结构力学——力矩分配法分解
结构力学 力矩分配法

1.由转动刚度计算分配系数: μ
S
A
SAj
2.固端弯矩和不平衡力矩 R 计算:R
g M A
3.计算分配弯矩和传递弯矩: ' M 'jA CAj M 'Aj M Aj μ Aj ( R )
分配弯矩下划横线表示已平衡,箭头表示传递方向。
4.叠加求和,计算杆端弯矩: 5.校核。(结点平衡)
A
D
M A θA
B
则分配弯矩为:
M AB μAB M M AC μAC M M AD μAD M
C
(a )
分配系数的特点: 汇交于同一结点的各杆的分配系数之和等于 1。
训 练
10.图示结构,各杆线刚度均为I,用力矩分配法计 算时,分配系数μAB为( B )
1 A. 10
C.
1 4
1 B. 8 3 D. 8
应用条件:连续梁、无结点线位移的刚架 三概念:转动刚度、分配系数、传递系数 符号规定: 与位移法一致 单结点力矩分配法基本原理:
加刚臂,固定结点——去刚臂,放松结点——叠加
力矩分配法的步骤:
1.固定结点,计算分配系数 2.计算固端弯距,不平衡力矩 3.放松结点,计算分配弯矩、传递弯矩 4.叠加,求杆端弯矩,绘内力图
171.4
力矩分配法是直接计算 A 各杆的杆端弯矩。
解:
分配系数 μ
1 2 ql 200 8 100 kN/m 57.13 B EI 854 .73 m
C
EI 4m
固端弯矩M g 133.3
4 3 7 7 133.3 0
M图 ( kN m )
0 0 0
B结点一次 分配传递 38.09 76.17 57.13 M 总或 M 171.4 57.13 57.13
结构力学-力矩分配法

•
3、转动刚度S:
• 表示杆端对转动的抵抗能力。 在数值上= 仅使杆端发生单位转动时需在杆端施加 的力矩。AB 杆A 端的转动刚度SAB与AB 杆的线刚度 i(材料的性质、横截面 的形 状和尺寸、杆长)及远端支承有关,而 与近端支承无关。当远端是不同支承时, 等截面杆的转动刚度如下:
转动刚度
在确定杆端转动刚度时:近端看位移(是否为单位位移)
远端看支承(远端支承不同,转动刚度不同)。
下列那种情况的杆端弯矩MAB=SAB
MAB
MAB
θ MAB
1
√ ① ②
1
MAB
1
③④
1
Δ
转动刚度SAB=4i是( )
A
i
B
A
i
√ √ B ①
③
A
i
B
④
A
i
4i>SAB>3i
√B ②
A
i⑤ B
i
返回
二、基本运算
AA1155kkNN↓↓↓↓44↓↓i00↓↓=kk↓↓1NN↓↓↓↓//mm↓↓↓↓ DD
MA 10
80
mAB
M=15 i=2
mAD mAC CC
MM图图((kkNN..mm))
22mm
22mm
44mm
A
C
D
AD
AC
CA
DA
3/9
2/9
- 80
15
10
-10 返回
- 65
10
- 10
三、多结点力矩分配法
⑶为了取消结点C的刚臂,放松结点C,在结点C加上 (-(MC+ M传)),如图d,为了使BCD部分只有一个角位 移,结点B再锁住,按基本运算进行力矩分配和传递。结 点C处于暂时的平衡。
结构力学下多结点力矩分配法

结构力学下多结点力矩分配法引言在结构力学中,力矩分配法是一种常见的分析方法,用于计算多结点约束下的力矩分配。
多结点力矩分配法通过将外加载荷分配给结构中的各个节点,以确定每个节点承载的力矩。
本文将介绍结构力学下的多结点力矩分配法的基本原理和计算方法。
原理多结点力矩分配法的原理基于以下假设:1.结构是一个刚体,可以忽略其变形。
2.结构中的每个节点都可以承受力矩,且力矩的分配是均匀的。
基于这些假设,我们可以将外加载荷分配给结构中的各个节点,并计算每个节点承载的力矩。
力矩的分配是根据节点间的刚性关系来确定的。
计算方法多结点力矩分配法可以通过以下步骤进行计算:1.确定结构的节点个数和节点编号。
2.根据结构的几何形状和边界条件,建立节点间的刚性关系。
3.将外加载荷均匀地分配给每个节点。
可以根据结构的几何形状和边界条件,考虑节点之间的距离和角度来确定各个节点的分配比例。
4.根据节点间的刚性关系,计算每个节点承载的力矩。
可以使用刚体平衡条件来计算力矩的分配。
5.检查计算结果的合理性。
根据结构的几何形状和边界条件,验证计算得到的力矩分配是否符合工程实际。
示例下面以一个简单的桁架结构为例,介绍多结点力矩分配法的计算方法。
假设桁架结构的节点个数为4,节点编号分别为1, 2, 3和4。
外加载荷为M,沿结构的纵向均匀分布。
根据桁架结构的几何形状和边界条件,建立节点间的刚性关系。
假设节点1和节点2之间的刚性系数为k1,节点2和节点3之间的刚性系数为k2,节点3和节点4之间的刚性系数为k3。
将外加载荷均匀地分配给每个节点。
假设节点1承载的力矩为M1,节点2承载的力矩为M2,节点3承载的力矩为M3,节点4承载的力矩为M4,可以得到以下关系:M1 + M2 + M3 + M4 = M根据节点间的刚性关系,可以得到以下关系:k1 * (M2 - M1) = 0k2 * (M3 - M2) = 0k3 * (M4 - M3) = 0通过这些关系,我们可以求解出每个节点承载的力矩。
结构力学——力矩分配法分解

