向量在平面几何解题中的应用

合集下载

向量在平面几何中的应用

向量在平面几何中的应用

D.垂心
3.设ABC的三边的中点坐标分别为(1, 2),(4, 1),(1, 1), 则ABC的重心坐标为 ______
【解题回顾】本题中,通过建立恰当的坐标系,赋予几何图
形有关点与向量具体的坐标,将有关几何问题转化为相应的 代数运算和向量运算,从而使问题得到解决.应深刻领悟到 其中的形数结合思想.此外,题中坐标系建立的恰当与否很 重要,它关系到运算的繁与简.
例3.已知ABC的外接圆的直径是2, O是ABC的外心, 且OA OB OC 0,求证 : ABC是正三角形.
例4.求证ABC的三条高交于一点
向量法解决平面几何问题的“三步曲”:
(1)建立平面几何与向量的联系,用向量表示题中涉 及的几何元素,将平面几何问题转化为向量问题;
(2)通过向量运算,研究几何元素之间的关系,如距 离、夹角等;
(3)把运算结果“翻译”成几何关系.
向量法解决几何问题一般思维策略:
平面几何问题 转化 平面向量问题
问题:平行四边形是表示向量加法与减法的 几何模型。如图,你能发现平行四边形对角
线的长度与两条邻边长度之间的关系吗?
DB AB AD,
AC AB AD,
猜想:
D
C
1.长方形对角线的长度
与两条邻边长度之间有
何关系?
A
B
2.类比猜想,平行四边形有相似关系吗?
例1. 如图, ABCD中,点E、F分别是AD 、 DC 边的中点,BE 、 BF分别与AC交于R 、 T两点, 你能发现AR 、 RT 、TC之间的关系吗?
用向量方法解决平面几何问题的“三步曲”: (1)建立平面几何与向量的联系,用向量表示问题中涉 及的几何元素,将平面几何问题转化为向量问题;

向量知识在平面解析几何中的应用

向量知识在平面解析几何中的应用

向量知识在平面解析几何中的应用近年来,向量知识在平面解析几何中的应用受到越来越多的关注。

解析几何是研究二维空间上的几何图形,其中向量知识通常是帮助理解和解决几何问题的重要工具。

举例来说,本文将重点介绍平面解析几何中向量知识的三个典型应用,包括表示几何对象、分析基本性质和构造几何图形。

首先,表示几何对象是平面解析几何中最基础、最重要的应用。

在几何学中,我们往往会用向量来表示一个几何对象,其中向量可以表示一个点、一条直线或一个平面。

例如,我们可以用向量P = (x, y)表示一个平面上的点P,而用向量A = (a, b, c)表示一条直线A,用向量N = (n1, n2, n3)表示一个平面N。

不仅如此,我们还可以用向量来表示几何对象之间的位置关系,其中向量和运算可以表示平面上点与点、点与直线、直线与直线的距离或垂直关系。

其次,分析基本性质是平面解析几何中常用的应用。

在平面解析几何中,我们可以利用向量知识来分析几何对象的基本性质,比如线段的长度、平行线间的距离或者大圆弧的弧长等等。

计算这些基本性质往往要求我们掌握向量的加减运算以及向量的点积与叉积。

同时,我们可以利用向量知识来确定点与点之间的距离、点在直线上的坐标、直线与直线的位置关系等等,这些知识的应用可以大大提高我们的解决能力。

最后,构造几何图形也是向量知识在平面解析几何中的重要应用。

一般来说,在解析几何中,我们往往要根据给定的构造要求绘制几何图形,这要求我们充分运用向量知识来确定各个图形的位置关系和几何性质。

例如,我们可以根据给定点P、Q和R,通过运用向量知识来构造三角形PQR,或者根据给定的直线ABC点,通过运用向量知识来构造向量AB和向量AC的夹角等等。

综上所述,向量知识在平面解析几何中有着重要的应用。

它不仅可以帮助我们更好地表示几何对象,分析基本性质,还可以用来构造几何图形,有效地指导我们解决几何问题。

因此,学习和掌握向量知识对于掌握平面解析几何是至关重要的。

5.5平面向量应用

5.5平面向量应用


= .

A
B

解: = ∙ = ( + ) ∙ ( + ) = ∙ + ∙ + ∙ + ∙ =
同理:

=

− ∙ + ()
(1)+(2)得:


+

= (

涉及长度问题常常考虑向量的数量积,对 与 进行计算.
(1) , 分别对质点所做的功;
(2) , 的合力F对质点所做的功。
17.在风速为( − )/的西风中,飞机以150km/h的航速向西北方向飞行,求没有风时飞机的航速和航向。




(3)基底向量的夹角最好是明确的(直角最合适);
(4)尽量使基底向量和所涉及的向量共线或构成三角形或构成平行四边形.
3.用向量的坐标处理问题时,建立平面直角坐标系的基本原则:
选择坐标轴和原点不当会增加解题的运算量,也会带来不必要的麻烦.具有公共原点的两
条互相垂直的数轴构成了平面直角坐标系,因此在已知图形中,只要选择互相垂直的两条直
A
Q
B
P
C
课后作业:
4.在△ABC中,AB=AC,D为BC的中点,用向量方法证明 ⊥ .
5.如下图,在正方形ABCD中,E,F分别为AB,BC的中点。求证: ⊥ (利用向量证明).
D
C
F
A
E
B


6.如下图,在▱ABCD中,AB=3,AD=1,∠ = ,求对角线AC和BD的长.




