第五讲 光纤的色散特性

合集下载

1-5_光纤色散

1-5_光纤色散
色散受限距离短
2.5Gb/s系统色度色散受限距离约600km
10Gb/s系统色度色散受限距离约34km
G.652+DCF方案升级扩容成本高
结论:
不适用于10Gb/s以上速率传输,但可应用于 2.5Gb/s以下速率的DWDM。
色散位移光纤
单模光纤的工作波长在1.3μm时,模场直径约 9μm,其传输损耗约0.3dB/km。此时,零色散波 长恰好在1.3μm处。
Polarisation Mode Dispersion (PMD)
There is usually a very slight difference in RI for each polarization. It can be a source of dispersion, usually less than 0.5 ps/nm/km.
对色散有4种表示方法:
1.单位长度上的群延时差,即在单位长度上 模式最先到达终点和最后到达终点的时间差。
2. 用输出与输入脉冲宽度均方根之比表示。
3.用光纤的冲激响应经傅氏变换得到的频率 响应的3dB带宽表示。
4.用单位长度的单位波长间隔内的平均群延 时差来表示。
光纤的色散
随着脉冲在光纤中传输,脉冲的宽度被展宽
Group Velocity Dispersion (GVD)
Normal Dispersion Regime :the long wavelengths travel faster than the short ones! Thus after travelling on a fibre wavelengths at the red end of the pulse spectrum will arrive first. This is called a positive chirp!

光纤的色散特性.

光纤的色散特性.

Copyright Wang Yan
1-5 2019/7/17
B.
单位长度上的时延:
0
1/Vg
d
/ d

1 c
d
dk
or
0 d dk k0
0

2 2 c
d d a0
C. 时延差 n n() n()
(s/m)
设光谱宽为 f
,单位长度光纤的时延差用
延差。 单位:ps km nm
0 D ( : 光源线宽) 三、冲击响应h(t)与脉冲展宽
半高全宽 (h Full Width at Half Maximum
A.
脉冲宽度
1 e
脉冲宽度
均方根宽度
e
—FWHM)
Optical fiber communications
延,从而产生时延差。时延差越大,色散越严重。常用最大
时延差来表示光纤色散程度,简称时延差。
A. 假若有一频率为f的已调光载频在光纤中传播,信号的群
速度:
Vg
d d
(包络线中心前进的速度 vg

d

dk
β:信号纵向相位常数,ω:角频率
Optical fiber communications
Copyright Wang Yan
Optical fiber communications
§2 光纤的色散特性
1-1 2019/7/17 光纤经常选择在色散最小的工作波段 dn2 / d2 0 。所
以群速度色散在感兴趣的波长两面要变号。
光纤色散:
1 相
A. 光源的线宽 一般调制带宽
对 输 出 0.5

第5次课 4 光纤的基本理论 色散--光缆

第5次课      4  光纤的基本理论     色散--光缆

折射率扰动主要引起4种非线性效应:
自相位调制(SPM)
交叉相位调制(XPM)
四波混频(FWM) 光孤子形成
自相位调制 SPM
SPM是指光在光纤内传输时光信号强度随时间的变化 对自身相位的作用。导致光脉冲频谱展宽,影响系统性能。

k0 n2 P Aeff P
式中:
2 n 2
单模光纤的特性参数
1、截止波长 2、模场直径(模场半径)
3、色度色散
4、高阶色散 5、偏振和偏振模色散
1、截止波长
单模光纤的截止波长是指光纤的第一个高 阶模LP11模截止时的波长。工作波长要大于单 模光纤的截止波长时,才能保证光纤工作在单 模状态。
C
2 VC n1 a 2
VC是光纤的第一个高次模LP11模的截止频率, VC = 2.405
D PM D
L
km
DPMD是光纤的偏振模色散的平均值,单位是p s

ps km

典型值为0.1~1.0

单模光纤分类
非色散位移单模光纤 G.652光纤
常规单模光纤:使用最广泛、在1310nm处色散为零、在 1550nm处衰减系数最小,但有最大的色散系数 低水峰单模光纤:(全波光纤)、消除了OH-损耗峰,长期的 衰减稳定性,1280-1625nm全波段传输,色散较小
g
1 d C dk0

g

d
g
d
可以推出材料色散与波导色散的表达式,这里不再 赘述。
4、高阶色散
色散对光纤所能传输的最大比特速率B的影响可利用 相邻脉冲间不产生重叠的原则来确定:

