第三章 酶的生物合成
酶工程 第三章酶的发酵生产 第一节酶生物合成的基本理论

第一节 酶生物合成的基本理论
转录时,RNA聚合酶首先结合到DNA的特定位点(启动基因)上,DNA的 双螺旋链部分解开,以其中一条链为模板,通过碱基互补方式结合进第一个 核苷三磷酸,然后随着RNA聚合酶的移动,DNA双螺旋逐渐解开,按照模板上 的碱基顺序逐个加入与其互补的核苷三磷酸并聚合而生成多聚核苷酸链。在 RNA聚合酶后面生成的多聚核苷酸链立即与模板分开,DNA分子的两条链又重 新缠绕形成双螺旋。(图3-1)
第一节 酶生物合成的基本理论
三、酶生物合成的调节
如上所述,酶的生物合成要经过一系列的步骤,需要 诸多因素的参与。故此,在转录和翻译过程中,许多因素 都会影响酶的生物合成。那么,究竟哪些因素对酶的生物 合成起主要的调节控制作用呢?研究结果表明,至少在原 核生物中,甚至在所有生物中,转录水平的调节控制对酶 的生物合成是至为重要的。
的过程,称为酶生物合成的诱导作用。简称为诱导作用。 起诱导作用的物质,称为诱导剂。例如,乳糖诱导β—半 乳糖苷酶的合成等。
酶生物合成的诱导作用过程如图3-4所示。
第一节 酶生物合成的基本理论
第一节 酶生物合成的基本理论
(B)
图3-4酶生物合成的诱导作用 (A)-----无诱导物时 (B)----添加诱导物时
转录水平调节控制,又称为基因的调节控制。这种控 制理论最早是由雅各(Jacob)和莫诺德(Monod)于1960年 提出的操纵子学说来阐明的,1966年发现了启动基因,使 这一调节控制理论不断完善。
第一节 酶生物合成的基本理论
根据基因调节控制理论,在DNA分子中,与酶生物合 成有密切关系的基因有4种。它们是调节基因(Regulator gene)、启动基因(Promoter gene)、操纵基因(Operator gene)和结构基因(Strutural gene)。其中,结构基因与 酶有各自的对应关系,结构基因中的遗传信息可转录成 mRNA上的遗传密码,再经翻译成为酶蛋白的多肽链。操纵 基因可以特异性地与调节基因产生的边构蛋白(阻抑蛋白) 中的一种结构结合,从而操纵酶合成的时机及速度。结构 基因与操纵基因一起称为操纵子。启动基因决定酶的合成 能否开始,启动基因由两个位点组成,一个是RNA聚合酶 的结合位点,另一个是环腺苷酸(cAMP)与环腺苷酸接受 蛋白(CRP)的复合物(cAMP- CRP)的结合位点。只有在 cAMP- CRP复合物结合到启动基因的位点上时,RNA
生物化学 第三章 酶(共65张PPT)

含多条肽链则为寡聚酶,如RNA聚合酶,由4种亚基构成五聚体。
(cofactor)
别构酶(allosteric enzyme):能发生别构效应的酶
9 D-葡萄糖6-磷酸酮醇异构酶 磷酸葡萄糖异构酶
esterase)活性中心丝氨酸残基上的羟基结合,使酶失活。
酶蛋白
酶的磷酸化与脱磷酸化
五、酶原激活
概念
酶原(zymogen):细胞合成酶蛋白时或者初分 泌时,不具有酶活性的形式
酶原 切除片段 酶
(–)
(+)
酶原激活
本质:一级结构的改变导致构象改变,激活。
胰蛋白酶原的激活过程
六、同工酶
同工酶(isoenzyme)是指催化相同的化学反应, 而酶蛋白的分子结构、理化性质乃至免疫学性质 不同的一组酶。
正协同效应(positive cooperativity) 后续亚基的构象改变增加其对别构效应剂
的亲和力,使效应剂与酶的结合越来越容易。
负协同效应(negative cooperativity) 后续亚基的构象改变降低酶对别构效应剂