又因为 = − = − ; 与共线,所以我们设: = = ( − )

向量的应用

向量的应用

向量的应用
向量是几何中重要的概念,也是数学中常常用到的工具,广泛应用于物理、工程、计
算机科学等各个领域。

下面将介绍一些向量的常见应用。

1. 平面几何中的向量应用:
在平面几何中,向量可以表示平面上的点、线段、三角形等。

我们可以用两个向量表
示平面上的一条直线,可以用三个向量表示一个平面,可以用向量的线段来表示一个位移
和距离等。

向量的叉积可以用来判断两个向量是否平行、垂直,以及求解平面上的面积
等。

2. 物理学中的向量应用:
在物理学中,向量被广泛应用于描述力、速度、加速度等物理量的大小和方向。

位移
向量可以用来表示物体的位置变化,速度向量可以用来表示物体的运动速度和方向,加速
度向量可以用来表示物体的速度变化率等。

通过向量的运算,可以方便地计算物体之间的
相对速度、加速度,以及其他相关的物理量。

4. 计算机科学中的向量应用:
在计算机科学中,向量被广泛应用于描述二维和三维图形的坐标和方向。

我们可以用
二维向量表示平面上的一个点的坐标,用三维向量表示空间中的一个点的坐标,用向量的
加法和减法进行坐标的变换和计算。

向量的点乘和叉乘可以用来计算向量之间的夹角、距
离和面积等。

向量是数学中非常重要的概念和工具,被广泛应用于物理、工程、计算机科学等各个
领域。

通过对向量的运算和应用,我们可以更方便地描述和计算各种物理量、几何关系和
图形形状等。

向量的应用不仅仅局限于上述几个领域,还有很多其他的应用,如信号处理、优化问题等,具有非常广泛的应用前景。

平面向量的应用(教师版)

平面向量的应用(教师版)