g

1 B
对于光源光谱宽度为Δλ ,光纤长度为L,Δτg可以写成:

宽带接入-光纤的色散

宽带接入-光纤的色散
损耗主要取决于吸收损耗、散射损耗、弯曲损耗三种损耗。 • 衰减系数
Multi-mode 850~900nm
dB/km 5
4
3

2
O
E SC L U
band
-
OH
1 )
900
nm
1200 1300 1400 1500 1600 1700
三、光纤中的色散
• 光脉冲中的不同频率或模式在光纤中的群速度不同,因而这些频率成分和 模式到达光纤终端有先有后,使得光脉冲发生展宽,这就是光纤的色散。
λ3 λ3λ1 λ1
七、色散的影响
• 光脉冲幅度降低 • 脉宽展宽和畸变
高富帅 武松 相当于入纤信号
隧道相当于光纤
矮贫丑 武大郎 相当于出纤信号
八、总结与思考
• 通过这次的学习,我们了解了光纤的损耗以及光纤的色散。光纤的色散分 为多种,已成为影响光纤通信的距离和容量的最大因素。
• 请大家思考一下,在光纤通信技术中,我们一般采用多少波长的光进行通 信?为什么?
光纤的色散
目录
CONTENTS
01 光纤的损耗 02 光纤的色散 03 总结和思考
一、光纤的工作波长
• 光纤工作波长区有三个: • 850nm窗口 • 1310nm窗口 • 1550nm窗口
• 三个工作区的使用情况 • 850nm、1310nm波长,主要用于提供2Mb/s及以下的业务 • 1550nm波长用于异波长双工的下行通信,以及宽带的新业务
• 色散一般用时延差来表示,所谓时延差,是指不同频率的信号成分传输同 样的距离所需要的时间之差。
• 光纤中的色散可分为模式色散、色度色散、偏振模色散
功率 光脉冲信号
传送L1 (km)

光纤的基本特性衰耗、色散

光纤的基本特性衰耗、色散

光纤的基本特性衰耗、色散1、光纤的损耗光纤的衰减或损耗是一个非常重要的、对光信号的传播产生制约作用的特性。

光纤的损耗限制了没有光放大的光信号的传播距离。

光纤的损耗主要取决于吸收损耗、散射损耗、弯曲损耗三种损耗。

1)吸收损耗光纤吸收损耗是制造光纤的材料本身造成的,包括紫外吸收、红外吸收和杂质吸收。

a:红外和紫外吸收损耗光纤材料组成的原子系统中,一些处于{氐能的电子会吸收光波能量而跃迁到高能级状态,这种吸收的中心波长在紫外的0.16μm处,吸收峰很强,其尾巴延伸到光纤通信波段,在短波长区,吸收峰值达ldB/km,在长波长区则小得多,约O.O5dB∕km.在红外波段光纤基质材料石英玻璃的Si-O键因振动吸收能量,这种吸收带损耗在9.1μm,12.5μm及21μm处峰值可达IOdB∕km以上,因此构成了石英光纤工作波长的上限。

红外吸收带的带尾也向光纤通信波段延伸。

但影响小于紫外吸收带。

在λ=L55μm时,由红外吸收引起的损耗小于0.01dB∕kmβb:氢氧根离子(OH-)吸收损耗在石英光纤中,O-H键的基本谐振波长为2.73μm,与Si-O键的谐振波长相互影响,在光纤的传输频带内产生一系列的吸收峰,影响较大的是在1.39、1.24及0.95μm波长上,在峰之间的低损耗区构成了光纤通信的三个传输窗口。

目前,由于工艺的改进,降低了氢氧根离子(OH-)浓度,这些吸收峰的影响已很小。

c:金属离子吸收损耗光纤材料中的金属杂质,如:金属离子铁(Fe3+)、铜(Cu2+)、镒(Mn3+)、镇(Ni3+)、钻(Co3+)、铭(Cr3+)等,它们的电子结构产生边带吸收峰(0.5~Llμm),造成损耗。

现在由于工艺的改进,使这些杂质的含量低于10-9以下,因此它们的影响已很小。

在光纤材料中的杂质如氢氧根离子(OH・)、过渡金属离子(铜、铁、铭等)对光的吸收能力极强,它们是产生光纤损耗的主要因素。

因此要想获得低损耗光纤,必须对制造光纤用的原材料二氧化硅等进行十分严格的化学提纯,使其纯度达99.9999%以上。

光纤的色散

光纤的色散

光纤的色散---- 由于光纤中所传信号的不同频率成分,或信号能量的各种模式成分,在传输过程中,因群速度不同互相散开,引起传输信号波形失真,脉冲展宽的物理现象称为色散。

