中考数学 圆的综合 综合题附答案解析

中考数学 圆的综合 综合题附答案解析
中考数学 圆的综合 综合题附答案解析

一、圆的综合真题与模拟题分类汇编(难题易错题)

1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.

(1)求证:直线DM是⊙O的切线;

(2)若DF=2,且AF=4,求BD和DE的长.

【答案】(1)证明见解析(2)23

【解析】

【分析】

(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;

(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF?DA,据此解答即可.

【详解】

(1)如图所示,连接OD.

∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD CD

=,∴OD⊥BC.

又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.

又∵OD为⊙O半径,∴直线DM是⊙O的切线.

(2)连接BE.∵E为内心,∴∠ABE=∠CBE.

∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即

∠BED=∠DBE,∴BD=DE.

又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DB

DB DA

=,即DB2=DF?DA.

∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF?DA=12,∴DB=DE=23.

【点睛】

本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.

2.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.

(1)OC的长为;

(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;

(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t (秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.

【答案】(1)4;(2)3

5

;(3)点E的坐标为(1,2)、(

5

3

10

3

)、(4,2).

【解析】

分析:(1)过点B作BH⊥OA于H,如图1(1),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.

(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则

MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(3)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,

②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.

详解:(1)过点B作BH⊥OA于H,如图1(1),则有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.

∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.

∵∠BHA=90°,∠BAO=45°,

∴tan∠BAH=BH

HA

=1,∴BH=HA=4,∴OC=BH=4.

故答案为4.

(2)过点B 作BH ⊥OA 于H ,过点G 作GF ⊥OA 于F ,过点B 作BR ⊥OG 于R ,连接MN 、DG ,如图1(2). 由(1)得:OH =2,BH =4. ∵OC 与⊙M 相切于N ,∴MN ⊥OC . 设圆的半径为r ,则MN =MB =MD =r . ∵BC ⊥OC ,OA ⊥OC ,∴BC ∥MN ∥OA . ∵BM =DM ,∴CN =ON ,∴MN =1

2

(BC +OD ),∴OD =2r ﹣2,∴DH =OD OH -=24r -.

在Rt △BHD 中,∵∠BHD =90°,∴BD 2=BH 2+DH 2,∴(2r )2=42+(2r ﹣4)2. 解得:r =2,∴DH =0,即点D 与点H 重合,∴BD ⊥0A ,BD =AD . ∵BD 是⊙M 的直径,∴∠BGD =90°,即DG ⊥AB ,∴BG =AG . ∵GF ⊥OA ,BD ⊥OA ,∴GF ∥BD ,∴△AFG ∽△ADB , ∴

AF AD =GF BD =AG AB =12,∴AF =12AD =2,GF =1

2

BD =2,∴OF =4,

∴OG

同理可得:OB AB ,∴BG =1

2

AB .

设OR =x ,则RG x .

∵BR ⊥OG ,∴∠BRO =∠BRG =90°,∴BR 2=OB 2﹣OR 2=BG 2﹣RG 2, ∴(

2﹣x 2=()2﹣(x )2.

解得:x =

5,∴BR 2=OB 2﹣OR 2=(2﹣(5)2=365,∴BR =5

在Rt △ORB 中,sin ∠BOR =BR OB

3

5

故答案为

35

. (3)①当∠BDE =90°时,点D 在直线PE 上,如图2.

此时DP =OC =4,BD +OP =BD +CD =BC =2,BD =t ,OP =t . 则有2t =2. 解得:t =1.则OP =CD =DB =1. ∵DE ∥OC ,∴△BDE ∽△BCO ,∴DE OC =BD BC =1

2

,∴DE =2,∴EP =2, ∴点E 的坐标为(1,2). ②当∠BED =90°时,如图3.

∵∠DBE =OBC ,∠DEB =∠BCO =90°,∴△DBE ∽△OBC ,

∴BE

BC =2DB BE OB ∴,∴BE =

5

t .

∵PE∥OC,∴∠OEP=∠BOC.

∵∠OPE=∠BCO=90°,∴△OPE∽△BCO,

∴OE

OB =

25

OP

BC

,=

2

t

,∴OE=5t.

∵OE+BE=OB=255

,∴t+5

t=25.

解得:t=5

3

,∴OP=

5

3

,OE=

55

,∴PE=22

OE OP

-=

10

3

∴点E的坐标为(510

33

,).

③当∠DBE=90°时,如图4.

此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.

则有OD=PE,EA=22

PE PA

+=2(6﹣t)=62﹣2?t,∴BE=BA﹣EA=42﹣(62﹣2t)=2t﹣22.

∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.

在Rt△DBE中,cos∠BED=BE

DE

=

2

2

,∴DE=2BE,

∴t=22

(t﹣22)=2t﹣4.

解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).

综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(1,2)、

(510

33

,)、(4,2).

点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性.

3.不用圆规、三角板,只用没有刻度的直尺,用连线的方法在图1、2中分别过圆外一点A作出直径BC所在射线的垂线.

【答案】画图见解析.

【解析】

【分析】根据直角所对的圆周角是直角,构造直角三角形,利用直角三角形性质可画出垂线;或结合圆的轴对称性质也可以求出垂线.

【详解】解:画图如下:

【点睛】本题考核知识点:作垂线.解题关键点:结合圆的性质和直角三角形性质求出垂线.

4.如图.在△ABC中,∠C=90°,AC=BC,AB=30cm,点P在AB上,AP=10cm,点E从点P 出发沿线段PA以2c m/s的速度向点A运动,同时点F从点P出发沿线段PB以1c m/s的速度向点B运动,点E到达点A后立刻以原速度沿线段AB向点B运动,在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧,设点E、F运动的时间为t (s)(0<t<20).

(1)当点H落在AC边上时,求t的值;

(2)设正方形EFGH与△ABC重叠部分的面积为S.①试求S关于t的函数表达式;②以

点C为圆心,

1

2

t为半径作⊙C,当⊙C与GH所在的直线相切时,求此时S的值.

【答案】(1)t=2s或10s;(2)①S=

2

2

2

9?(02)

7

5050(210)

2

40400?(1020)

t t

t t t

t t t

?<≤

?

?

-+-<≤

?

?

-+<<

??

;②100cm2.

【解析】

试题分析:(1)如图1中,当0<t≤5时,由题意AE=EH=EF,即10﹣2t=3t,t=2;如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10;

(2)分四种切线讨论a、如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2.b、如图4中,当2<t≤5时,重叠部分是五边形EFGMN.c、如图5中,当5<t<10时,重叠部分是五边形EFGMN.d、如图6中,当10<t<20时,重叠部分是正方形EFGH.分别计算即可;

②分两种情形分别列出方程即可解决问题.

试题解析:解:(1)如图1中,当0<t≤5时,由题意得:AE=EH=EF,即10﹣2t=3t,t=2

如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10.

综上所述:t=2s或10s时,点H落在AC边上.