的亲和力,使效应剂与酶的结合越来越难。
协同效应
正协同效应的底物浓度-反应速率曲线为S形曲线
/ 即: Vmax = k3 [Et]
Km 和 Vmax 的测定
双倒数作图法 Lineweaver-Burk作图
将米氏方程式两侧取倒数
1/v = Km/Vmax[S] + 1/Vmax = Km/Vmax •1/ [S] + 1/Vmax 以 1/v 对 1/[S] 作图, 得直线图
斜率为 Km/Vmax
酶学与酶工程重点总结

酶学与酶⼯程重点总结第⼆章酶学基础⼀、酶的活性中⼼(active center,active site)(⼀)活性中⼼和必需基团1、与酶活性显⽰有关的,具有结合和催化底物形成产物的空间区域,叫酶的活性中⼼,⼜叫活性部位。
2、活性中⼼可分为结合部位和催化部位。
3、结合部位决定酶的专⼀性,催化部位决定酶所催化反应的性质。
4、酶结构概述(1)活性中⼼是⼀个三维实体。
(2)是有⼀些⼀级结构上可能相距较远的氨基酸侧链基团组成,有的还包含辅酶或辅基的某⼀部分基团。
(3)在酶分⼦表⾯呈裂缝状。
(4)酶活性中⼼的催化位点和结合位点可以不⽌⼀个。
(5)酶活性中⼼的基团都是必需基团,但必需基团还包括活性中⼼以外的基团。
5、酶分⼦中的氨基酸残基或其侧链基团可以分为四类1.接触残基2.辅助残基3.结构残基4.⾮贡献残基(⼆)酶活性中⼼中的化学基团的鉴别1.⾮特异性共价修饰:某些化学试剂能使蛋⽩质中氨基酸残基的侧链基团反应引起共价结合、氧化或还原修饰反应,使基团结构和性质发⽣变化。
如果某基团修饰后不引起酶活⼒的变化,就可初步认为此基团可能是⾮必需基团;反之,如修饰后引起酶活⼒的降低或丧失,则此基团可能是酶的必需基团。
2.亲和标记共价修饰剂是底物的类似物,可专⼀性地引⼊酶的活性中⼼,并具有活泼的化学基团(如卤素),可与活性中⼼的基团形成稳定的共价键。
因其作⽤机制是利⽤酶对底物类似物的亲和性⽽将酶共价标记的,故称为亲和标记。
3.差别标记在过量底物或可逆抑制剂遮蔽活性中⼼的情况下,加⼊共价修饰剂,使后者只修饰活性中⼼以外的有关基团;然后去除底物或可逆抑制剂,暴露活性中⼼,再⽤同位素标记的向⼀修饰剂作⽤于活性中⼼的同类基团;将酶⽔解后分离带有同位素的氯基酸,即可确定该氨基酸参与活性中⼼。
4.蛋⽩质⼯程这是研究酶必需基闭和活性中⼼的最先进⽅法,即将酶蛋⽩相应的互补DNA(cDNA)定点突变,此突变的cDNA表达出只有⼀个或⼏个氨基酸被置换的酶蛋⽩,再测定其活性,可以知道被置换的氨基酸是否为活⼒所必需。
酶工程第三章酶的生物合成法生产2013-2

的pH值往往会发生变化。
糖代谢
pH下降:糖分解为小分子酸、醇 pH上升:糖缺乏
基质的代谢
氮代谢
pH下降:氨基酸中的-NH2被利用 pH上升:尿素被分解成NH3
硫酸铵 尿素 磷酸盐
pH下降:铵离子被利用,硫酸根积累 pH上升后下降:尿素→氨→ 氨被同化 对pH有缓冲作用
产物形成:氧不足时,代谢积累有机酸,使pH下降。
49
2、 细胞产酶最适pH值与生长最适pH值往往不同。 细胞生产某种酶的最适pH值通常接近于该酶催化反应 的最适pH值。 碱性蛋白酶:碱性(pH 8.5~9.0) 中性蛋白酶:中性或微酸性(pH 6.0~7.0), 酸性蛋白酶:酸性(pH 4~6)
例外:有些酶在其催化反应的最适条件下,产酶细胞的生 长和代谢可能受到影响 如枯草杆菌碱性磷酸酶,其催化反应的最适pH值为 9.5,而其产酶的最适pH值为7.4
酶、纤维素酶和木聚糖酶
7