平面向量的应用1 平面几何中的向量方法① 由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此平面几何中的许多问题都可用向量运算的方法加以解决.② 用向量方法解决平面几何问题的“三部曲”(1) 建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2) 通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3) 把运算结果“翻译”成几何关系.Eg 点A 、B 、C 、D 不在同一直线上(1)证明直线平行或共线:AB//CD ⇔AB⃗⃗⃗⃗⃗ //CD ⃗⃗⃗⃗⃗ (2)证明直线垂直:AB ⊥CD ⟺AB⃗⃗⃗⃗⃗ ⋅CD ⃗⃗⃗⃗⃗ =0 (3)求线段比值:AB CD =|λ|且AB//CD ⇔ AB⃗⃗⃗⃗⃗ =λCD ⃗⃗⃗⃗⃗ (4)证明线段相等: AB⃗⃗⃗⃗⃗ 2=CD ⃗⃗⃗⃗⃗ 2⇔AB =CD 2 向量在物理中的应用① 速度、力是向量,都可以转化为向量问题;② 力的合成与分解符合平行四边形法则.【题型一】平面向量在几何中的应用【典题1】证明:对角线互相平分的四边形是平行四边形.【证明】 设四边形ABCD 的对角线AC 、BD 交于点O ,且AO =OC ,BO =OD∵AB ⃗⃗⃗⃗⃗ =12AC ⃗⃗⃗⃗⃗ +12DB ⃗⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ =12DB ⃗⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ ∴AB ⃗⃗⃗⃗⃗ =DC⃗⃗⃗⃗⃗ ,即AB =DC 且AB//DC 所以四边形ABCD 是平行四边形即对角线互相平分的四边形是平行四边形.【点拨】① 证明四边形是平行四边形⇔AB =DC 且AB//DC ⇔AB⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ . ② 证明几何中的平行和长度关系可以转化为向量的倍数关系.【典题2】 已知平行四边形ABCD 的对角线为AC 、BD ,求证AC 2+BD 2=2(AB 2+AD 2) (即对角线的平方和等于邻边平方和的2倍).【证明】由 |AC ⃗⃗⃗⃗⃗ |2=AC ⃗⃗⃗⃗⃗ 2=(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )2=|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2+2AB ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗|DB⃗⃗⃗⃗⃗⃗ |2=DB ⃗⃗⃗⃗⃗⃗ 2=(AB ⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗ )2=|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2−2AB ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗ 两式相加得|AC⃗⃗⃗⃗⃗ |2+|DB ⃗⃗⃗⃗⃗⃗ |2=2(|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2) 即AC 2+BD 2=2(AB 2+AD 2)【点拨】利用|AB⃗⃗⃗⃗⃗ |2=|AB |2可证明线段长度关系.【典题3】 用向量方法证明:三角形三条高线交于一点.【证明】(分析 设H 是高线BE 、CF 的交点,再证明AH ⊥BC ,则三条高线就交于一点.)设H 是高线BE 、CF 的交点,则有BH ⃗⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ,CH ⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ,BC⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ∵BH ⃗⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ ,CH ⃗⃗⃗⃗⃗ ⊥AB⃗⃗⃗⃗⃗ ∴(AH⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )⋅AC ⃗⃗⃗⃗⃗ =(AH ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )⋅AB ⃗⃗⃗⃗⃗ =0 化简得AH⃗⃗⃗⃗⃗⃗ ⋅(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=0C∴AH⃗⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =0 则AH ⊥BC (向量中证明AB ⊥CD ,只需要证明AB ⃗⃗⃗⃗⃗⃗ ⋅CD⃗⃗⃗⃗⃗⃗ =0) 所以三角形三条高线交于一点.【典题4】证明三角形三条中线交于一点.【证明】(分析 设BE 、AF 交于O ,证明C 、O 、D 三点共线便可)AF 、CD 、BE 是三角形ABC 的三条中线设BE 、AF 交于点O ,∵点D 是中点,∴CD ⃗⃗⃗⃗⃗ =12(CA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ) 连接EF ,易证明∆AOB~∆FOE,且相似比是2:1,∴BO =23BE,∴CO ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +BO ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +23BE ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +23(BA ⃗⃗⃗⃗⃗ +AE ⃗⃗⃗⃗⃗ ) =CB ⃗⃗⃗⃗⃗ +23(BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ )=13(CA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ) ∴CO ⃗⃗⃗⃗⃗ =23CD ⃗⃗⃗⃗⃗ 即C 、O 、D 三点共线, (向量中证明三点A 、B 、C 共线,只需证明AB⃗⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ ) ∴AF 、CD 、BE 交于一点,即三角形三条中线交于一点.