光纤色散的存在使传输的信号脉冲畸变,从而限制了光纤的传输容量和传输带宽。

从机理上说,光纤色散分为材料色散,波导色散和模式色散。

前两种色散由于信号不是单一频率所引起,后一种色散由于信号不是单一模式所引起。

光纤色散如图2-19所示。

图2-19 光纤色散---- 单模光纤中只传输基模(主模) HE 11 ( LP 01 ),总色散由材料色散、波导色散组成。

这两种色散都与波长有关,所以单模光纤的总色散也称为波长色散。

光纤的波长色散系数是单位光纤长度的波长色散,通常用表示,单位为。

光纤的波长色散总系数为:(2-77)是纯材料色散系数,为:(2-78)为波导色散系数,为:(2-79)式中,为信号的波长;为真空中的光速;为光纤材料的折射率;为信号的相位传播常数。

2.5.1 材料色散---- 材料色散:是光纤材料的折射率随频率(波长)而变,可使信号的各频率(波长)群速度不同引起色散,如图2-20所示。

图2-20 材料色散2.5.2 波导色散---- 波导色散是模式本身的色散。

即指光纤中某一种导波模式在不同的频率下,相位常数不同,群速度不同而引起的色散。

---- 波导色散是光纤波导结构参数的函数,如图2-21所示。

从图中可看出,在一定的波长范围内,波导色散与材料色散相反为负值,其幅度由纤芯半径、相对折射率差及剖面形状决定。

通常通过采用复杂的折射率分布形状和改变剖面结构参数的方法获得适量的负波导色散来抵消石英玻璃的正色散,从而达到移动零色散波长的位置,即使光纤的总色散在所希望的波长上实现总零色散和负色散的目的。

正是这种方法才研制出色散位移光纤、非零色散位移光纤。

图2-21 波导色散---- 图2-22为单模石英光纤中材料色散、波导色散及总色散与波长的关系。

光纤中的色散和偏振模色散PPT教学课件

光纤中的色散和偏振模色散PPT教学课件

2020/12/11
7
其他形状的脉冲
高斯形状的光脉冲,经过傅里叶变换后仍为高 斯型,即频谱在载波频率附近服从高斯分布。实 际上,光通信中的脉冲并不是严格的高斯脉冲, 脉冲形状的变化导致频谱分布的变化,因而会影 响到在色散介质中传输后脉冲的展宽。图7.3展示 了三种不同脉冲的展宽。它们是梯形脉冲,高斯 脉冲和余弦脉冲。注意它们有不同的频谱分布和 不同脉冲展宽。梯形脉冲具有最宽的频带宽度,
式中 F是高斯包络ex tp 2的傅里叶变换
F 4 1e x p 4 2
(7.2-3)
在上面的公式中,忽略了波函数u0x,y。波函数
在信号频带范围内保持不变时,这种忽略是合理
的。注意,高斯函数的频谱函数也是高斯函数。
可以把式(7.2-2)看成是谐波场的集合,每个谐
波都是其独特的频率
2020/12/11
激发。这里的 u0x,y是一个约束模式的波函数,
是常数, 0 是光载波的频率。考虑慢变包络的情 形以使包络包含多个光振荡,这种情形对应于
2020/12/11
5
12 0。我们可以把输入脉冲 E x ,y ,z 0 ,t表示
为傅里叶积分的形式
E z 0 , t e ix 0 t F p e i t d (7.2-2)
就是众所周知的群速度色散(GVD)。在光电子
学中,我们经常要处理光波在各种光学系统中的
传输,包括光纤,调制器,以及放大器。在这样
一个普通光学系统中的群速度色散,可以通过相
移是频率的函数来描述。
2020/12/11
3
7.2 色散介质中的光脉冲传播
事实上在现代通信中,光纤中所携带的载流子 基本上都是以数字脉冲的形式存在的,每个脉冲 代表一个比特的信息。因此,脉冲越窄,在一个 给定的时隙中就能容纳更多的脉冲,更多的数据 (比特)就能在时隙中传输。实际上,现代通信 系统的脉冲宽度窄至 311 0s 1,数据速率超过1010bits 在一个 10Gbs的系统中,每秒钟就有100亿个比特。 窄脉冲高速度的趋势一直不会衰减。进一步降低