二、植物细胞
主要用于色素、药物、香精和酶等初级代谢产物的生产。
酶
产酶植物细胞 年份
酶
产酶植物细胞 年份
糖苷酶
胡萝卜细胞 1981
糖化酶
甜菜细胞 1989
半乳糖苷酶 紫苜蓿细胞 1982 苯丙氨酸裂合酶 花生细胞 1990
漆酶
假挪威械细胞 1983
大豆细胞
过氧化物酶 甜菜细胞 1983 木瓜蛋白酶
55
三、温度的调节控制
1、温度确定原则
细胞生长的最适温度
细菌37℃
霉菌和放线菌28-30℃
嗜热微生物40-50℃
提高mRNA的稳定性
细胞产酶最适温度 往往低于细胞生长最适温度
增加酶的产量和酶的稳定性
温度不能过低,否则生化反应速度慢, 降低酶的产量
第三章 酶的生物合成

溶氧量过低,会对微生物生长、繁殖和新陈代 谢产生影响,从而使酶产量降低。但,过高的 溶氧量对酶的发酵生产业会产生不利影响,一 方面会造成浪费,另一方面高溶氧也会抑制某 些酶的生物合成,因此在整个发酵过程中应根 据需要控制好溶氧量。.
酶浓度调节的化学本质是基因表达的调节, 在细胞内进行的转录或翻译过程都有特定的 调节控制机制,其中,转录水平的调控占主 导地位,是酶生物合成中最重要的调节
.
操纵子
操纵子(operon)是一组功能上相关且受同 一调控区控制的基因组成的遗传单位
操纵子是酶合成调控的结构基础
.
操纵子调控模型
根据基因调节理论,在 DNA 分子中,与酶的生物 合成有密切关系的基因有 4 种。它们是调节基因 (regulator gene)、启动基因(promoter gene)、 操纵基因(operator gene)和结构基因(structural gene)。
蛋白酶
. 皮革脱毛
酶发酵生产菌种要求
产酶量高,具有生产应用价值 易培养,既能适应大生产粗放的营养和生产条
件,包括能利用廉价原料、对工艺条件要求不 苛刻 代谢速率高,发酵周期短 产酶稳定性好,菌种的生产性能不易退化,不 易感染噬菌体 安全可靠,要求菌种不是致病菌,其代谢物安 全无毒,在系统发育上与病原体无关 选用产胞外酶菌种,有. 利于酶的分离提取
.
发酵条件控制及对产酶的影响
温度:影响微生物生长和合成酶、影响酶合成 后的稳定性
pH:影响微生物体内各种酶活性,从而导致微生 物代谢途径发生变化;影响微生物形态和细胞 膜通的透性,从而影响微生物对培养基中营养 成分的吸收以及代谢产物的分泌;影响培养基 中某些营养物质的分解或中间产物的解离,从 而影响微生物对这些营养物质的利用
生化第三章酶

第三章酶本章要点生物催化剂——酶:由活细胞产生的、对其底物具有高度特异性和高度催化效能的蛋白质。
一、酶的分子结构与功能1.单体酶:由单一亚基构成的酶。
(如溶菌酶)2.寡聚酶:由多个相同或不同的亚基以非共价键连接组成的酶。
(如磷酸果糖激酶-1)3.多酶复合物(多酶体系):几种具有不同催化功能的酶可彼此聚合。
(如丙酮酸脱氢酶复合物)4.多功能酶(串联酶):一些酶在一条肽链上同时具有多种不同的催化功能。
(如氨基甲酰磷酸合成酶Ⅱ)(一)、酶的分子组成中常含有辅助因子1.酶蛋白主要决定酶促反应的特异性及其催化机制;辅助因子主要决定酶促反应的性质和类型。
2.酶蛋白和辅助因子单独存在时均无催化活性,只有全酶才具有催化作用。
3.辅酶与酶蛋白的结合疏松,可以用透析和超滤的方法除去。
在酶促反应中,辅酶作为底物接受质子或基团后离开酶蛋白,参加另一酶促反应并将所携带的质子或基团转移出去,或者相反。
4.辅基则与酶蛋白结合紧密,不能通过透析或超滤将其除去。
在酶促反应中,辅基不能离开酶蛋白。