巩固练习1(★★) 如图,E ,F 分别是四边形ABCD 的边AD ,BC 的中点,AB =1,CD =2,∠ABC =75°,∠BCD =45°,则线段EF 的长是 .【答案】√72【解析】 由图象,得EF →=EA →+AB →+BF →,EF →=ED →+DC →+CF →.∵E ,F 分别是四边形ABCD 的边AD ,BC 的中点,∴2EF →=(EA →+ED →)+(AB →+DC →)+(BF →+CF →)=AB →+DC →.∵∠ABC =75°,∠BCD =45°,∴<AB →,DC →>=60°,∴|EF|→=12√(AB →+DC →)2=12√AB →2+DC →2+2|AB|→⋅|DC|→cos <AB →,DC →>=12√12+22+2×1×2×12=√72. ∴EF 的长为√72. 故答案为 √72. 2(★★) 证明勾股定理,在Rt∆ABC 中,AC ⊥BC ,AC =b ,BC =a ,AB =c ,则c 2=a 2+b 2.【证明】 由AB⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ,得AB ⃗⃗⃗⃗⃗ 2=(AC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ )2=AC ⃗⃗⃗⃗⃗ 2+2AC ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ 2 即|AB⃗⃗⃗⃗⃗ |2=|AC ⃗⃗⃗⃗⃗ |2+|CB ⃗⃗⃗⃗⃗ |2 故c 2=a 2+b 2.3(★★) 用向量方法证明 对角线互相垂直的平行四边形是菱形.【证明】如图平行四边形ABCD 对角线AC 、BD 交于点O ,∵AB⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ =BO ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ ∴|AB ⃗⃗⃗⃗⃗ |2=(AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )2=|AO ⃗⃗⃗⃗⃗ |2+2AO ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ +|OB⃗⃗⃗⃗⃗ |2=|AO ⃗⃗⃗⃗⃗ |2+|OB ⃗⃗⃗⃗⃗ |2|BC⃗⃗⃗⃗⃗ |2=(BO ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )2=|BO ⃗⃗⃗⃗⃗ |2+2BO ⃗⃗⃗⃗⃗ ⋅OC ⃗⃗⃗⃗⃗ +|OC ⃗⃗⃗⃗⃗ |2=|BO ⃗⃗⃗⃗⃗ |2+|OC ⃗⃗⃗⃗⃗ |2 ∴|AB ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ | A BC∴四边形ABCD 是菱形.4(★★)用向量方法证明 设平面上A ,B ,C ,D 四点满足条件AD ⊥BC ,BD ⊥AC ,则AB ⊥CD .【证明】 因AD ⊥BC ,所以AD →⋅BC →=AD →⋅(AC →−AB →)=0,因BD ⊥AC ,所以AC →⋅BD →=AC →⋅(AD →−AB →)=0,于是AD →⋅AC →=AD →⋅AB →,AC →⋅AD →=AC →⋅AB →,所以AD →⋅AB →=AC →⋅AB →,(AD →−AC →)⋅AB →=0,即CD →⋅AB →=0,所以CD →⊥AB →,即AB ⊥CD .5(★★)用向量方法证明 对角线相等的平行四边形是矩形.【证明】如图,平行四边形ABCD 对角线AC 、BD 交于点O,设OA =a ,∵对角线相等 ∴OB =OD =a∵AB⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ ∴AB ⃗⃗⃗⃗⃗ ∙AD ⃗⃗⃗⃗⃗ =(AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )(AO ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ )=AO ⃗⃗⃗⃗⃗ 2+AO ⃗⃗⃗⃗⃗ ∙OD ⃗⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ⋅AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ⋅OD⃗⃗⃗⃗⃗⃗ =a 2+AO ⃗⃗⃗⃗⃗ (OD⃗⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )−a 2=0 ∴AB ⃗⃗⃗⃗⃗ ⊥AD ⃗⃗⃗⃗⃗ 即AB ⊥AD∴四边形ABCD 是矩形.6(★★★) 已知向量OP 1→、OP 2→、OP 3→满足OP 1→+OP 2→+OP 3→=0,|OP 1→|=|OP 2→|=|OP 3→|=1.求证 △P 1P 2P 3是正三角形.【证明】法一 ∵OP 1→+OP 2→+OP 3→=0,∴OP 1→+OP 2→=−OP 3→.∴|OP 1→+OP 2→|=|−OP 3→|.∴|OP 1→|2+|OP 2→|2+2OP1→•OP 2→=|OP 3→|2. 又∵|OP 1→|=|OP 2→|=|OP 3→|=1,∴OP 1→•OP 2→=−12.∴|OP 1→||OP 2→|cos∠P 1OP 2=−12,即∠P 1OP 2=120°.B C同理∠P 1OP 3=∠P 2OP 3=120°.∴△P 1P 2P 3为等边三角形.法二 以O 点为坐标原点建立直角坐标系,设P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3),则OP 1→=(x 1,y 1),OP 2→=(x 2,y 2),OP 3→=(x 3,y 3).由OP 1→+OP 2→+OP 3→=0,得{x 1+x 2+x 3=0y 1+y 2+y 3=0.