《光纤的色散》PPT课件

《光纤的色散》PPT课件

•3. 单模光纤的色散
a) 、色散系数
单模光纤中只有主模式传输,总色散包括材料色散、波导色散 和折射率剖面色散的波长色散,还有归入模式色散的偏振模色散。 如果光纤的双折射参量很小,则波长色散是主要的。
单模光纤的波长色散用D(λ)度量,即单位波长间隔的两个频率 成分在光纤中传播1km时所产生的群时延差,工程中称D(λ)为色散 系数,定义为
正常 色散
反常 色散
b) 、波导色散
由于光纤的纤芯与包层的折射率差很小,因此在交界面产生全 反射时,就可能有一部分光进入包层之内。这部分光在包层内传输 一定距离后,又可能回到纤芯中继续传输。
进入包层内的这部分光强的大小与光波长有关,这就相当于光传 输路径长度随光波波长的不同而异。把有一定波谱宽度的光源发出 的光脉冲射入光纤后,由于不同波长的光传输路径不完全相同,所 以到达终点的时间也不相同,从而出现脉冲展宽。
上述三类波长色散效应产生的传播时延差与光信号的 谱宽成正比,所在光源本身起决定性作用的条件下,减 小波长色散影响的最有效措施是采用窄线宽的光源。。
2) 、模式色散
模式色散是由于光纤不同模式在同一波长下传播速度 不同,使传播时延不同而产生的色散。这种色散的机理 与波长色散不同,它与光信号的谱宽没有关系,仅由传 播模式间相位常数的差异导致色散效应。
光信号的频谱宽度决定于光源的线宽和调制信号的 频谱。在大多数情况下,光纤通信系统主要采用光源为L ED和LD,此时光信号的谱宽主要取决于光源的线宽。但 对于高速率的传输系统,一般采用DFB激光器作为光源 ,这时信号谱宽几乎完全决定了光信号的谱宽。
光信号在光纤中以群速度传播,群速度定义为光载波 的角频率对相位常数的微分,即
p 2
L
即总的偏振模色散与光纤长度的平方根成正比,这是与实际测
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单模光纤色散波谱特性曲线
一般渐变型多模光纤的每公里长度上的最大时延差为
m
1 2
n(0) C2材料 Nhomakorabea散材料色散是由于光纤的折射率随波长变化而使模式内不同波长的
光时间延迟不同产生的色散。取决于光纤材料折射率的波长特性和
光源的谱线宽度。
对于谱线宽度为Δλ的光波,经过长度为L的光纤后,由材料色
散引起的时延差为
c
L C
d 2n
d2
t
t2
t1
Ln1
C sin 0
Ln1 C
L C
( n1 n2
1)
Ln1 C
渐变型光纤的模式色散
渐变型光纤中光线的传播路径是近似于正弦形曲线,其中正弦幅 度大的光线传播距离长,而正弦幅度小的光线传输路程短,但由于 渐变型光纤纤芯折射率分布在轴心处最大并沿径向逐渐减小,所以 正弦幅度最大的光线由于离轴心远,折射率小而传播速率高,而正 弦幅度最小的光线由于离轴心近,折射率大而传播速率低,结果在 到达输出端时相互之间的时延差近似为零,从而使渐变型多模光纤 的模式色散较小。
二、色散的种类
• 模式色散 • 材料色散 • 波导色散
模式色散
模式色散是由于光纤不同模式 在同一波长下传播速度不同,使 传播时延不同而产生的色散。只 有多模光纤才存在模式色散,它 主要取决于光纤的折射率分布。
阶跃型光纤的模式色散
在阶跃型光纤中,当光线端面的入射角小于端面 临界角时,将在纤芯中形成全反射。若每条光 线代表一种模式,则不同入射角的光线代表不 同的模式,不同入射角的光线,在光纤中的传 播路径不同,而由于纤芯折射率均匀分布,纤 芯中不同路径的光线的传播速度相同,均为, 因此不同路径的光线到达输出端的时延不同, 从而产生脉冲展宽,形成模式色散。
第五讲 光纤的色散特性
主要内容
• 一、色散的定义 • 二、色散的种类及其产生原因 • 三、色散的计算分析 • 四、单模光纤的色散波谱特性
色散的定义
光纤的色散是在光纤中传输的光信号, 随传输距离增加,由于不同成分的光传 输时延不同引起的脉冲展宽的物理效应。 色散主要影响系统的传输容量,也对中 继距离有影响。色散的大小常用时延差 表示,时延差是光脉冲中不同模式或不 同波长成分传输同样距离而产生的时间 差。
阶跃型光纤中模式色散示意图
图中,沿光纤轴线传播的光线①传播路径最短,经过长度为L的 光纤传播时延t1最小,等于
t1
Ln1 C
=
Ln1 C
光纤中路径最长的是以端面临界角入射的光线②,它所产生的时
延t2是最大时延,等于:
t2
L / sin0
C / n1
=
Ln1
C sin 0
所以阶跃型光纤中不同的模式的最大时延差Δt为:
该式也可写成
c m
式中,C = 3×108m/s,是真空中的光速,
—是光源的谱线宽度
波导色散
波导色散是由于波导结构参数与波长有关而 产生的色散。取决于波导尺寸和纤芯包层的相 对折射率差。
波导色散和材料色散都是模式的本身色散, 也称模内色散。对于多模光纤,既有模式色散, 又有模内色散,但主要以模式色散为主。而单 模光纤不存在模式色散,只有材料色散和波导 色散,由于波导色散比材料色散小很多,通常 可以忽略。
相关文档
最新文档