生物化学中的化合物酶促合成

合集下载

生物化学中的酶促反应及其机理

生物化学中的酶促反应及其机理

生物化学中的酶促反应及其机理酶是生物体内的一种蛋白质分子,能够催化生物反应的进行。

酶促反应是指通过酶的催化作用,原本需要高能输入才能进行的生物化学反应能够以更加温和的条件进行,从而实现了生命体内代谢的高效与有序。

酶促反应的机理涉及很多生物化学核心概念,本文将介绍酶促反应的机理和相关基础知识。

一、酶促反应的特点酶促反应的最重要特点是它能够发生在生物体内较适宜的温度、压力和 pH 值等条件下。

由于酶可以催化反应,可以降低活化能,从而使生命活动的代谢过程能够更加高效、有序地进行。

酶同时能够作用于不同化学反应,包括加速酶合成,水解和氧化还原等反应。

二、酶的构造酶是由氨基酸组成的蛋白质,它们的结构特点体现在它们的三级结构之中。

酶的主要结构特征包括活性中心、酶亲和力和底物结合位点。

活性中心通常由一组蛋白质残基组成,具有比其他残基更高的空间限制性,能够与底物发生特定化学反应。

一旦酶和它的底物结合到一起,酶的活性中心会适应底物的结构,从而催化底物分子的转化。

酶的亲和力和底物结合位点则是酶与底物之间相互作用的关键。

三、酶促反应机理酶促反应的机理是通过活性中心的结构来决定催化过程的。

酶的活性中心是生长发育过程中制造出的,这就解释了为什么不同的酶可以催化不同的底物。

最初活性中心通常由非极性残基组成,然后再根据底物的化学属性添加一些不同的极性残基。

这样,酶的活性中心就能够与底物结合,并且促进化学反应的进行。

酶促反应的机理基于米氏方程(Michaelis-Menten equation),其中,酶底物复合物可以解离出重新组成底物和产物,同时酶和底物的结合速率以及底物的反应速率也受活性中心的结构和空间限制影响。

四、酶的分类酶的分类以它们的催化反应类型、化学机制和存活环境等为基础。

一些常见的酶包括:淀粉酶、腺苷酸环化酶、DNA聚合酶、RNA聚合酶和乳酸脱氢酶等。

五、酶的功能酶的作用是通过催化化学反应在生物体内发生。

酶通过加速酶合成、水解和氧化还原等反应来为生命体内的代谢提供能量和原料。

生物化学-生化知识点_酶促反应动力学 (9章)

生物化学-生化知识点_酶促反应动力学    (9章)

§2.8 酶促反应动力学(9章 P351)一一一底物浓度对酶反应速率的影响用反应初速度v对底物浓度[S]作图得P355 图9-6。

曲线分以下几段:一1一OA段:反应底物浓度较低时v与[S]成正比,表现为一级反应, v = k[S]。

根据酶底物中间络合物学说,酶催化反应时,首先和底物结合生成中间复合物ES,然后再生成产物P,并释放出E。

E + S = ES → P + EOA段上,底物浓度小,酶未被底物饱和,有剩余酶,反应速率取决于ES浓度,与[S]呈线性关系,v正比于[S]。

一2一AB段:反应速度不再按正比升高,表现为混合级反应。

此时酶渐渐为底物饱和,[E S]慢慢增加,v也慢慢增加,为分数级反应。

一3一BC段:反应速度趋于V max,为零级反应,酶促反应表现出饱和现象。

此时底物过量[S]>[E],[E]已全部转为[E S]而恒定,因此反应速率也恒定,为最大反应速率,V m为[E]所决定。

ax非催化反应无此饱和现象。

酶与底物形成中间复合物已得到实验证实。

一一一酶促反应力学方程式一1一米氏方程推导1913年Michaelis和Menten提出并推导出表示[S]与v之间定量关系的米氏方程V max[S]V =K m + [S]Km:米氏常数,物理意义为反应速率为最大速率V max一半时底物的浓度,单位与底物浓度同。