∴{x 1+x 2=−x 3y 1+y 2=−y 3., 由|OP 1→|=|OP 2→|=|OP 3→|=1,得x 12+y 12=x 22+y 22=x 32+y 32=1∴2+2(x 1x 2+y 1y 2)=1∴|P 1P 2→|=√(x 1−x 2)2+(y 1−y 2)2=√x 12+x 22+y 12+y 22−2x 1x 2−2y 1y 2=√2(1−x 1x 2−y 1y 2)=√3同理|P 1P 3→|=√3,|P 2P 3→|=√3∴△P 1P 2P 3为正三角形【题型二】平面向量在物理中的应用【典题1】 如图,已知河水自西向东流速为|v 0|=1m/s ,设某人在静水中游泳的速度为v 1,在流水中实际速度为v 2.(1)若此人朝正南方向游去,且|v 1|=√3m/s ,求他实际前进方向与水流方向的夹角α和v 2的大小;(2)若此人实际前进方向与水流垂直,且|v 2|=√3m/s ,求他游泳的方向与水流方向的夹角β和v 1的大小.【解析】如图,设OA ⃗⃗⃗⃗⃗ =v 0⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ =v 1⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ =v 2⃗⃗⃗⃗ ,则由题意知v 2⃗⃗⃗⃗ =v 0⃗⃗⃗⃗ +v 1⃗⃗⃗⃗ ,|OA ⃗⃗⃗⃗⃗ |=1,根据向量加法的平行四边形法则得四边形OACB 为平行四边形.(1)由此人朝正南方向游去得四边形OACB 为矩形,且|OB⃗⃗⃗⃗⃗ |=AC =√3,如下图所示,则在直角△OAC中,|v2⃗⃗⃗⃗ |=OC=√OA2+AC2=2,tan∠AOC=√31=√3,又α=∠AOC∈(0 ,π2),所以α=π3;(2)由题意知α=∠OCB=π2,且|v2⃗⃗⃗⃗ |=|OC|=√3,BC=1,如下图所示,则在直角△OBC中,|v1⃗⃗⃗⃗ |=OB=√OC2+BC2=2,tan∠BOC=√3=√33,又∠AOC∈(0 ,π2),所以∠BOC=π6,则β=π2+π6=2π3,答(1)他实际前进方向与水流方向的夹角α为π3,v2的大小为2m/s;(2)他游泳的方向与水流方向的夹角β为2π3,v1的大小为2m/s.【点拨】注意平行四边形法则的使用!【典题2】在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G,作用在行李包上的两个拉力分别为F1⃗⃗⃗ ,F2⃗⃗⃗⃗ ,且|F1⃗⃗⃗ |=|F2⃗⃗⃗⃗ |,F1⃗⃗⃗ 与F2⃗⃗⃗⃗ 的夹角为θ.给出以下结论①θ越大越费力,θ越小越省力;②θ的范围为[0 ,π];③当θ=π2时,|F1⃗⃗⃗ |=|G|;④当θ=2π3时,|F1⃗⃗⃗ |=|G|.其中正确结论的序号是.【解析】对于①,由|G|=|F1⃗⃗⃗ +F2⃗⃗⃗⃗ |为定值,所以G2=|F1⃗⃗⃗ |2+|F2⃗⃗⃗⃗ |2+2|F1⃗⃗⃗ |×|F2⃗⃗⃗⃗ |×cosθ=2|F1⃗⃗⃗ |2(1+cosθ),解得|F1⃗⃗⃗ |2=|G|22(1+cosθ);由题意知θ∈(0 ,π)时,y=cosθ单调递减,所以|F1⃗⃗⃗ |2单调递增,即θ越大越费力,θ越小越省力;①正确.对于②,由题意知,θ的取值范围是(0 ,π),所以②错误.对于③,当θ=π2时,|F1⃗⃗⃗ |2=G22,所以|F1⃗⃗⃗ |=√22|G|,③错误.对于④,当θ=2π3时,|F1⃗⃗⃗ |2=|G|2,所以|F1⃗⃗⃗ |=|G|,④正确.综上知,正确结论的序号是①④.故答案为①④.【典题3】如图,重为10N的匀质球,半径R为6cm,放在墙与均匀的AB木板之间,A端锁定并能转动,B端用水平绳索BC拉住,板长AB=20cm,与墙夹角为α,如果不计木板的重量,则α为何值时,绳子拉力最小?最小值是多少?【解析】如图,设木板对球的支持力为N⃗,则N⃗=10sinα,设绳子的拉力为f.又AC=20cosα,AD=6tanα2,由动力矩等于阻力矩得|f|×20cosα=|N⃗|×6tanα2=60sinα⋅tanα2,∴|f|=6020cosα⋅sinα⋅tanα2=3cosα(1−cosα)≥3(cosα+1−cosα2)2=314=12,∴当且仅当 cosα=1−cosα 即cosα=12,亦即α=60°时,|f|有最小值12N.巩固练习1(★★) 一条渔船以6km/ℎ的速度向垂直于对岸的方向行驶,同时河水的流速为2km/ℎ,则这条渔船实际航行的速度大小为 .【答案】2√10km/ℎ【解析】如图所示,渔船实际航行的速度为v AC →=v 船→+v 水→;大小为|v AC →|=|v 船→+v 水→|=√62+22 =2√10km/ℎ.2(★★) 如图所示,一个物体被两根轻质细绳拉住,且处于平衡状态,已知两条绳上的拉力分别是F 1 ,F 2,且F 1 ,F 2与水平夹角均为45°,|F 1⃗⃗⃗ |=|F 2⃗⃗⃗⃗ |=10√2N ,则物体的重力大小为 .【答案】20【解析】如图,∵|F 1→|=|F 2→|=10√2N ,∴|F 1→+F 2→|=10√2×√2N =20N ,∴物体的重力大小为20.故答案为 20.3(★★) 已知一艘船以5km/ℎ的速度向垂直于对岸方向行驶,航船实际航行方向与水流方向成30°角,求水流速度和船实际速度.【答案】5√3km/ℎ【解析】如图,设AD →表示船垂直于对岸的速度,AB →表示水流的速度,以AD ,AB 为邻边作平行四边形ABCD ,则AC →就是船实际航行的速度.在Rt△ABC 中,∠CAB =30°,|AD →|=|BC →|=5,∴|AC →|=|BC →|sin30°=10,|AB →|=|BC →|tan30°=5√3.故船实际航行速度的大小为10km/ℎ,水流速度5√3km/ℎ.4 (★★)一个物体受到同一平面内三个力F 1、F 2、F 3的作用,沿北偏东45°的方向移动了8m .已知|F 1|=2N ,方向为北偏东30°;|F 2|=4N ,方向为东偏北30°;|F 3|=6N ,方向为西偏北60°,求这三个力的合力F 所做的功.【答案】24√6 J【解析】 以三个力的作用点为原点,正东方向为x 轴正半轴,建立直角坐标系. 则由已知可得OF 1→=(1,√3),OF 2→=(2√3,2),OF 3→=(﹣3,3√3).∴OF →=OF 1→+OF 2→+OF 3→=(2√3−2,4√3+2).又位移OS →=(4√2,4√2).∴OF →•OS →=(2√3−2)×4√2+(4√3+2)×4√2=24√6(J).。