(2)①如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2

如图4中,当2<t≤5时,重叠部分是五边形EFGMN,S=(3t)2﹣1

2

(5t﹣10)2=﹣

7

2

t2+50t﹣50.

如图5中,当5<t<10时,重叠部分是五边形EFGMN,S=(20﹣t)2﹣1

2

(30﹣3t)2=﹣

7

2

t2+50t﹣50.

如图6中,当10<t<20时,重叠部分是正方形EFGH,S=(20﹣t)2=t2﹣40t+400.

综上所述:S=

2

2

2

9?(02)

7

5050(210)

2

40400?(1020)

t t

t t t

t t t

?<≤

?

?

-+-<≤

?

?

-+<<

??

②如图7中,当0<t≤5时,

1

2

t+3t=15,解得:t=

30

7

,此时S=100cm2,当5<t<20时,1

2

t+20﹣t=15,解得:t=10,此时S=100.

综上所述:当⊙C与GH所在的直线相切时,求此时S的值为100cm2

点睛:本题考查了圆综合题、正方形的性质、等腰直角三角形的性质、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,注意不能漏解,属于中考压轴题.

5.如图,AD是△ABC的角平分线,以AD为弦的⊙O交AB、AC于E、F,已知EF∥BC.(1)求证:BC是⊙O的切线;

(2)若已知AE=9,CF=4,求DE长;

(3)在(2)的条件下,若∠BAC=60°,求tan∠AFE的值及GD长.

【答案】(1)证明见解析(2)DE=6(318367

-

【解析】

试题分析:(1)连接OD,由角平分线的定义得到∠1=∠2,得到DE DF

=,根据垂径定理得到OD⊥EF,根据平行线的性质得到OD⊥BC,于是得到结论;

(2)连接DE,由DE DF

=,得到DE=DF,根据平行线的性质得到∠3=∠4,等量代换得到∠1=∠4,根据相似三角形的性质即可得到结论;

(3)过F作FH⊥BC于H,由已知条件得到∠1=∠2=∠3=∠4=30°,解直角三角形得到

FH=1

2

DF=

1

2

×6=3,3227

CF HF

-=,根据三角函数的定义得到

tan∠AFE=tan∠C=

37

7

HF

CH

=;根据相似三角形到现在即可得到结论.

试题解析:(1)连接OD,∵AD是△ABC的角平分线,∴∠1=∠2,

∴DE DF

=,

∴OD⊥EF,

∵EF∥BC,

∴OD⊥BC,

∴BC是⊙O的切线;

(2)连接DE,

∵DE DF

=,

∴DE=DF,

∵EF∥BC,

∴∠3=∠4, ∵∠1=∠3, ∴∠1=∠4, ∵∠DFC=∠AED , ∴△AED ∽△DFC ,

∴AE DE DF CF =,即94DE

DE =, ∴DE 2=36, ∴DE=6;

(3)过F 作FH ⊥BC 于H , ∵∠BAC=60°,

∴∠1=∠2=∠3=∠4=30°,

∴FH=

12

DF=1

62?=3,DH=33,

∴CH=227CF HF -=, ∵EF ∥BC , ∴∠C=∠AFE , ∴tan ∠AFE=tan ∠C=

37

HF CH =

; ∵∠4=∠2.∠C=∠C , ∴△ADC ∽△DFC , ∴

AD CD

DF CF

=, ∵∠5=∠5,∠3=∠2, ∴△ADF ∽△FDG , ∴AD DF

DF DG

=, ∴

CD DF CF DG =,即3376

DG +=, ∴DG=

18367

5

-.

点睛:本题考查了切线的判定、圆周角定理、相似三角形的判定与性质、解直角三角形、

平行线的性质,正确作出辅助线是解题的关键.

6.已知:如图,在四边形ABCD中,AD∥BC.点E为CD边上一点,AE与BE分别为

∠DAB和∠CBA的平分线.

(1)请你添加一个适当的条件,使得四边形ABCD是平行四边形,并证明你的结论;

(2)作线段AB的垂直平分线交AB于点O,并以AB为直径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);

(3)在(2)的条件下,⊙O交边AD于点F,连接BF,交AE于点G,若AE=4,

sin∠AGF=4

5

,求⊙O的半径.

【答案】(1)当AD=BC时,四边形ABCD是平行四边形,理由见解析;(2)作出相应的图形见解析;(3)圆O的半径为2.5.

【解析】

分析:(1)添加条件AD=BC,利用一组对边平行且相等的四边形为平行四边形验证即可;(2)作出相应的图形,如图所示;

(3)由平行四边形的对边平行得到AD与BC平行,可得同旁内角互补,再由AE与BE为角平分线,可得出AE与BE垂直,利用直径所对的圆周角为直角,得到AF与FB垂直,可得出两锐角互余,根据角平分线性质及等量代换得到∠AGF=∠AEB,根据sin∠AGF的值,确定出sin∠AEB的值,求出AB的长,即可确定出圆的半径.

详解:(1)当AD=BC时,四边形ABCD是平行四边形,理由为:

证明:∵AD∥BC,AD=BC,

∴四边形ABCD为平行四边形;

故答案为:AD=BC;

(2)作出相应的图形,如图所示;

(3)∵AD∥BC,

∴∠DAB+∠CBA=180°,

∵AE与BE分别为∠DAB与∠CBA的平分线,

∴∠EAB+∠EBA=90°, ∴∠AEB=90°,

∵AB 为圆O 的直径,点F 在圆O 上, ∴∠AFB=90°, ∴∠FAG+∠FGA=90°, ∵AE 平分∠DAB , ∴∠FAG=∠EAB , ∴∠AGF=∠ABE , ∴sin ∠ABE=sin ∠AGF=45AE AB

=, ∵AE=4, ∴AB=5,

则圆O 的半径为2.5.

点睛:此题属于圆综合题,涉及的知识有:圆周角定理,平行四边形的判定与性质,角平分线性质,以及锐角三角函数定义,熟练掌握各自的性质及定理是解本题的关键.

7.如图①,抛物线y =ax 2+bx+c 经过点A (﹣2,0)、B (4,0)、C (0,3)三点.

(1)试求抛物线的解析式;

(2)点P 是y 轴上的一个动点,连接PA ,试求5PA+4PC 的最小值;

(3)如图②,若直线l 经过点T (﹣4,0),Q 为直线l 上的动点,当以A 、B 、Q 为顶点所作的直角三角形有且仅有三个时,试求直线l 的解析式. 【答案】(1)233

384

y x x =-++;(2)5PA+4PC 的最小值为18;(3)直线l 的解析式为3

34

y x =

+或3

34

y x =--.