5.作为辅助因子的有机化合物多为B族维生素的衍生物或卟啉化合物,它们在酶促反应中主要参与传递电子、质子(或基团)或起运载体作用。
金属离子时最常见的辅助因子,约2/3的酶含有金属离子。
6.金属离子作为酶的辅助因子的主要作用①作为酶活性中心的组成部分参加催化反应,使底物与酶活性中心的必需基团形成正确的空间排列,有利于酶促反应的发生;②作为连接酶与底物的桥梁,形成三元复合物;③金属离子还可以中和电荷,减小静电斥力,有利于底物与酶的结合;④金属离子与酶的结合还可以稳定酶的空间构象。
7.金属酶:有的金属离子与酶结合紧密,提取过程中不易丢失。
8.金属激活酶:有的金属离子虽为酶的活性所必需,但与酶的结合是可逆结合。
(二)、酶的活性中心是酶分子执行其催化功能的部位1.酶的活性中心(活性部位):酶分子中能与底物特异地结合并催化底物转变为产物的具有特定三维结构的区域。
第三章酶的生产

2023年5月15日星期一
第三章 酶的生产制备
酶的生产方式
1.提取法: 植物、动物、微生物
2.化学合成法
生物合成法: 利用植物、动物、微生物细胞合成。 上个世纪50年代起利用微生物生产酶
。 1949年细菌发酵生产淀粉酶
上个世纪70年代以来利用植物细胞和 动物细胞培养技术生产酶。
木瓜细胞培养生产木瓜蛋白酶和木瓜 凝乳蛋白酶 人黑色素瘤细胞培养生 产血纤维蛋白溶酶原激活剂
34
2.生长偶联型中的特殊形式——中期合成型
酶的合成在细胞生长一段时间后才开始,而在细胞生 长进入平衡期以后,酶的合成也随着停止。 特点:酶的合成受产物的反馈阻遏或分解代谢物阻遏。
所对应的mRNA是不稳定的。
枯草杆菌碱性磷酸酶合成曲线 35
3.部分生长偶联型(又称延续合成型)
酶的合成在细胞的生长阶段开始,在细胞生长进入 平衡期后,酶还可以延续合成较长一段时间。 特点:可受诱导,一般不受分解代谢物和产物阻遏。
所对应的mRNA相当稳定。
黑曲霉聚半乳糖醛酸酶合成曲线 36
4. 非生长偶联型(又称滞后合成型)
只有当细胞生长进入平衡期以后,酶才开始合成并 大量积累。许多水解酶的生物合成都属于这一类型。 特点:受分解代谢物的阻遏作用。
所对应的mRNA稳定性高。
黑曲霉酸性蛋白酶合成曲线 37
总结:影响酶生物合成模式的主要因素
②发酵代谢调节:理想诱导物的添加,解除 反馈阻遏和分解代谢物阻遏(难利用的碳 氮源的使用,补料发酵)。
③降低产酶温度。
二、细胞生长动力学
微生物细胞生长的动力学方程:
Monod方程:
S-限制性基质浓度; μm—最大比生长速率; Ks —Monod常数
酶学与酶工程第三章酶生物合成学生

丛梗孢科,曲霉属真菌中的一个常见种。
酶学与酶工程第三章酶生物合成学生College of Life Sciences
米曲霉:半知菌亚门,丝孢纲,丝孢目,从梗孢科, 曲霉属真菌中的一个常见种。米曲霉菌落生长快, 10d直径达5~6cm,质地疏松,初白色、黄色,后变 为褐色至淡绿褐色。背面无色。分生孢子头放射状, 一直径150~300μm,也有少数为疏松柱状。分生孢 子梗2mm左右。
链霉菌
酶学与酶工程第三章酶生物合成学生College of Life Sciences
3.酵母菌 酵母菌(yeast)是—类单细胞微生物,但不同于细菌,
属于真核微生物。
酿酒酵母 球拟酵母 假丝酵母
拟酵母
酶学与酶工程第三章酶生物合成学生College of Life Sciences
4. 霉菌 霉菌是一类丝状真菌,用于酶的发酵生产的霉菌主
二、产酶微生物的来源