高中数学解题中平面向量方法的应用分析

高中数学解题中平面向量方法的应用分析

高中数学解题中平面向量方法的应用分析
高中数学解题中,平面向量方法是一种常用的解题方法。

它主要应用于平面几何、线
性代数和解析几何等领域。

下面将从几个方面分析平面向量方法在高中数学解题中的应
用。

在平面几何中,平面向量方法可以用于解决平面上的点、线、面的位置关系问题。


过引入向量的概念和运算法则,可以用向量的加减、数量积等操作来表示和计算线段、向
量的长度、夹角、平行关系等几何性质。

可以用向量来证明平行线之间的距离相等、求解
点在直线上的投影等问题。

在线性代数中,平面向量方法可以用于求解线性方程组。

通过将线性方程组写成矩阵
乘法的形式,并用向量表示未知数,可以将求解线性方程组的问题转化为求解向量的线性
组合的问题。

利用向量的性质和运算法则,可以通过增广矩阵的行变换来求解未知数的值。

可以用向量法解决线性方程组的解的存在唯一性以及解的求法等问题。

平面向量方法还可以用于解决高等数学中的微分和积分问题。

通过将函数表示为向量
函数,可以简化微分和积分的运算过程。

可以用向量函数求导来计算曲线的切线和法线,
用向量函数积分来计算曲线的弧长和面积等问题。

向量在平面几何中的应用

向量在平面几何中的应用

向量在平面几何中的应用
平面几何中的向量是一种抽象的概念,它可以用来描述空间中的点、线、面等几何图形的位置、方向和大小。

因此,向量在平面几何中有着广泛的应用。

首先,向量可以用来描述平面上的点。

例如,若给定两个点
A(x1,y1)和B(x2,y2),则它们之间的距离可以用向量表示,即AB=<x2-x1,y2-y1>。

其次,向量可以用来描述平面上的线段。

例如,若给定两个点
A(x1,y1)和B(x2,y2),则它们之间的线段可以用向量表示,即AB=<x2-x1,y2-y1>。

此外,向量还可以用来描述平面上的多边形。

例如,若给定一个多边形ABCD,则它的面积可以用向量表示,即
S=1/2|AB×AC|,其中AB和AC分别表示多边形ABCD的两
条边。

最后,向量还可以用来描述平面上的角度。

例如,若给定两个向量a=<x1,y1>和b=<x2,y2>,则它们之间的夹角可以用向量
表示,即θ=arccos(a·b/|a||b|),其中a·b表示向量a和b的点积,|a|和|b|分别表示向量a和b的模。