【解析】 【分析】

(1)设出交点式,代入C 点计算即可 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ,易证△CDP ∽△COB ,得到比例式PC PD BC OB =,得到PD=4

5

PC ,所以5PA+4PC =5(PA+

4

5

PC )=5(PA+PD ),当点A 、P 、D 在同一直线上时,5PA+4PC =5

(PA+PD )=5AE 最小,利用等面积法求出AE=

18

5

,即最小值为18 (3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆, 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,所以只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90°,即∠AQB =90°时,只有一个满足条件的点Q ,∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个;此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ,利用cos ∠QFT 求出QG ,分出情况Q 在x 轴上方和x 轴下方时,分别代入直接l 得到解析式即可 【详解】

解:(1)∵抛物线与x 轴交点为A (﹣2,0)、B (4,0) ∴y =a (x+2)(x ﹣4) 把点C (0,3)代入得:﹣8a =3 ∴a =﹣

38

∴抛物线解析式为y =﹣

38(x+2)(x ﹣4)=﹣38x 2+34

x+3 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ∴∠CDP =∠COB =90° ∵∠DCP =∠OCB ∴△CDP ∽△COB ∴

PC PD

BC OB

= ∵B (4,0),C (0,3)

∴OB

=4,OC =3,BC ∴PD =

45

PC ∴5PA+4PC =5(PA+

4

5

PC )=5(PA+PD ) ∴当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小 ∵A (﹣2,0),OC ⊥AB ,AE ⊥BC ∴S △ABC =12AB?OC =1

2

BC?AE ∴AE =

6318

55

AB OC BC ?== ∴5AE =18

∴5PA+4PC 的最小值为18.

(3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,

∴只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90° ∴∠AQB =90°时,只有一个满足条件的点Q

∵当Q 在⊙F 上运动时(不与A 、B 重合),∠AQB =90° ∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个 此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ∴∠FQT =90°

∵F 为A (﹣2,0)、B (4,0)的中点 ∴F (1,0),FQ =FA =3 ∵T (﹣4,0) ∴TF =5,cos ∠QFT =

3

5

FQ TF = ∵Rt △FGQ 中,cos ∠QFT =

3

5

FG FQ =

∴FG =

35FQ =95

∴x Q =1﹣9455=-,QG =2

222

912FQ 355FG ??-=-= ???

①若点Q 在x 轴上方,则Q (412

55

-,) 设直线l 解析式为:y =kx+b

∴404125

5k b k b -+=???-+=?? 解得:343k b ?

=??

?=? ∴直线l :3

34

y x =

+ ②若点Q 在x 轴下方,则Q (41255

--,

) ∴直线l :3

34

y x =-

- 综上所述,直线l 的解析式为3

34

y x =

+或3

34

y x =--

【点睛】

本题是二次函数与圆的综合题,同时涉及到三角函数、勾股定理等知识点,综合度比较高,需要很强的综合能力,第三问能够找到满足条件的Q点是关键,同时不要忘记需要分情况讨论

8.如图,四边形ABCD内接于⊙O,∠BAD=90°,AD、BC的延长线交于点F,点E在CF 上,且∠DEC=∠BAC.

(1)求证:DE是⊙O的切线;

(2)当AB=AC时,若CE=2,EF=3,求⊙O的半径.

35.

【答案】(1)证明见解析;(2

【解析】

【分析】

(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;

(2)根据余角的性质和等腰三角形的性质得到∠F=∠EDF,根据等腰三角形的判定得到DE=EF=3,根据勾股定理得到CD225

-=△CDE∽△DBE,根据相似三

DE CE

角形的性质即可得到结论.

【详解】

(1)如图,连接BD.

∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°.∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°.

∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE.

∵点D在⊙O上,∴DE是⊙O的切线;

(2)∵∠BAF =∠BDE =90°,∴∠F +∠ABC =∠FDE +∠ADB =90°. ∵AB =AC ,∴∠ABC =∠ACB .

∵∠ADB =∠ACB ,∴∠F =∠FDE ,∴DE =EF =3. ∵CE =2,∠BCD =90°,∴∠DCE =90°,∴CD 225DE CE =

-=.

∵∠BDE =90°,CD ⊥BE ,∴∠DCE =∠BDE =90°. ∵∠DEC =∠BED ,∴△CDE ∽△DBE ,∴CD BD CE DE =,∴BD 5335

?==,∴⊙O 的半径35

4

=

【点睛】

本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定,勾股定理,求出DE =EF 是解答本题的关键.

9.在平面直角坐标系XOY 中,点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2),且x 1≠x 2,若P 、Q 为某等边三角形的两个顶点,且有一边与x 轴平行(含重合),则称P 、Q 互为“向善点”.如图1为点P 、Q 互为“向善点”的示意图.已知点A 的坐标为(1,

3),点B 的坐标为(m ,0)

(1)在点M (﹣1,0)、S (2,0)、T (3,3A 点互为“向善点”的是_____;

(2)若A 、B 互为“向善点”,求直线AB 的解析式;

(3)⊙B 3⊙B 上有三个点与点A 互为“向善点”,请直接写出m 的取值范围.

【答案】(1)S ,T .(2)直线AB 的解析式为y =3x 或y =﹣3x +23;(3)当﹣2<m <0或2<m <4时,⊙B 上有三个点与点A 互为“向善点”. 【解析】 【分析】

(1)根据等边三角形的性质结合“向善点”的定义,可得出点S ,T 与A 点互为“向善点”; (2)根据等边三角形的性质结合“向善点”的定义,可得出关于m 的分式方程,解之经检验后可得出点B 的坐标,根据点A ,B 的坐标,利用待定系数法即可求出直线AB 的解析式;

(3)分⊙B 与直线y=3x 相切及⊙B 与直线y=-3x+23相切两种情况求出m 的值,再利用数形结合即可得出结论. 【详解】 (1)∵

30330,3tan 60?--===,333

3tan 60?-==,

∴点S ,T 与A 点互为“向善点”. 故答案为S ,T . (2)根据题意得:

30

3-=, 解得:m 1=0,m 2=2,

经检验,m 1=0,m 2=2均为所列分式方程的解,且符合题意, ∴点B 的坐标为(0,0)或(2,0). 设直线AB 的解析式为y =kx +b (k ≠0), 将A (1,

),B (0,0)或(2,0)代入y =kx +b ,得:

30k b b ?+=?

?=??320k b k b ?+=??

+=?? 解得:30k b ?=??=??323

k b ?=??=??,

∴直线AB 的解析式为y 3或y 33.

(3)当⊙B 与直线y 3相切时,过点B 作BE ⊥直线y 3于点E ,如图2所示.

∵∠BOE =60°, ∴sin60°=

3

2

BE OB

, ∴OB =2, ∴m =﹣2或m =2;

当⊙B 与直线y =﹣3x +23相切时,过点B 作BF ⊥直线y =﹣3x +23于点F ,如图3所示.

同理,可求出m =0或m =4.

综上所述:当﹣2<m <0或2<m <4时,⊙B 上有三个点与点A 互为“向善点”. 【点睛】

本题考查了等边三角形的性质、特殊角的三角函数值、待定系数法求一次函数解析式、解分式方程以及解直角三角形,解题的关键是:(1)根据等边三角形的性质结合“向善点”的定义,确定给定的点是否与A 点互为“向善点”;(2)根据点的坐标,利用待定系数法求出一次函数解析式;(3)分⊙B 与直线y=3x 相切及⊙B 与直线y=-3x+23相切两种情况考虑.

