′等于( )A.-2e x cos xB.-2e xs in xC.2e x s in xD.-2e x(s in x +cos x )解析:y ′=-2(e x sin x +e x cos x )=-2e x(sin x +cos x ). 答案:D5.设f (x )=x (x -1)(x -2)…(x -100),则f ′(0)等于( ) A.100 B.0C.100×99×98×…×3×2×1D.1 解析:∵f (x )=x (x -1)(x -2)…(x -100), ∴f ′(x )=(x -1)(x -2)…(x -100)+x ·[(x -1)·(x -2)…(x -100)]′. ∴f ′(0)=(-1)(-2)…(-100)=100×99×98×…×3×2×1. 答案:C6.(2005北京高考,12)过原点作曲线y =e x的切线,则切点的坐标为___________,切线的斜率为___________.解析:将y =e x 求导知(e x )′=e x.设切点坐标为(x 0,0xe ),则过该切点的直线的斜率为0xe . ∴直线方程为y -0xe =0x e (x -x 0). ∴y -0xe =0xe ·x -x 0·0xe .∵直线过原点,∴(0,0)符合上述方程.∴x 0·0x e =0xe ,∴x 0=1. ∴切点为(1,e ),斜率为c . 答案:(1,e ) e7.曲线y =x 3在点(a ,a 3)(a ≠0)处的切线与x 轴、直线x =a 所围成的三角形的面积为61,则a =___________.解析:∵y =x 3,∴y ′=3x 2.∴y =x 3在(a ,a 3)点的切线斜率k 为k =3a 2.∴切线方程为y -a 3=3a 2(x -a ),y =3a 2x -2a 3.令3a 2x -2a 3=0,得x =32a ,即y =3a 2x -2a 3与x 轴交点横坐标为32a . 令x =a ,得y =3a 2×a -2a 3=a 3,即y =3a 2x -2a 3与x =a 交点纵坐标为a 3.于是有a 312161⨯=×a 3, 解得a =±1.答案:±1 8.曲线y =2-21x 2与y =41x 3-2在交点处的切线夹角是___________.(以弧度数作答) 解析:016224,222332=-+⇒⎪⎪⎩⎪⎪⎨⎧-=-=x x x y x y⇒(x -2)(x 2+4x +8)=0⇒x =2.∴两曲线只有一个交点. ∵y ′=(2-21x 2)′=-x , ∴当x =2时,y ′=-2.又∵y ′=(43x -2)′=43x 2,∴当x =2时,y ′=3.∴两曲线在交点处的切线斜率分别为-2,3. ∴夹角的正切值的绝对值为.1|3)2(132|=⨯-+--∴夹角为4π. 答案:4π 9.求下列函数的导数.(1)f (x )=(x 3+1)(2x 2+8x -5);(2)f (x )=x tan x -;cos 2x(3)f (x )=22ln x x x+.解:(1)∵f ′(x )=[2x 5+8x 4-5x 3+2x 2+8x -5]′,∴f ′(x )=10x 4+32x 3-15x 2+4x +8. (2)f ′(x )=]cos 2sin []cos 2cos sin ['-='-xx x x x x x .cos tan 2cos tan cos sin 2cos sin cos sin 2sin cos )cos (sin cos sin )2sin (cos )2sin (22222x xx x x x x x x x x x x x x x x x xxx x x x x -+=-+=-++=-+'-=(3)f ′(x )=)2()ln ()2ln (2242'+'='+xx x x x x xx3424222)2·2(ln ln 212·)2·2(ln )ln 21(2·2·2ln ·22·ln ·1x x x x x x x x x x x x xx x x x xx x -+-=-+-=-+-= 10.