1.土壤中的产酶微生物 2.水体中的产酶微生物 3.空气中的产酶微生物 4.极端环境中的产酶微生物
酶学与酶工程第三章酶生物合成学生College of Life Sciences
三、产酶微生物的分离和筛选
酶学与酶工程第三章酶生物合成学生College of Life Sciences
第三章 酶的生物合成
酶学与酶工程第三章酶生物合成学生
第一节 微生物发酵产酶
微生物发酵产酶的优点: 1)微生物种类繁多; 2) 微生物生长周期短,繁育快; 3) 微生物易改造,可通过多种手段育种。
酶学与酶工程第三章酶生物合成学生College of Sciences
一、产酶微生物的种类 用于酶的生产的细胞必须具备几个条件 (1)酶的产量高 (2) 容易培养和管理 (3) 产酶稳定性好,不易变异退化,不易被感染 (4) 利于酶的分离纯化 (5) 安全可靠,无毒性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
操纵子是酶合成调控的结构基础
操纵子调控模型
根据基因调节理论,在 DNA 分子中,与酶的生物 合成有密切关系的基因有 4 种。它们是调节基因 (regulator gene)、启动基因(promoter gene)、 操纵基因(operator gene)和结构基因(structural gene)。
生产中pH调控方法
调节培养基初始pH值,控制合适C/N,调整生 理酸性物质与生理碱性物质之比例;
补料调节,即通过发酵过程中流加碳源、氮源 来调节pH;
添加缓冲液,维持一定pH值; 如pH值变化较大,可直接流加酸或碱进行调节; 通过对溶解氧的调节,来控制中间产物的氧化
程度。
发酵条件控制及对产酶的影响(二)
固定化微生物细胞产酶的工艺条件及其控 制应注意事项
需要对固定化微生物细胞进行预培养
增加溶宜解氧的供给
发酵温度的控制
培养基组分的特殊要求:1)培养基浓度不 过高,并可通过改变培养基组分来降低培养 基粘度,有利于氧的溶解和传递,从而克服 固定化细胞好氧发酵过程中氧溶解和传递的 限制;2)培养基组分不能影响固定化细胞 的结构稳定性,或影响很小
溶解氧:通气量越大、氧分压越高、气液接触 时间越长、气液接触面积越大,则溶氧速率越 大。此外,培养液的性质,主要是粘度、气泡 以及温度等对溶氧速率有明显的影响,可通过 以上方面调节溶氧速率。
溶氧量过低,会对微生物生长、繁殖和新陈代 谢产生影响,从而使酶产量降低。但,过高的 溶氧量对酶的发酵生产业会产生不利影响,一 方面会造成浪费,另一方面高溶氧也会抑制某 些酶的生物合成,因此在整个发酵过程中应根 据需要控制好溶氧量。
用途
酒精与啤酒工业、洗涤剂、糊精加工、纺织品脱浆等
生丝脱胶、皮革脱毛、胶卷回收、酱油酿造 生产L-天冬氨酸:治疗白血病 制备新青霉素的母核6-氨基青霉素烷酸 由葡萄糖制果糖 皮革脱毛 分解淀粉的α-1,6-糖苷键 绢丝原料脱脂、洗涤剂、医药、乳品增香 制造转化糖
食品加工中食品去氧、除葡萄糖,作试剂测定葡 萄糖 皮革脱毛
发酵条件控制及对产酶的影响
温度:影响微生物生长和合成酶、影响酶合成 后的稳定性
pH:影响微生物体内各种酶活性,从而导致微生 物代谢途径发生变化;影响微生物形态和细胞 膜通的透性,从而影响微生物对培养基中营养 成分的吸收以及代谢产物的分泌;影响培养基 中某些营养物质的分解或中间产物的解离,从 而影响微生物对这些营养物质的利用
第三章 酶的生物合成与 发酵生产
酶的生物合成与发酵生产定义
酶的生物合成:即生物体内酶合成的 过程