10.如图,⊙O 的直径AB =8,C 为圆周上一点,AC =4,过点C 作⊙O 的切线l ,过点B 作l 的垂线BD ,垂足为D ,BD 与⊙O 交于点E . (1)求∠AEC 的度数;

(2)求证:四边形OBEC 是菱形.

【答案】(1)30°;(2)详见解析.

【解析】

【分析】

(1)易得△AOC是等边三角形,则∠AOC=60°,根据圆周角定理得到∠AEC=30°;(2)根据切线的性质得到OC⊥l,则有OC∥BD,再根据直径所对的圆周角为直角得到∠AEB=90°,则∠EAB=30°,可证得AB∥CE,得到四边形OBE C为平行四边形,再由OB =OC,即可判断四边形OBEC是菱形.

【详解】

(1)解:在△AOC中,AC=4,

∵AO=OC=4,

∴△AOC是等边三角形,

∴∠AOC=60°,

∴∠AEC=30°;

(2)证明:∵OC⊥l,BD⊥l.

∴OC∥BD.

∴∠ABD=∠AOC=60°.

∵AB为⊙O的直径,

∴∠AEB=90°,

∴△AEB为直角三角形,∠EAB=30°.

∴∠EAB=∠AEC.

∴CE∥OB,又∵CO∥EB

∴四边形OBEC为平行四边形.

又∵OB=OC=4.

∴四边形OBEC是菱形.

【点睛】

本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理及其推论以及菱形的判定方法.

2015中考数学分类汇编圆综合题学生版

2015中考数学真题分类汇编圆综合题 一.解答题(共30小题) 1.(2015?大连)如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F. (1)求证:EF与⊙O相切; (2)若AB=6,AD=4,求EF的长. 2.(2015?潍坊)如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE. (1)求证:直线DF与⊙O相切; (2)若AE=7,BC=6,求AC的长. 3.(2015?枣庄)如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心、OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE. (1)判断DE与⊙O的位置关系,并说明理由; (2)求证:BC2=CD?2OE; (3)若cos∠BAD=,BE=6,求OE的长. 4.(2015?西宁)如图,已知BC为⊙O的直径,BA平分∠FBC交⊙O于点A,D是射线BF上的一点,且满足=,过点O作OM⊥AC于点E,交⊙O于点M,连接BM, AM. (1)求证:AD是⊙O的切线;

(2)若sin∠ABM=,AM=6,求⊙O的半径. 5.(2015?广元)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦于点E,交⊙O于点F,且CE=CB. (1)求证:BC是⊙O的切线; (2)连接AF、BF,求∠ABF的度数; (3)如果CD=15,BE=10,sinA=,求⊙O的半径. 6.(2015?北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C. (1)求证:PE是⊙O的切线; (2)求证:ED平分∠BEP; (3)若⊙O的半径为5,CF=2EF,求PD的长. 7.(2015?莆田)如图,在四边形ABCD中,AB=AD,对角线AC,BD交于点E,点O 在线段AE上,⊙O过B,D两点,若OC=5,OB=3,且cos∠BOE=.求证:CB是⊙O的切线.

中考数学二模试题分类汇编——圆的综合综合附答案

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O). (1)求⊙M的半径; (2)若CE⊥AB于H,交y轴于F,求证:EH=FH. (3)在(2)的条件下求AF的长. 【答案】(1)4;(2)见解析;(3)4. 【解析】 【分析】 (1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长; (2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论; (3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】 (1)如图(一),过M作MT⊥BC于T连BM, ∵BC是⊙O的一条弦,MT是垂直于BC的直径, ∴BT=TC=1 2 3 ∴124 ; (2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB, ∴∠HBC+∠BCH=90° 在△COF中, ∵∠OFC+∠OCF=90°, ∴∠HBC=∠OFC=∠AFH, 在△AEH和△AFH中,

∵ AFH AEH AHF AHE AH AH ∠=∠ ? ? ∠=∠ ? ?= ? , ∴△AEH≌△AFH(AAS), ∴EH=FH; (3)由(1)易知,∠BMT=∠BAC=60°, 作直径BG,连CG,则∠BGC=∠BAC=60°, ∵⊙O的半径为4, ∴CG=4, 连AG, ∵∠BCG=90°, ∴CG⊥x轴, ∴CG∥AF, ∵∠BAG=90°, ∴AG⊥AB, ∵CE⊥AB, ∴AG∥CE, ∴四边形AFCG为平行四边形, ∴AF=CG=4. 【点睛】 本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键. 2.如图,△ABC的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O的直径,过C作CG⊥AD于E,交AB于F,交⊙O于G. (1)判断直线PA与⊙O的位置关系,并说明理由; (2)求证:AG2=AF·AB; (3)若⊙O的直径为10,55△AFG的面积.

中考数学圆综合题汇编

25题汇编 1. 如图,AB 是⊙O 的直径,BC 是⊙O 的切线,切点为B ,AD 为弦,OC ∥AD 。 (1)求证:DC 是⊙O 的切线; (2)若OA=2,求OC AD 的值。 2. 如图,⊙O 是△ABC 的外接圆,∠B=60°,CD 是⊙O 的直径,P 是CD 延长线上的一点,且AP=AC (1)求证:直线AP 是⊙O 的切线; (2)若AC=3,求PD 的长。 3. 如图,已知AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,点E 是⊙ O 上一点,点D 是AM 上一点,连接DE 并延长交BN 于点C ,连接OD 、BE ,且OD ∥BE 。 (1)求证:DE 是⊙O 的切线; (2)若AD=1,BC=4,求直径AB 的长。 D C B A O C B M N E D B A O

4. 如图,△ABC 内接于⊙O ,弦AD ⊥AB 交BC 于点E ,过点B 作⊙O 的切线交DA 的延长线于点F ,且∠ABF=∠ABC 。 (1)求证:AB=AC ; (2)若EF=4,2 3 tan = F ,求DE 的长。 5. 在△ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC 于点D ,过点D 作DE ⊥AC ,垂足为E 。 (1)求证:DE 是⊙O 的切线; (2)若AE=1,52=BD ,求AB 的长。 6. 如图,AB 是⊙O 的直径,C 是⊙O 上一点,AD 垂直于过点C 的直线,垂足为D ,且AC 平分 ∠BAD 。 (1)求证:CD 是⊙O 的切线; (2)若62=AC ,AD=4,求AB 的长。 A