推导:酶促反应分两步进行。

k1 k3E + S ES → P + Ek2v = k3 [ES]一般k3为限速步骤 v = k3 [ES] … ①1.[ES] 生成速率:d[ES]/dt = k1([E] - [ES]) [S]2.[E S]分解速率:-d[ES] / dt = k2 [ES] + k3 [ES] = (k2 + k3) [ES]3.稳态下[ES]不变,ES生成速率和分解速率相等:k1 ([E]- [ES]) [S] = (k2+k3) [ES]4.引入K m:令K m = k2+k3 / k1代入K m = ([E]- [ES]) [S] / [ES] ,K m [ES] = [E] [S]- [S] [ES], [ES] (K m + S) = [E] [S],[ES] = [E] [S] / K m+[S],5.代入①式:v = k3 [ES] = k3 [E] [S] / K m + [S] … ②6.引入V max:为所有酶都被底物饱和时的反应速率,即此时[E]= [ES]V max = k3 [ES] = k3 [E]代入②式:v = V max [S] / K m + [S]米氏方程表示K m及V max已知时,v~[S]的定量关系。

生物化学(名词解释)

生物化学(名词解释)

2010级中西医临床班生物化学复习资料(名词解释)2010级中西医临床班生物化学复习资料(名词解释)肽键:连接两个氨基酸的酰胺键亚基:具有完整三级结构的蛋白质多肽链两性电解质:蛋白质分子除两端的氨基酸和羧基可解离外,氨基酸残基侧链中某些基团,在一定的溶液PH 条件下都可解离成带负电荷或正电荷的基团等电点:当蛋白质溶液处于蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电荷为0时的溶液PH值电泳:通过蛋白质在电场中泳动而达到分离各种蛋白质的技术辅基:(酶的辅因子或结合蛋白质的非蛋白部分)辅酶中与酶蛋白共价结合的辅酶氨基酸通式:蛋白质变性:在某些理化因素作用下,有序空间结构变成无序的空间结构,从而导致其理化性质改变和生物活性丧失蛋白质复性:若蛋白质变性程度较轻,去除变性因素后,有些蛋白质仍可恢复或部分恢复其原有的构想的功能(一旦凝固不能复性)模体:属于蛋白质的超二级结构,由2个或2个以上具有二级结构的的肽段,在空间上相互接近,形成一个特殊的空间构象,并发挥专一的功能。