综上所述,向量在平面几何中有着广泛的应用,它可以用来描
述空间中的点、线、面等几何图形的位置、方向和大小,从而为平面几何的研究提供了有力的工具。

利用向量解决平面几何问题的方法与技巧

利用向量解决平面几何问题的方法与技巧

利用向量解决平面几何问题的方法与技巧平面几何是数学中的一个重要分支,它研究平面上的点、直线、圆等几何图形及其性质。

解决平面几何问题时,常常可以运用向量的概念和运算来简化计算和分析过程。

本文将介绍一些利用向量解决平面几何问题的方法与技巧。

一、向量的基本概念与运算在讨论向量解决平面几何问题之前,首先需要了解向量的基本概念和运算。

向量是具有大小和方向的量,可以表示为箭头形式或坐标形式。

向量的加法满足交换律和结合律,即(a+b)+c=a+(b+c),a+b=b+a。

向量的数乘是将向量的长度进行拉伸或压缩的操作,结果仍是一个向量。

二、利用向量进行辅助构造1. 向量平移在解决平面几何问题时,有时可以通过向量平移来简化问题。

设有一个平面几何问题,已知点A,B,C等多个点,需要求得某个点D。

可以选择一个已知向量,用它将所有的点平移,然后通过平移后的点的位置关系来确定点D的位置。

2. 向量加法构造向量当需要得到几何图形中的一个向量时,可以利用已知向量进行向量加法构造。

例如,已知直线上的两个点A和B,需要求得直线上的另一个点C,可以利用已知向量AB和一条与直线垂直的向量得出向量AC,从而确定点C在直线上的位置。

三、利用向量进行问题的求解1. 直线和向量的关系在平面几何中,直线可以由点和向量唯一确定。

已知直线上的两点A和B,通过向量AB可以得到直线上的一个特征向量。

2. 平行和共线的判定利用向量的平行性质,可以方便地判定两条直线是否平行或共线。

若两个向量的方向相同或相反,则两条直线平行;若两个向量共线,则两条直线共线。

3. 角度和向量的夹角利用向量的内积,可以求得两个向量之间的夹角。

已知两个向量a和b,它们的夹角θ满足公式cosθ=(a·b)/(|a||b|)。

4. 平面和向量的关系在解决平面几何问题时,有时可以通过平面的法线向量来简化问题。

已知平面上的三个点A、B、C,可以通过向量AB和向量AC求得平面的法线向量,从而得到平面的方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、应用向量知识证明三线共点、三点共线
例3、已知:如图AD、BE、CF是△ABC三条高 求证:AD、BE、CF交于一点 解:设AD与BE交于H,
BC a CA b
A
H
B D
E C
CH p
HA BC (b p) a 0 b a p a 0 BH CA (a p) b O
解:设AO=a, OC=b
CB a ? b 则AC a b, CB
由此可得: AC CB=(a+b)(a-b)
a b a b
2 2 2 2
r2 r2 0
即 AC CB 0 ,∠ACB=90° 思考:能否用向量坐标形式证明?
二、应用向量知识证明平面几何有关定理
如何证 p BA 0?
利用AD⊥BC,BE⊥CA,对应向量垂直。
HA BC (b p) a 0 b a p a 0 BH CA (a p) b 0 b a p b 0
p a p b 0 p (a b) 0 CH BA 0 CH BA
AM EN (8, 4) (4 e, 2) 0
A
E
B
解得:e=5 故△AEM的面积为10
四、应用向量知识证明等式、求值
例5、如图ABCD是正方形M是BC的中点,将正方形折起, 使点A与M重合,设折痕为EF,若正方形面积为64, 求△AEM的面积 C D F 解:如图建立坐标系,设E(e,0),由 正方形面积为64,可得边长为8 M 由题意可得M(8,4),N是AM的 N 中点,故N(4,2) AM (8,4) A E B =(4,2)-(e,0)=(4-e,2) EN AN AE
AB BC CD DA 2( a b )
2 2 2 2
AC BD a b a b
2 2


2

2
2 2 2 2 a 2ab b a 2ab b 2 a b 2 a b ∴ AB2 BC2 CD 2 DA2 AC2 BD2 2 2 2 2
(4)平面向量基本定理
a e1 e2,其中e1,不共线。 e2 , 为唯一确定的常数
二、应用向量知识证明平面几何有关定理
例1、证明直径所对的圆周角是直角 如图所示,已知⊙O,AB为直径,C 为⊙O上任意一点。求证∠ACB=90° A 分析:要证∠ACB=90°,只须证向 量AC CB,即 AC CB 0 。


a ( x1, y1), b ( x2 , y2 ), a b x1x2 y1 y2 0
(3)两向量相等充要条件:
a b a b , 且方向相同。
a ( x1, y1), b ( x2 , y2 ), a b x1 x2 , y1 y2
一、向量有关知识复习
(1)向量共线的充要条件:
a 与 b 共线 a b R, b 0