7. 如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为点D ,AD 交⊙O 于点E 。 求证:(1)AC 平分∠DAB ; (2)若∠B=60°,32 CD ,求AE 的长。 8. 如图,⊙O 是△ABC 的外接圆,AC 是⊙O 的直径,弦BD=BA ,AB=12,BC=5,BE ⊥DC 交DC 的延长线于点E 。 (1)求证:BE 是⊙O 的切线; (2)求DE 的长。 9. 如图,在Rt △ABC 中,∠C=90°,CB=CA=6,半径为2的⊙F 与射线BA 相切于点G ,且AG=4,将Rt △ABC 绕点A 顺时针旋转135°后得到Rt △ADE ,点B 、C 的对应点分别是点D 、E 。 (1)求证:DE 为⊙F 的切线; (2)求出Rt △ADE 的斜边AD 被⊙ F 截得的弦PQ 的长度。 A E A D

中考数学专题:圆.(学生版)

中考数学试题专题复习:圆 【学生版】 一、选择题 1. (天津3分)已知⊙1O 与⊙2O 的半径分别为3 cm 和4 cm ,若12O O =7 cm ,则⊙1O 与⊙2O 的位置关系是 (A) 相交 (B) 相离 (C) 内切 (D) 外切 2.(内蒙古包头3分)已知两圆的直径分别是2厘米与4厘米,圆心距是3厘米,则这两个圆的位置关系是 A 、相交 B 、外切 C 、外离 D 、内含 3,(内蒙古包头3分)已知AB 是⊙O 的直径,点P 是AB 延长线上的一个动点, 过P 作⊙O 的切线,切点为C ,∠APC 的平分线交AC 于点D ,则∠CDP 等于 A 、30° B 、60° C 、45° D 、50° 4.(内蒙古呼和浩特3分)如图所示,四边形ABCD 中,DC∥AB,BC=1, AB=AC=AD=2.则BD 的长为 A. 14 B. 15 C. 32 D. 23 5.(内蒙古呼伦贝尔3分)⊙O 1的半径是cm 2,⊙2的半径是cm 5,圆心距是cm 4,则两圆的位置关系为 A. 相交 B. 外切 C.外离 D. 内切 6.(内蒙古呼伦贝尔3分)如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的动点, 则线段OM 长的最小值为. A. 5 B. 4 C. .3 D. 2 7.(内蒙古呼伦贝尔3分)如图,AB 是⊙O 的直径,点C 、D 在⊙O 上 ,∠BOD=110°, AC∥OD,则∠AOC 的度数 A. 70° B. 60° C. 50° D. 40° 8.(内蒙古乌兰察布3分)如图, AB 为 ⊙ O 的直径, CD 为弦, AB ⊥ CD , 如果∠BOC = 700 ,那么∠A 的度数为 A 70 0 B. 350 C. 300 D . 200 17.填空题 1.(天津3分)如图,AD ,AC 分别是⊙O 的直径和弦.且∠CAD=30°.OB⊥AD,交AC 于点B .若OB=5,则BC 的长等于 ▲ 。

人教中考数学 圆的综合综合试题附答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.已知O 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点. ()1如图①,若m 5=,则C ∠的度数为______; ()2如图②,若m 6=. ①求C ∠的正切值; ②若ABC 为等腰三角形,求ABC 面积. 【答案】()130;()2C ∠①的正切值为3 4 ;ABC S 27=②或 432 25 . 【解析】 【分析】 ()1连接OA ,OB ,判断出AOB 是等边三角形,即可得出结论; ()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结 论; ②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论. 【详解】 ()1如图1,连接OB ,OA , OB OC 5∴==, AB m 5==, OB OC AB ∴==, AOB ∴是等边三角形, AOB 60∠∴=,

1 ACB AOB 302 ∠∠∴==, 故答案为30; ()2①如图2,连接AO 并延长交 O 于D ,连接BD , AD 为O 的直径, AD 10∴=,ABD 90∠=, 在Rt ABD 中,AB m 6==,根据勾股定理得,BD 8=, AB 3 tan ADB BD 4 ∠∴= =, C ADB ∠∠=, C ∠∴的正切值为3 4 ; ②Ⅰ、当AC BC =时,如图3,连接CO 并延长交AB 于E , AC BC =,AO BO =, CE ∴为AB 的垂直平分线, AE BE 3∴==, 在Rt AEO 中,OA 5=,根据勾股定理得,OE 4=, CE OE OC 9∴=+=, ABC 11 S AB CE 692722 ∴=?=??=; Ⅱ、当AC AB 6==时,如图4,

中考数学圆的综合-经典压轴题及答案

中考数学圆的综合-经典压轴题及答案 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD是直径, ∴∠DBC=90°, ∵CD=4,B为弧CD中点, ∴BD=BC=, ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB, ∵∠DBE=∠DBA, ∴△DBE∽△ABD, ∴, ∴BE?AB=BD?BD=. 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC. (1)若∠G=48°,求∠ACB的度数; (2)若AB=AE,求证:∠BAD=∠COF; (3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2.若 tan∠CAF= 1 2,求1 2 S S的值. 【答案】(1)48°(2)证明见解析(3)3 4

圆的综合复习测试题

图 3 图6 《圆》综合复习测试题 一、选择题(本题有10小题,每小题3分,共30分) 1.图1是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是( ) (A )内含 (B )相交 (C )相切 (D )外离 2.如图2,点A 、B 、C 都在⊙O 上,且点C 在弦AB 所对的优弧上,若72AOB ∠=?,则A C B ∠ 的度数是( ) (A )18° (B )30° (C )36° (D )72° 3.已知1O 和2O 的半径分别为3cm 和2cm ,圆心距124O O =cm ,则两圆的位置关系是( ) (A )相切 (B )内含 (C )外离 (D )相交 4.如图3,已知CD 是⊙O 的直径,过点D 的弦DE 平行于半径OA ,若∠D 的度数是50o ,则∠C 的度数是( ) (A )50o (B )40o (C )30o (D )25o 5.边长为2的等边三角形的外接圆的半径是( ) (A) 3 3 (B) 3 (C)2 3 (D)2 3 3 6.一个圆锥的侧面展开图形是半径为8cm ,圆心角为120°的扇形,则此圆锥的底面半径为 ( ) (A)3 8 cm (B) 3 16cm (C)3cm (D) 3 4cm 7.如图5,P 为⊙O 外一点,PA 切⊙O 于点A ,且OP=5,PA=4,则sin∠APO 等于( ) (A)5 4 (B)5 3 (C)3 4 (D)4 3 8.如图6,AB 是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16, 那么线段OE 的长为( ) (A)10 (B)8 (C)6 (D)4 9.如图7,扇形纸扇完全打开后,外侧两竹条AB,AC 夹角为120 ,AB 的长为30cm ,贴纸部分 BD 的长为20cm ,则贴纸部分的面积为( ) 图1 O C B A 图2 P O A · 图5

圆的方程练习题(学生版)