一种类型的模体总有其特征性的氨基酸序列结构域:分子量较大的蛋白质常可折叠成多个结构较为紧密的区域,并各行其功能核苷酸:一类由嘌呤碱或嘧啶碱、核糖或脱氧核糖以及磷酸三种物质组成的化合物核苷:含氮碱与糖组分缩合成的糖苷碱基互补法则:在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,(A,腺嘌呤)一定与(T,胸腺嘧啶)配对,(G,鸟嘌呤)一定与(C,胞嘧啶)配对,的关系DNA的一级结构:核苷酸的排列顺序核酶:具有催化功能的RNA分子,是生物催化剂增色效应:在DNA解链过程中,由于暴露共轭双键不断增多使DNA样品在260nm波长处有特征吸收峰减色效应:DNA复性形成双螺旋结构后,其260nm紫外吸收会降低DNA熔点:在解链过程中,紫外吸收光度的变化ΔA260达到最大变化值的一半时所对应的温度基因:指DNA中特定区段,其核苷酸排列顺序决定了基因的功能基因组:指单倍体细胞中包括编码序列和非编码序列在内的全部DNA分子酶:一类由活细胞产生的,对其特异底物具有高效催化作用的蛋白质酶的绝对专一性:有的酶只能作用于特定结构的底物分子,进行一种专一的反应,生成一种特定结构的产物的性质单纯酶:仅由氨基酸残基构成的酶结合酶:由蛋白质部分(酶蛋白)和非蛋白部分(辅助因子)组成酶的活性中心:酶分子的必需基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能和底物特异的结合并将底物转化为产物的区域必需基团:一些与酶的活性密切相关的化学基团酶原:酶的无活性前体,在特异位点水解后,转变为具有活性的酶不可逆抑制:抑制剂与酶的必需基团或活性部位以共价键结合而引起酶活力丧失2010级中西医临床班生物化学复习资料(名词解释)竞争性抑制:抑制剂与底物竞争结合酶的活性中心反竞争性抑制:抑制剂仅与酶-底物复合物结合激活剂:使酶由无活性变为有活性或使酶活性增加的物质抑制剂:使酶催化活性下降而不引起酶蛋白变性的物质Km值:酶促反应速度为最大反应速度一半时的底物浓度同工酶:催化相同化学反应但酶蛋白分子结构、理化性质乃至免疫学性质不同的一组酶最适温度:酶促反应速率最快时反应体系的温度物质代谢:生物体与周围环境进行物质交换的过程糖酵解:在机体缺氧条件下,葡萄糖经一系列酶促反应生成乳酸的过程糖的有氧氧化:葡萄糖在有氧条件下彻底氧化成水和二氧化碳的过程三羧酸循环:以草酰乙酸与乙酰辅酶A结合形成 3个羧基的柠檬酸经过8步反应形成草酰乙酸同时伴随脱氢脱羧和底物水平磷酸化的过程糖原的合成:由葡萄糖合成糖原的过程糖原的分解:指肝糖原分解为葡萄糖的过程糖异生:非糖化合物转变为葡萄糖或糖原的过程血糖:血浆中的葡萄糖磷酸戊糖途径:由6-磷酸葡萄糖开始生成NADPH和5-磷酸核糖的过程乳酸循环:肌肉通过糖酵解生成乳酸,乳酸入血入肝异生为葡萄糖再被肌摄取丙酮酸羧化支路:由丙酮酸羧化酶和磷酸烯醇式丙酮酸羧激酶催化丙酮酸经草酰乙酸转变成磷酸烯醇式丙酮酸的过程血脂:血浆中脂类的总称。

《生物化学》——酶 (1)

《生物化学》——酶 (1)

《生物化学》——酶1. 同一生物体,同一组织细胞内催化功能、分子结构、理化性质不相同的酶为同工酶。

[单选题] *对错(正确答案)2. 酶和一般催化剂只能缩短化学反应达到平衡所需时间,而不能改变平衡点。

[单选题] *对(正确答案)错3. 不同的生物因代谢特征不同,有特异性不同的酶。

[单选题] *对(正确答案)错4. 酶的必需基团都位于活性中心。

[单选题] *对错(正确答案)5. 反应速度为最大速度的80%时,Km等于1/2[S] [单选题] *对错(正确答案)6. 温度从25~35℃增高10℃,达到活性能阈的底物分子数增加1~2倍。

[单选题] *对(正确答案)错7. 酶分子中能催化底物转变成产物的基团叫结合基团。

[单选题] *对错(正确答案)8. 体内酶是通过改变它所催化的反应平衡常数来调节反应速度的生物催化剂。

[单选题] *对错(正确答案)9. 丙二酸对琥珀酸脱氢酶的抑制作用,不能用透析或超滤的方法去除。

[单选题] *对错(正确答案)10. 非竞争性抑制作用时,抑制剂与酶结合则影响底物与酶的结合。

[单选题] *对错(正确答案)11. Vmax是酶完全被底物饱和时反应速度。

[单选题] *对(正确答案)错12. 磺胺药的抑菌作用机理是直接干扰人体核酸代谢。

[单选题] *对错(正确答案)13. 酶促反应动力学研究的是酶促反应速度及其影响因素。

[单选题] *对(正确答案)错14. 酶可以促成化学反应向正反应方向转移。

[单选题] *对错(正确答案)15. 酶只能改变化学反应的活化能而不能改变化学反应的平衡常数。

[单选题] *对(正确答案)错16. 酶活力的测定实际上就是酶的定量测定。

[单选题] *对(正确答案)错17. 从鼠脑分离的己糖激酶可以作用于葡萄糖(Km=6×10-6mol/L)或果糖(Km=2×10-3mol/L),则己糖激酶对果糖的亲和力更高。