酶的发酵生产:利用微生物代谢活动 生产所需酶的过程
目前工业上使用的酶大多数是利 用微生物发酵生产的。
利用微生物发酵产酶的优点
微生物生长繁殖快,生活周期短,用微生物产酶 几乎可以不受限制的扩大生产,满足市场需求
1. 结构基因与多肽链有各自的对应关系。结构基因上的 遗传信息可以转录成为 mRNA上的遗传密码,再经翻 译成为酶蛋白的多肽链,每一个结构基因对应一条多 肽链。
2. 操纵基因可以与调节基因产生的变构蛋白(阻遏蛋白) 中的一种结构结合,从而操纵酶生物合成的时机和合 成速度。
操纵子调控模型(二)
3. 启动基因决定酶的合成能否开始,启动基 因由两个位点组成:一个是 RNA 聚合酶的 结合位点,另一个是环腺苷酸(cyclic AM P,cAM P)与 CAP 组成的复合物(cAM P-CAP)的结合位点。CAP 是指环腺苷酸 受体蛋白(cAM P acceptor protein)或分解 代谢物活化剂蛋白(catabolite activator protein)。只有到达启动基因的位点时, RNA 聚合酶才能结合到其在启动基因上的 相应位点上,转录才有可能开始,否则酶 就无法开始合成。
酶发酵生产菌种要求
产酶量高,具有生产应用价值 易培养,既能适应大生产粗放的营养和生产条
件,包括能利用廉价原料、对工艺条件要求不 苛刻 代谢速率高,发酵周期短 产酶稳定性好,菌种的生产性能不易退化,不 易感染噬菌体 安全可靠,要求菌种不是致病菌,其代谢物安 全无毒,在系统发育上与病原体无关 选用产胞外酶菌种,有利于酶的分离提取
微生物产酶菌株的获得
含菌样品采集 菌种分离纯化 菌种的初筛 菌种的复筛 最佳产酶条件初步确定 微生物产酶性能的进一步提高 微生物产酶菌种保存
酶发酵工艺条件及控制
培养基营养成分:碳源、氮源、无机盐、生长 因子、产酶促进剂等
发酵条件控制剂对产酶的影响:温度、pH值、 溶解氧
固定化微生物细胞发酵产酶的工艺及其控制
微生物种类多,且在不同环境下生存的微生物都 有其完全不同的代谢方式,能分解利用不同底物, 这为微生物酶种类的多样性提供了物质基础
微生物培养基来源广泛易得、价格便宜 微生物发酵产酶过程可以采用连续化、自动化控
制,生产效率高,经济效益好 可利用分子生物学技术选育菌种,提高酶产率 利用基因工程可使动植物细胞中存在的酶用微生
物细胞来生产获得
工业用部分主要酶的生产菌种
微生物类别
菌名
产生的酶
细菌
枯草杆菌 大肠杆菌
淀粉酶 蛋白酶 L-天冬氨酸酶
青霉素酰化酶
异型乳酸杆菌 短小芽孢杆菌
葡萄糖异构酶 碱性蛋白酶
酵母 霉菌
产气气杆菌
解脂假丝酵母
啤酒酵母、假丝 酵母 点青酶
异淀粉酶 脂肪酶 转化酶
葡萄糖氧化酶
放线菌
转化微白色放线 蛋白酶 菌
固定化微生物原生质体发酵产酶的工艺条 件及其控制应注意事项
培养基渗透压的控制 控制培养基组分,防止细胞壁再生 维持较高的原生质体浓度
提高酶产率的方法
酶生物合成的调控机制 打破酶合成调节机制及提高酶产量的方法
酶生物合成的调控机制
酶在细胞内的含量取决于酶的合成速度和分 解速度,细胞根据其自身活动需要,严格控 制细胞内各种酶的合理含量,从而对各种生 物化学过程进行调控
培养基成分
碳源:是构成菌体细胞的主要元素、构成酶骨 架的元素之一,也是菌体生命活动所需能量的 主要来源。应根据细胞对酶营养要求的不同而 选择合适碳源
氮源:是生物体合成各种含氮物质的组成成分, 是酶制剂生产的原料
无机盐:大量元素和微量元素 生长因子:氨基酸、维生素、嘌呤、嘧啶、激
素等。 产酶促进剂:诱导物和表面活性剂