圆的方程练习题(学生版) 1.求过点()()1,1,1,1A B --,且圆心在直线20x y +-=上的圆的方程. 2.若圆过A (2,0),B (4,0),C (0,2)三点,求这个圆的方程. 3.已知圆经过()()2,5,2,1-两点,并且圆心在直线1 2 y x =上。 (1)求圆的方程; (2)求圆上的点到直线34230x y -+=的最小距离。 4.已知圆C 同时满足下列三个条件:①与y 轴相切;②在直线y x =上截得弦长为③圆心在直线30x y -=上.求圆C 的方程. 5.求圆心在直线3x+y-5=0上,并且经过原点和点(4,0)的圆的方程 6.求圆心为(1,1)并且与直线4=+y x 相切的圆的方程。

7.求与圆x 2+y 2?2x =0外切且与直线x + 3y =0相切于点M (3,? 3)的圆的方程. 8.求圆心在直线 40x y --=上,并且过圆22640x y x ++-=与圆 226280x y y ++-=的交点的圆的方程. 9.已知圆心为C 的圆经过三个点O (0,0)、A (?2,4)、B (1,1). (1)求圆C 的方程; (2)若直线l 的斜率为?4 3,在y 轴上的截距为?1,且与圆C 相交于P 、Q 两点,求△O P Q 的面积. 10.已知圆C :x 2+y 2+10x+10y+34=0。 (I )试写出圆C 的圆心坐标和半径; (II )若圆D 的圆心在直线x=-5上,且与圆C 相外切,被x 轴截得的弦长为10,求圆D 的方程。 11.已知圆C 的圆心在直线y =1 2x 上,且过圆C 上一点M (1,3)的切线方程为y =3x . (Ⅰ)求圆C 的方程; (Ⅱ)设过点M 的直线l 与圆交于另一点N ,以M N 为直径的圆过原点,求直线l 的方程.

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

2019中考真题圆综合题

1.(2019江苏扬州)(本题满分10分)如图,AB 是⊙O 的弦,过点O 作OC ⊥OA ,OC 交于AB 于P ,且CP=CB 。 (1)求证:BC 是⊙O 的切线; (2)已知∠BAO=25°,点Q 是弧A m B 上的一点。 ①求∠AQB 的度数; ②若OA=18,求弧A m B 的长。 【考点】:直线与圆的位置关系,扇形的弧长,圆心角于圆周角关系, 等腰三角形 【解析】: 解(1)连接OB ∵CP=CB ∴∠CPB=∠CBP ∵OA ⊥OC ∴∠AOC=90° ∵OA=OB ∴∠OAB=∠OBA ∵∠PAO+∠APO=90° ∴∠ABO+∠CBP=90° ∴∠OBC=90° ∴BC 是⊙O 的切线 (2)①∵∠BAO=25° OA=OB ∴∠BAO=∠OBA=25° ∴∠AOB=130°∴∠AQB=65° ②∵∠AOB=130° OB=18 ∴l 弧AmB=(360°-130°)π×18÷180=23π 2.(江苏泰州)如图,四边形ABCD 内接于⊙O ,AC 为⊙O 的直径,D 为弧AC 的中点,过点D 作DE ∥AC ,交BC 的延长线于点E. (1)判断DE 与⊙O 的位置关系,并说明理由; (2)若⊙O 的半径为5,AB=8,求CE 的长.

3.(2019山东济宁)(8分)如图,AB是⊙O的直径,C是⊙O上一点,D是的中点,E 为OD延长线上一点,且∠CAE=2∠C,AC与BD交于点H,与OE交于点F. (1)求证:AE是⊙O的切线; (2)若DH=9,tan C=,求直径AB的长. 【分析】(1)根据垂径定理得到OE⊥AC,求得∠AFE=90°,求得∠EAO=90°,于是得到结论; (2)根据等腰三角形的性质和圆周角定理得到∠ODB=∠C,求得tan C=tan∠ODB==,设HF=3x,DF=4x,根据勾股定理得到DF=,HF=,根据相似三角形的性质得到CF==,求得AF=CF=,设OA=OD=x,根据勾股定理即可得到结论. 【解答】解:(1)∵D是的中点, ∴OE⊥AC, ∴∠AFE=90°, ∴∠E+∠EAF=90°, ∵∠AOE=2∠C,∠CAE=2∠C, ∴∠CAE=∠AOE, ∴∠E+∠AOE=90°, ∴∠EAO=90°, ∴AE是⊙O的切线; (2)∵∠C=∠B, ∵OD=OB,

中考数学圆的综合综合经典题及详细答案

中考数学圆的综合综合经典题及详细答案 一、圆的综合 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S△CDO=1 2 ×6×4=12, ∴平行四边形OABC的面积S=2S△CDO=24. 2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O). (1)求⊙M的半径; (2)若CE⊥AB于H,交y轴于F,求证:EH=FH. (3)在(2)的条件下求AF的长. 【答案】(1)4;(2)见解析;(3)4. 【解析】 【分析】 (1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长; (2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论; (3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】 (1)如图(一),过M作MT⊥BC于T连BM, ∵BC是⊙O的一条弦,MT是垂直于BC的直径, ∴BT=TC=1 2 3 ∴124 ; (2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB, ∴∠HBC+∠BCH=90°

(完整版)2017中考数学圆的综合题试题

圆的综合题 1. 如图,AB 是⊙O 的弦,AB =4,过圆心O 的直线垂直AB 于点D ,交⊙O 于点C 和点E ,连接AC 、BC 、OB ,cos ∠ACB =1 3 ,延长OE 到点F ,使EF =2OE . (1)求证:∠BOE =∠ACB ; (2)求⊙O 的半径; (3)求证:BF 是⊙O 的切线. 2. 如图,AB 为⊙O 的直径,点C 为圆外一点,连接AC 、 BC ,分别与⊙O 相交于 点D 、点E ,且? ?AD DE ,过点D 作DF ⊥BC 于点F ,连接BD 、DE 、AE . (1)求证:DF 是⊙O 的切线; (2)试判断△DEC 的形状,并说明理由; (3)若⊙O 的半径为5,AC =12,求sin ∠EAB 的值. 3. (2016长沙9分)如图,四边形ABCD 内接于⊙O ,对角线AC 为⊙O

的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF. (1)求∠CDE的度数; (2)求证:DF是⊙O的切线; (3)若AC=25DE,求tan∠ABD的值. 4. (2016德州10分)如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC 于点D,过点E作直线l∥BC. (1)判断直线l与⊙O的位置关系,并说明理由; (2)若∠ABC的平分线BF交AD于点F,求证:BE=EF; (3)在(2)的条件下,若DE=4,DF=3,求AF的长. 5. (2015永州)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.