生物化学 酶促反应动力学

生物化学 酶促反应动力学
得到 平行直线: 增加第2底物的浓度, Km和Vmax同步增 加(对于第1底物)
酶的抑制作用
A.不可逆抑制
✓ 抑制剂与酶以共价键结合 ✓ 不能用透析、超滤方法除去抑制剂 ✓ 酶的修饰抑制
B.可逆抑制
✓ 抑制剂与酶以非共价键结合 ✓ 能用透析、超滤方法除去抑制剂,而使酶的活性恢复 ✓ 三种类型
①竞争性抑制
- 可以测定每一种底物(A或B)的Km,通过饱和[B]而改变[A]测定A的 KAm,和饱和[A]而改变[B]测定B的KBm
- BiBi反应的2种类型:
i) 序列反应:在任何产物释放之前,两种底物必须先结合到酶上
有序反应: 按照一定顺序前后结合两种底物和按前后顺序释放两种产物 随机反应: 两种底物与酶的结合及两种产物与酶的分离没有固定顺序
✓抑制剂与底物相似,可以竞争性地与酶的活性中心结合 ✓增加底物的浓度可以解除抑制
②非竞争性抑制
✓抑制剂与底物不相似,抑制剂是与活性中心外结合位点结合 ✓可形成酶-抑制剂-底物三元复合物
③反竞争性抑制
✓酶与底物先结合,然后再与抑制剂结合
可逆抑制与不可逆抑制的区别
[I]↑ [I]↑
v0
v0
v0
0
[E]
阴离子(少数) ➢Cl-等
有机小分子(少数) ➢胆汁酸盐等
酶促反应的中间络合物学说
1. 酶(E)的结合基团结合底物(S)形成酶-底物复合物(E-S)
E+S E-S
2. 酶的催化基团催化底物(S)形成产物(P),E-S转变为E-P
E-S E-P
3. 酶的结合基团释放产物P,E-P形成E和P
E-P E + P
B.可逆抑制
✓ 抑制剂与酶以非共价键结合 ✓ 能用透析、超滤方法除去抑制剂,而使酶的活性恢复 ✓ 三种类型

生物化学---酶催化作用的特点

生物化学---酶催化作用的特点
➢ 结合部位(Binding site):酶分子中与底 物结合的部位或区域
一般称为结合部位。
医学ppt
30
医学ppt
31
➢ 催化部位(Catalytic site): 酶分子中促使底物发生化 学变化的部位称为催化部 位。
通常将酶的结合部位和催 化部位总称为酶的活性部 位或活性中心。
结合部位决定酶的专一性, 催化部位决定酶所催化反
物四氢叶酸。
H
H2N
N NH H
N
N
CH2 NH H
OH H
COOH
CH2
O
CH2
C NH CH COOH
四氢叶酸的主要作用是作为一碳基团,如-CH3, -CH2-, -CHO 等的载体,参与多种生物合成过程。
医学ppt
23
⑧ 维生素B12和B12辅酶 维生素B12又称为钴胺素。维生素B12分子中与
CHO
CH2NH2
HO
CH2 OH
H3C N
HO
CH2 OH
H3C N
维生素B6在体内经磷酸化作用转化为相应的磷酸脂,参 加代谢的主要的是磷酸吡哆醛和磷酸吡哆胺。磷酸吡哆 醛是氨基酸转氨作用、脱羧作用和消旋作用的辅酶。
HO H3C
CHO O
CH2 O P OH HO OH H3C
N
磷酸吡哆醛
医学ppt
14
② 维生素B2和黄素辅酶 维生素B2又称核黄素,由核糖醇和6,7-二甲基异咯嗪
两部分组成。
缺乏时组织呼吸减弱,代谢强度降低。主要症状为口腔 发炎,舌炎、角膜炎、皮炎等。
OHOHOH O
CH2CHCHCHCH2OPOH
NN
OH
CH3
CO