已知f (x )=x 2+ax +b ,g(x )=x 2+cx +d ,又f (2x +1)=4g(x ),且f ′(x )=g′(x ),f (5)=30,求g(4).解:由f (2x +1)=4g(x ),得4x 2+2(a +2)x +(a +b +1)=4x 2+4cx +4d .于是有⎩⎨⎧=++=+②① ,41 ,22d b a c a由f ′(x )=g′(x ),得2x +a =2x +c ,∴a =c . ③由f (5)=30,得25+5a +b =30. ④ ∴由①③可得a =c =2.由④得b =-5,再由②得d =-21. ∴g(x )=x 2+2x -21.故g(4)=16+8-21=247.综合运用11.曲线y =x 2+1上点P 处的切线与曲线y =-2x 2-1也相切,求点P 的坐标.解:设P 点坐标为(a ,a 2+1),由y =x 2+1,得y ′=2x .过P 点的切线方程为y -(a 2+1)=2a (x -a ),即y =2ax -a 2+1,由.022212122222=+-+⇒⎪⎩⎪⎨⎧--=+-=a ax x x y a ax y 由相切知Δ=0,即a =±,332, ∴P 点为(332,377 3),(-332,37).12.当常数k 为何值时,直线y =x 指出与函数y =x 2+k 相切?并求出切点.解:设切点A (x 0,x 20+k ) ∵y ′=2x⎪⎪⎩⎪⎪⎨⎧==∴⎩⎨⎧=+=∴41211200200k x x k x x 故当k =41时,直线y =x 与函数y =x 2+41的图象相切于点A 且坐标为(21,21).13.设直线l 1与曲线y =x 相切于P ,直线l 2过P 且垂直于l 1,若l 2交x 轴于Q 点,又作P K垂直于x 轴于K ,求K Q 的长.解:先确定l 2的斜率,再写出方程,设P (x 0,y 0), 则021|01x y K x x l ='== 由l 2和l 1垂直,故022x K l -=,于是l 2:y -y 0=-20x (x -x 0),令y =0,则: -y 0=-20x (x Q -x 0) 即:-0x =-20x (x Q -x 0) 解得:x Q =21+x 0 易得:x K =x 0 ∴|KQ |=|x Q -x K |=21.拓展探究14.已知抛物线C 1:y =x 2+2x 和C 2:y =-x 2+a .如果直线l 同时是C 1和C 2的切线,称l 是C 1和C 2的公切线,公切线上两个切点之间的线段称为公切线段.(1)a 取什么值时,C 1和C 2有且仅有一条公切线?写出此公切线的方程. (2)若C 1和C 2有两条公切线,证明相应的两条公切线段互相平分. 答案:(1)解:函数y =x 2+2x 的导数y ′=2x +2,曲线C 1在点P (x 1,x 21+2x 1)的切线方程是y -(x 21+2x 1)=(2x 1+2)(x -x 1),即y =(2x 1+2)x -x 21. ①函数y =-x 2+a 的导数y ′=-2x ,曲线C 2在点Q (x 2,-x 22+a )的切线方程是y -(-x 22+a )=-2x 2(x -x 2),即y =-2x 2x +x 22+a . ②如果直线l 是过P 和Q 的公切线,则①式和②式都是l 的方程,,1222121a x x x x +=--=+消去x 2得方程2x 21+2x 1+1+a =0,此方程Δ=4-4×2(1+a ). 由Δ=0,得a =-21,解得x 1=-21,此时P 与Q 重合,即当a =-21时,C 1和C 2有且仅有一条公切线.由①得公切线方程为y =x -41. (2)证明:由(1)可知,当a <-21时,C 1和C 2有两条公切线,设一条公切线上切点为P (x 1,y 1)、Q (x 2,y 2),其中P 在C 1上,Q 在C 2上,则有x 1+x 2=-1,y 1+y 2=x 21+2x 1+(-x 22+a )=x 21+2x 1-(x 1+1)2+a =-1+a ,线段PQ 的中点为(21,21a+--).同理,另一条公切线段P ′Q ′的中点也是(21,21a+--), 所以公切线段PQ 和P ′Q ′互相平分.。