(1)求证:BE =CE ; (2)试判断四边形BFCD 的形状,并说明理由; (3)若BC =8,AD =10,求CD 的长. 6 (2017 原创)如图,AB 切⊙O 于点B ,AD 交⊙O 于点C 和点D ,点E 为 ?DC 的中点,连接OE 交CD 于点F ,连接BE 交CD 于点G . (1) 求证:AB =AG ; (2) (2)若DG =DE ,求证:GB 2 =GC ·GA ; (3)在(2)的条件下,若tan D =3 4 ,EG =10,求⊙O 的半径. 7.(2015达州)在△ABC 的外接圆⊙O 中,△ABC 的外角平 分线CD 交⊙O 于点D ,F 为? AD 上一点,且??AF BC ,连接DF ,并延长DF 交BA 的延

九年级《圆》综合测试题含答案

九年级《圆》测试题 (时间90分钟,满分100分) 一、选择题(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中,只 有一项是符合题目要求的,请选出来) 1.如图,点A B C ,,都在⊙O 上,若34C =o ∠, 则AOB ∠的度数为( ) A .34o B .56o C .60o D .68o 2.已知两圆的半径分别为6和8,圆心距为7, 则两圆的位置关系是( ) A .外离 B .外切 C .相交 D .内切 3.如图,圆内接正五边形ABCD E 中,∠ADB =( ). A .35° B .36° C .40° D .54° 4.⊙O 中,直径AB =a , 弦CD =b ,,则a 与b 大小为( ) A .a >b B .a <b C .a ≤b D . a ≥b 5.如图,⊙O 内切于ABC △,切点分别为D E F ,,. 已知50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,, 那么EDF ∠等于( ) A .40° B .55° C .65° D .70° 6.边长为a 的正六边形的面积等于( ) A . 2 4 3a B .2a C . 2 2 33a D .233a 7.如图所示,小华从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方 向行走,走到场地边缘B 后,再沿着与半径OB 夹角为α的 方向折向行走。按照这种方式,小华第五次走到场地边缘时 处于弧AB 上,此时∠AOE =56°,则α的度数是( ) A .52° B .60° C .72° D .76° 8.一个圆锥的高为33,侧面展开图是半圆,则圆锥的侧面积是( ) O C B A (第1题图) O A F C E (第5题图) E A B C D (第3题图) (第7题图)

中考数学圆的综合提高练习题压轴题训练附详细答案

中考数学圆的综合提高练习题压轴题训练附详细答案 一、圆的综合 1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E. (1)如图1,求证:∠DAC=∠PAC; (2)如图2,点F(与点C位于直径AB两侧)在⊙O上,?? BF FA =,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG; (3)在(2)的条件下,如图3,若AE=2 3 DG,PO=5,求EF的长. 【答案】(1)证明见解析;(2)证明见解析;(3)EF=32. 【解析】 【分析】 (1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可; (2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案; (3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出 EH∥DG,求出OM=1 2 AE,设OM=a,则HM=a,AE=2a,AE= 2 3 DG,DG=3a, 求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO= 1 2 MO BM =,tanP= 1 2 CO PO =,设 OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】 (1)证明:连接OC, ∵PC为⊙O的切线,

∴OC⊥PC, ∵AD⊥PC, ∴OC∥AD, ∴∠OCA=∠DAC, ∵OC=OA, ∴∠PAC=∠OCA, ∴∠DAC=∠PAC; (2)证明:连接BE交GF于H,连接OH, ∵FG∥AD, ∴∠FGD+∠D=180°, ∵∠D=90°, ∴∠FGD=90°, ∵AB为⊙O的直径, ∴∠BEA=90°, ∴∠BED=90°, ∴∠D=∠HGD=∠BED=90°, ∴四边形HGDE是矩形, ∴DE=GH,DG=HE,∠GHE=90°, ∵?? BF AF =, ∴∠HEF=∠FEA=1 2 ∠BEA=190 2 o ?=45°, ∴∠HFE=90°﹣∠HEF=45°, ∴∠HEF=∠HFE, ∴FH=EH, ∴FG=FH+GH=DE+DG; (3)解:设OC交HE于M,连接OE、OF, ∵EH=HF,OE=OF,HO=HO, ∴△FHO≌△EHO, ∴∠FHO=∠EHO=45°,

圆的综合练习题及答案完整版

圆的综合练习题及答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

圆的综合练习题答案 1.如图,已知AB 为⊙O 的弦,C 为⊙O 上一点,∠C =∠BAD ,且BD ⊥AB 于B . (1)求证:AD 是⊙O 的切线; (2)若⊙O 的半径为3,AB =4,求AD 的长. (1)证明: 如图, 连接AO 并延长交⊙O 于点E , 连接BE , 则∠ABE =90°. ∴ ∠EAB +∠E =90°. …………………… ∵ ∠E =∠C , ∠C =∠BAD , ∴ ∠EAB +∠BAD =90°. ∴ AD 是⊙O 的切线. ……………………(2)解:由(1)可知∠ABE =90°. ∵ AE =2AO =6, AB =4, ∴ 5222=-=AB AE BE . …………………………………………………3分 ∵ ∠E=∠C =∠BAD , BD ⊥AB , ∴ .cos cos E BAD ∠=∠ …………………………………………………4分 ∴ . AE BE AD AB = ∴ 5 512=AD . …………………………………………………5分 2.已知:在⊙O 中,AB 是直径,AC 是弦,OE⊥AC 于点E ,过点C 作直线FC ,使∠FCA=∠AOE,交 AB 的延长线于点D. (1)求证:FD 是⊙O 的切线; (2)设OC 与BE 相交于点G ,若OG =2,求⊙O 半径的长; 证明:(1)连接OC (如图①), ∵O A =OC ,∴∠1=∠A. ∵OE ⊥AC ,∴∠A +∠AOE =90°. ∴∠1+∠AOE =90°. 又∠FCA =∠AOE , 图① ∴∠1+∠FCA =90°. 即∠OCF =90°. ∴FD 是⊙O 的切线. (2) 分 (2)连接BC (如图②), ∵OE ⊥AC ,∴AE =EC. 又AO =OB , ∴OE ∥B C 且BC OE 2 1 = (3)

九年级数学圆的综合的专项培优练习题(含答案)含详细答案

九年级数学圆的综合的专项培优练习题(含答案)含详细答案 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD是直径, ∴∠DBC=90°, ∵CD=4,B为弧CD中点, ∴BD=BC=, ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB, ∵∠DBE=∠DBA, ∴△DBE∽△ABD, ∴, ∴BE?AB=BD?BD=. 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED. (1)求证:DE是⊙O的切线; (2)若tan A=1 2 ,探究线段AB和BE之间的数量关系,并证明; (3)在(2)的条件下,若OF=1,求圆O的半径. 【答案】(1)答案见解析;(2)AB=3BE;(3)3. 【解析】 试题分析:(1)先判断出∠OCF+∠CFO=90°,再判断出∠OCF=∠ODF,即可得出结论;(2)先判断出∠BDE=∠A,进而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出结论;