生物化学名词解释

生物化学名词解释

脂肪动员(fat mobilization): 储存在脂肪细胞中的脂肪,被脂肪酶逐步水解为游离脂酸(free fatty acid, FFA)及甘油并释放入血以供其他组织氧化利用的过程。

脂解激素:能直接激活甘油三酯脂肪酶,促进脂肪分解的激素,如胰高血糖素、肾上腺素、去甲肾上腺素等。

酮体的定义:脂肪酸在分解代谢过程中生的乙酰乙酸(acetoacetate)、β-羟丁酸(β-hydroxybutyrate)及丙酮(acetone),三者统称酮体(ketone bodies)。

血脂:血浆所含脂类统称血脂,包括:三酰甘油及少量二酰甘油及单酰甘油,胆固醇及其酯、磷脂以及游离脂酸。

载脂蛋白:载脂蛋白(apolipoprotein, apo) 指血浆脂蛋白中的蛋白质部分。

LDL受体:能特异识别与结合含ApoE或Apo B100的脂蛋白。

必需脂肪酸:人体自身不能合成,必须从食物中获得的脂肪酸。

脂肪酸的B-氧化:脂肪酸的氧化分解是从B-碳原子开始,两个两个碳原子依次进行水解。

这一过程称为脂肪酸的B-氧化氮平衡(nitrogen balance):每日氮的摄入量与排出量的对比关系。

蛋白质的腐败作用(putrefaction):肠道细菌对未被消化和吸收的蛋白质及其消化产物的分解与转化作用。

转氨基作用(transamination):在转氨酶(transaminase)的作用下,某一氨基酸去掉α-氨基生成相应的α-酮酸,而另一种α-酮酸得到此氨基生成相应的氨基酸的过程,即α-氨基酸和α-酮酸在转氨酶作用下实现氨、酮二基的互换过程。

氧化脱氨基作用:氨基酸先经脱氢作用生成不稳定的亚氨基酸,然后水解产生a-酮酸和氨。

联合脱氨基作用:转氨和脱氨相偶联而脱掉氨基的作用称为联合脱氨基作用。

鸟氨酸循环:肝中合成尿素的代谢通路。

由氨及二氧化碳与鸟氨酸缩合形成瓜氨酸、精氨酸,再由精氨酸分解释出尿素。

此过程中鸟氨酸起了催化尿素产生的作用S-腺苷甲硫氨酸(SAM):它是甲硫氨酸的活性形式,在动植物体内广泛存在,它是由底物L-甲硫氨酸和ATP经S-腺苷甲硫氨酸合成酶酶促合成的高血氨症( hyperammonemia):血氨浓度升高,常见于肝功能严重损伤时。