a ( x1, y1), b ( x2 , y2 ), a // b x1 y2 x2 y1 0
(2)向量垂直的充要条件: a b a b 0 a 0, b 0
2
由此可得 BN NP b a
PA AN NP, PA (b a) a b AQ AM MQ, AQ (b a) a b
即 PA AQ 故有 PA// AQ ,且它们有 公共点A,所以P、A、Q三点共线 Q
1 2 1 CM MQ a b 2
练习1:证明对角线互相垂直平分的四边形是菱形 练习2:如图O为△ABC所在平面内一点,且满足
OA2 BC2 OB2 CA2 OC 2 AB2
求证:AB⊥OC O
A
B
C
; 不锈钢蹲便器 不锈钢坐便器;
了这么多年,现在骂自己傻子,实在是太伤他の心了."哈哈,你生气了?"小紫倩问他."你个小丫头,到底智商是多少呀?你真失忆了?"根汉觉得有些不信她,感觉被她给忽悠了.小紫倩哼道"咱当然失忆了,要是没失忆还用得着你呀,本女神可强大着呢.""什么意思?你连道法也忘了?"根汉皱眉问. 小紫倩叹道"是呀,咱壹点也想不起来了呢,体内是空有力量也无法释放.""咱现在の情况,可能是自己受到了什么力量の压制,或者是被封印了,所以身子才这么壹点子大."小紫倩壹脸憧憬の说"咱当年壹定是壹个倾国倾城の天仙,被人给妒忌然后给封印了,成现在这个样子了.""好吧,咱来."根 汉壹脸正色の说"丫头这五官很漂亮,以前壹定是壹个天仙般の女尔家の.""哼哼,算你还有些眼光.""不过咱们现在可以说武神,还有这个世界の情况了吗?咱刚醒,都不懂呀,你还惨,完全失忆了."根汉说.小紫倩又问根汉要了壹小瓶糖果,这回总算是壹颗壹颗慢慢の吃,壹边给根汉介绍道"咱们 现在所在の这个世界呀,又叫做天界.""在这世界の其它地方,还有鬼界,妖界,魔界,冥界,修罗界,等等还有几十个自称の界,都和天界壹样.""不过天界向来是最强大の壹界,而天界又分为天界和下天界,咱们所在の这里,青龙海所在の地方是天界の壹处地方.""天界也有许多修行之地,这壹地 只能称是壹般の地界尔,但是这壹块地界面,有许多の自称是天神の人物,青龙是其之壹.""这块地界叫什么?"根汉大概明白了,这九天十域,只是原来天界の壹个小小の修行地之壹.而且还算不最好の,当初自己在武神之墓,遇到の来自另壹个九天十域之地の白风,他们那壹块九天十域面の修士 整体实力要更高.那里有可能这壹块地界要强得多,是更好の修行之地."这里叫九华红尘界."小紫倩说"因为这里曾经是至高神,九华道人和红尘道尼这对夫妇,开辟出来の,所以被称为九华红尘界.""至高神?九华道人,红尘道尼?"根汉皱了皱眉头,九华道人从来没有听说过,红尘道尼,难道与红 尘女圣有关系吗?"九华红尘界只是壹个普通の地界,并不是特别富饶,在天界の众多修行地界之,也只能算是等の吧."小紫倩说"据咱所知,整个天界,已知の修行界,至少也有壹百多个.""壹百多个?"根汉眉头微挑,像这样の九天十域修行之神地,光是这个天界有百个,这数量确实是有些惊人.难 道自己和整个九天十域の修行者们,包括这里曾经出过の至尊们,在整个天界之,也只能算是最底层の存在?这个事实实在是太残酷了."对呀,天界至少有壹百多个修行地界,因为现在咱们这会尔有三大至高神,而武神大人是其之壹."小紫倩憧憬の说"所以你小子别到处乱说,要是让人听到了,你 编排武神大人の墓,你怎么死の都不知道.""三大至尊神,统领着整个天界壹百多修行地界,像青龙这样の天神圣兽,连给武神大人做座骑の资格都没有."小紫倩又说."这么恐怖?"根汉额头黑线直冒,倒吸了壹口凉气,感觉这个世界曾经の辉煌,远自己想像の复杂.会不会那更高级の修行地界,还 有更强大の神,壹直没有出现,说不定仙界根本没有崩溃.小紫倩哼道"那当然了,那可是天界唯独の三大至高神呀,而青龙这样の只是天神而已,相了一些等级呢.""这里の人们,怎么分の等级?"根汉很是好.太古时期の传说很少,相传当初有太古三皇,太阴,太阳,太蚀,这三皇,难道这三皇也强到 了这个级别?小紫倩想了想说"天界の众神应该分为,真神,仙神,和天神,下面是众神将了.""神将又分为神将,神将和下神将,还有准神将,神将下面更别说了,还有几十个等级呢,说起来有些头痛."小紫倩面色有些难br&gt;她似乎想多了事情,会不舒服,根汉赶紧又给她熬鱼汤,然后给她喂了壹 点鱼汤,这小丫头才好过了壹点点.(正文贰6贰肆上天界)贰6贰5至高神贰6贰5"神将又分为神将,神将和下神将,还有准神将,神将下面更别说了,还有几十个等级呢,说起来有些头痛.敬请记住咱们の址小說://Ы qi.e."小紫倩面色有些难br&gt;她似乎想多了事情,会不舒服,根汉赶紧又给她 熬鱼汤,然后给她喂了壹点鱼汤,这小丫头才好过了壹点点.根汉问道"你以前是什么修为呀?""应该和青龙差不多吧,天神级别吧,要不然也不能偷他の鱼吃,只是他是天神の圣兽,对打の话咱肯定不是他の对手了."小紫倩说.根汉想了想,倒吸了壹口凉气,又问道"天神の数量很多吗?""应该挺多 の吧,据咱所知在咱们这九华红尘界,至少有三四十人吧,都不是好惹の人物.""三四十个."根汉皱了皱眉问道"那真神和仙神呢,也有几十个吗?""那倒没有."小紫倩说"具体の数量咱也不清楚,但是仙神の数量应该不会超过八人,而真神の数量也差不多一些人吧.""其实真神和仙神两者の实力 差距应该不会太大,他们是分了不同の等级而已,只不过真神是主要管事の人.""仙神壹般不问世事,都是在潜心修行,鲜少出来做事.""像咱们天界の真神,是只有八人,不过咱也从来没有机会见识."小紫倩想了想说."你还没机会见?"根汉咧嘴笑道"整个九华红尘界,也才三四十个天神,你是其 之壹了.""可你别忘了,整个天界,有百个九华红尘界这样の地方,有些真正の修行神域,可不壹两百天神."小紫倩叹道"咱也在这九华红尘界能吃得开而已,到了别の地方,也要低调行事.""那你去过吗?"根汉很好.小紫倩摇了摇头道"咱不记得了,具体の记不清楚了,可能去过,也可能没有去 过.""呃."
相关文档
最新文档