(完整版)2017年中考真题圆综合大题

2017 年圆综合大题 8.(2011年苏州市?第26题8分)如图,已知AB 是⊙ O的弦,OB=2,∠B=30°,C是弦AB 上的任意一点(不与点 A 、B重合),连接CO并延长CO交于⊙ O于点D,连接AD.(1)弦长AB 等于▲ (结果保留根号); (2)当∠ D=20°时,求∠ BOD 的度数; (3)当AC 的长度为多少时,以 A 、C、D 为顶点的三角形与以B、C、O 为顶点的三角形相似?请写出解答过程. 9.(2012年苏州市第27题满分8分)如图,已知半径为2的⊙O与直线l相切于点A,点P 是直径AB左侧半圆上的动点,过点P作直线l 的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC 的长为x(2

11.(2014?苏州第27题8分)如图,已知⊙ O上依次有A、B、C、D四个点,= ,连 接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF . (1)若⊙ O 的半径为3,∠ DAB =120°,求劣弧的长; 2)求证:BD; (3)设G 是BD 的中点,探索:在⊙ O 上是否存在点P(不同于点B),使得PG=PF ?并说明PB 与AE 的位置关系.江南汇教育网 12.(2015年苏州第26题满分10分)如图,已知AD 是△ABC的角平分线,△O经过A、B、D三点,过点B作BE△AD,交△O于点E,连接ED. (1)求证:ED△AC; 2 (2)若BD=2CD,设△EBD 的面积为S1,△ADC 的面积为S2,且S1216S2 4 0,求△ABC 的面积. 13.(2016年苏州第26 题10 分)如图,AB 是△O 的直径,D、E 为△O 上位于AB 异侧的两点,连接BD 并延长至点C,使得CD=BD,连接AC 交△O 于点F,连接AE 、DE 、DF . (1)证明:△E= △C; (2)若△E=55 °,求△BDF 的度数; (3)设DE 交AB 于点G,若DF =4,cosB = ,E 是的中点,求EG?ED 的值.

中考数学圆综合练习题含答案

数学中考圆综合题附参考答案 1.如图,△ABC 中,以BC 为直径的圆交AB 于点D ,∠ACD =∠ABC . (1)求证:CA 是圆的切线; (2)若点E 是BC 上一点,已知BE =6,tan ∠ABC = 32,tan ∠AEC =3 5 ,求圆的直径. 2. 如图右,已知直线PA 交⊙0于A 、B 两点,AE 是⊙0的直径.点C 为⊙0上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D 。 (1)求证:CD 为⊙0的切线; (2)若DC+DA=6,⊙0的直径为l0,求AB 的长度. 1. (1)证明:连接OC, ∵点C 在⊙0上,0A=OC,∴∠OCA=∠OAC ,∵CD ⊥PA ,∴∠CDA=90°, 有∠CAD+∠DCA=90°,∵AC 平分∠PAE ,∴∠DAC=∠CAO 。 ∴∠DC0=∠DCA+∠ACO=∠DCA+∠CAO=∠DCA+∠DAC=90°。 又∵点C 在⊙O 上,OC 为⊙0的半径,∴CD 为⊙0的切线. (2)解:过0作0F ⊥AB ,垂足为F ,∴∠OCA=∠CDA=∠OFD=90°, ∴四边形OCDF 为矩形,∴0C=FD ,OF=CD. ∵DC+DA=6,设AD=x ,则OF=CD=6-x ,∵⊙O 的直径为10,∴DF=OC=5,∴AF=5-x , 在Rt △AOF 中,由勾股定理得222AF +OF =OA .即22(5)(6)25x x -+-=,化简得:211180x x -+= 解得2x =或9x =。由AD

圆综合题专题

1、如图,线段AB 是O e 的直径,弦CD AB ⊥于点H ,点M 是弧CBD 上任意一点,2,4AH CH ==. (1)求O e 的半径r 的长度; (2)求sin CMD ∠; (3)直线BM 交直线CD 于点E ,直线MH 交O e 于点N ,连接BN 交CE 于点F ,求HE HF g 的值. 2、如图,以原点O 为圆心,3为半径的圆与x 轴分别交于A ,B 两点(点B 在点A 的右边),P 是半径OB 上一点,过P 且垂直于AB 的直线与⊙O 分别交于 C , D 两点(点C 在点D 的上方),直线AC ,DB 交于点 E .若AC :CE=1:2. (1)求点P 的坐标; (2)求过点A 和点E ,且顶点在直线CD 上的抛物线的函数表达式. 3、如图,AB 是⊙O 的直径,PB 与⊙O 相切于点B ,连接PA 交⊙O 于点C ,连接BC . (1)求证:∠BAC=∠CBP ; (2)求证:PB 2=PC?PA ; (3)当AC=6,CP=3时,求sin ∠PAB 的值.

4、如图,在△ABC 中,AB=AC ,以AB 为直径作圆O ,分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH ⊥AC 于点H ,连接DE 交线段OA 于点F . (1)求证:DH 是圆O 的切线; (2)若A 为EH 的中点,求的值; (3)若EA=EF=1,求圆O 的半径. 5、如图,O 为Rt C ?AB 的直角边C A 上一点,以C O 为半径的O 与斜边AB 相切于点D , 交OA 于点E .已知C B =C 3A =. (1)求D A 的长; (2)求图中阴影部分的面积. 6、已知ABC 的内切圆O 与,,AB BC AC 分别相切于点,,D E F ,若EF DE =,如图 1. (1)判断ABC 的形状,并证明你的结论; (2)设AE 与DF 相交于点M ,如图2,24,AF FC ==求AM 的长.

2017中考数学圆的综合题试题(可编辑修改word版)

圆的综合题 1.如图,AB 是⊙O 的弦,AB=4,过圆心O 的直线垂直AB 于点D,交⊙O 于点C 和 1 点E,连接A C、B C、O B,c o s∠A C B=,延长O E到点F,使E F=2O E. 3 (1)求证:∠B O E=∠A C B; (2)求⊙O 的半径; (3)求证:BF 是⊙O 的切线. 2.如图,AB 为⊙O 的直径,点C 为圆外一点,连接AC、BC,分别与⊙O 相交于点D、点E,且 AD D E ,过点D作D F⊥B C于点F,连接B D、D E、A E. (1)求证:DF 是⊙O 的切线; (2)试判断△D E C的形状,并说明理由; (3)若⊙O的半径为5,A C=12,求 s i n∠E A B的值.

3.(2016 长沙 9 分)如图,四边形ABCD 内接于⊙O,对角线AC 为⊙O 的直径,过点C作A C的垂线交A D的延长线于点E,点F为C E的中点,连接D B,D C,D F. (1)求∠C D E的度数; (2)求证:DF 是⊙O 的切线; (3)若A C=25D E,求t a n∠A B D的值. 4.(2016德州10分)如图,⊙O是△A B C的外接圆,A E平分∠B A C交⊙O于点E,交B C 于点D,过点E作直线l∥B C. (1)判断直线l 与⊙O 的位置关系,并说明理由; (2)若∠A B C的平分线B F交A D于点F,求证:B E=E F; (3)在(2)的条件下,若DE=4,DF=3,求AF 的长. 5.(2015永州)如图,已知△A B C内接于⊙O,且A B=A C,直径A D交B C于

相关文档
最新文档