酶的名词解释生物化学方程式

酶的名词解释生物化学方程式

酶的名词解释生物化学方程式酶的名词解释和生物化学方程式酶是生物体内一类具有催化作用的蛋白质,能够加速生物化学反应的进行,而不影响反应的平衡点。

酶在维持生命活动中起着至关重要的作用。

本文将介绍酶的定义和功能,并探讨酶催化反应的机制。

一、酶的定义酶是一类具有高度专一性的生物催化剂,它能够在细胞内或体外低于常温下加速化学反应的进行。

酶分子通常由一条或多条多肽链组成,并具有特定的三维结构。

酶与底物结合形成酶底物复合物,通过调整底物分子的构型,降低反应所需的活化能,从而促使反应发生。

酶的活性受到温度、pH值、底物浓度和酶浓度等环境因素的影响。

二、酶的功能酶在生物体内起着非常重要的功能,包括代谢调节、物质转运、信号转导等。

酶可以分解复杂的有机物质,提供生物体所需的能量和营养物质。

例如,消化酶能够分解食物中的大分子物质,使其转化为可供细胞吸收和利用的小分子物质。

另外,酶还能够合成生物体内所需的物质,如DNA聚合酶可以将DNA的单链合成成双链,促使DNA复制。

三、酶催化反应的机制酶催化反应的机制可以通过生物化学方程式来表示。

生物化学方程式是描述酶催化反应过程的化学方程式。

以下以酶催化水解蔗糖为例进行具体说明。

蔗糖 + 水 -> 葡萄糖 + 蔗糖酶在这个反应中,蔗糖酶是酶的名称,将蔗糖分解为葡萄糖和蔗糖酶。

酶与蔗糖结合形成酶底物复合物,随后酶通过特定的活性位点将底物转化为产物,最后酶与产物解离,重新进入催化循环。

酶催化反应的机制分为两个基本步骤:底物结合和催化步骤。

底物结合是指酶与底物之间的识别和结合过程,酶通过与底物之间的氢键、离子键或范德华力进行相互作用,形成酶底物复合物。

催化步骤是指酶促使底物转化为产物的过程,酶通过调整底物分子的构型,降低反应所需的活化能,从而促使反应发生。

四、酶的特点和应用酶具有高效、专一和可逆等特点。

由于酶具有高度专一性,使其在医药、食品、生物工程等领域具有广泛的应用。

例如,酶在医药领域用于制药工艺中的底物转化,如蛋白质重组技术中的酶切剂,可以切割目标蛋白质中的特定位点,得到所需的产物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物化学中的化合物酶促合成在生物界中,化学反应是生命活动的一个基本环节。

而酶促合成则是一项很重要的生化反应,它参与了各种物质的合成过程。

本文将介绍生物化学中的一些常见化合物酶促合成的反应。

1. 蛋白质酶促合成
蛋白质是生命活动中最重要的基本物质之一。

其合成过程是由核糖体在mRNA指导下进行的。

而酶促合成在此过程中则发挥了极其重要的作用。

其中最著名的是在转录过程中发挥作用的RNA 聚合酶。

在此反应中,酶能够自动判断并将需要合成的RNA链按照mRNA指导下的序列进行生产。

这个反应的成功,极大程度上也决定了蛋白质翻译成的质量和数量。

2. 核苷酸酶促合成
核苷酸是构成核酸的最基本单位。

它们的合成涉及多个化学反应。

其中一些反应中需要酶的催化作用。

例如,核苷酸嘌呤环的合成需要由催化酶含O-腺嘌呤酸转移酶(AMTase)和O-磷酸甘氨酰胺酰酶(GATase)进行催化合成。

3. 糖类酶促合成
糖类是人体最基本的营养物质之一,也是构成细胞壁和其他生物物质的基础元素。

通过酶的催化作用,人体可以合成多种不同类型的糖类。

其中最常见的是由葡萄糖合成的糖原和葡萄糖骨架的生产。

还有,构成葡萄糖需要的辅酶叶酸,也是在此反应中进行产生的。

4. 脂质酶促合成
脂类作为人体的储备能量物质,其在酶促合成过程中也发挥了很大的作用。

通过酶的作用,人体可以在血浆和器官组织中合成多种不同类型的脂肪酸和甘油三酯。

另外,酶的作用也是人体中合成磷脂的重要环节之一。

5. 氨基酸酶促合成
氨基酸是构成蛋白质的基础,也是构成其他重要物质的酸碱催化物质。

人体必须依靠酶的作用才能进行氨基酸的生产。

其中最
关键的氨基酸光氨酸是由恶臭氧化酶催化生产的,而其他氨基酸也是通过不同的酶进行催化合成的。

总之,酶促合成是生物化学中一个非常重要的反应机制。

它不仅支撑了生命活动的持续进行,也为我们研究细胞和生物进行营养和代谢调节提供了新的线索。

我们希望,这些反应和机制能够为广大生物学爱好者和研究者提供更多参考。

相关文档
最新文档