3 . 一般最终的杆端力矩与固端力矩是同量级的,要求精确 到三位有效数字,计算中取4位计算,以保证前三位的 精确度
第三节 多结点力矩分配法
计算的指导思想由两个步骤说明:
固定状态的计算(与单点固定一样)。
即刚臂→荷载→固端力矩→约束力矩;
100k0N
EI
1 EI
2 EI
0.43 0.57 0.57 0.43
-500 -1000
M3B=1000
例题:有支座移动(已知结点线位移)E=200GPa,I = 2500cm4
绘制弯矩图。
A
B
C
D
EI
EI
=1cm
10m
10m
10m
0.429 0.571
0.571 0.429
MF
3000
3000 -1500
2 . 不相邻 点可同时 释放.
例题:用力矩分配法求图示结构弯矩图(利用传递系数的概念) 。
A
EI
10m
1 EI
10m
100k0N 2 EI 3 B 3B是悬臂梁,
转动结点3 时,
10m 1m 悬臂可自由转
0.43 0.57 0.5 0.5 1 0
动,固其转动
MF
1000 刚度为零
或A
MF
100k0N
放松状态的计算(与单点放松不同)。
力矩的分配和传递是在远端约束已知的情况下进行的, 因此,分配单元的相邻结点不应同时放松。每次只能 放松一个结点,同时相邻结点保持固定,所以,整个 放松过程是轮流放松每一个结点来逐步完成的。
第三节 多结点力矩分配法
结构力学(I)力矩分配法

M1B M1FB
M1C M1FC
S1 B ( R ) M1FB 1B ( R1P ) S 1P
1
1
S1C ( R ) M 1FC 1C ( R1P ) S 1P
1
力矩分配法采用了与位移法相同的基本结 构,即固定刚结点,在固定状态下刚臂上产生 约束力矩,为恢复到原状态,将刚臂放松(加 反方向约束力矩),求出放松状态产生的杆端 力矩,将固定状态与放松状态的杆端力矩叠加 即得结构的实际杆端力矩.
一. 基本概念
远端支撑 固定 铰支 滑动 转动刚度S 4i 3i i 传递系数C 1/2 0 -1
1
1
1
可避免解联立方程 不需要求出角位移 计算程式简单机械
哈工大 土木工程学院
4i
1 / 31
2i
3i
哈工大 土木工程学院
i
2 / 31
讨论 1 点在M作用下各杆端的弯矩 1M m1 0
列表法
练习:用力矩分配法求图示结构弯矩图
B
EI
A
EI
C
40 kN
10m
10m
q 10 kN/m
M F 100
分 配 传 递
0.571 0.429 100 0 57.1 42.9 42.9 42 .9
0 0
A
4m
EI
BБайду номын сангаас
4m
EI
C
6m
28.6
M 128.6
128 .6
0
42.9
M
哈工大 土木工程学院
ql 2 /12
A
F F M BC M CB 0
工程力学-结构力学课件-8力矩分配法

40kN .m
求不平衡力矩
40kN.m
A EI
6m
C B EI
4m
MBu
20kN / m
40kN .m
60
60
M
u B
60
40
100kN .m
A
60 B
C
40
8 /17 9 /17
M F 60
60
分 配
23.5
传
递
47 53
M 83.5 13 53
§8-2多结点的力矩分配A q 12kN / m
对于同层柱等高,剪力分配系数可简化为按各柱的线刚度进行
分配,即
i
ii ii
顶层:
1
i1 ii
1 3
2
3
底层:
5
i5
2
0.4
ii 1.5 2 1.5
4
i4 ii
1.5 1.5 2 1.5
0.3
6
(2)计算各柱剪力
第8章 渐近法及其他算法简介
§8-1 力矩分配法的基本概念
力法、位移法:精确,求解方程。 力矩分配法是基于位移法,逐步逼近精确解 的近似方法。 单独使用时只能用于无侧移(无线位移)的 结构。
1.名词解释
B
q 1
C
M1B 3i ql2 / 8
M1A 4i ql 2 / 4
M1C i
1.8 3.5 2.6
… … ...
M1FA ql 2 / 8 150
M1F2 ql 2 / 12 100
S21 4i
S2B 3i
结构力学——力矩分配法分解课件

THANK YOU
复杂结构的力矩分配法分析
总结词
需要对复杂结构进行精细的力矩分配
详细描述
对于复杂结构,如桥梁、高层建筑等,力矩分配法需要更加精细的分析。这需要对结构的各种参数进 行详细的计算和调整,包括转动刚度、分配系数、传递系数等。通过合理的简化模型和精细的计算, 可以获得结构的整体性能和局部细节,满足工程设计的需要。
应用范围
适用于具有刚性转动 部分的连续梁和框架
适用于具有弹性支撑 的连续梁和框架
适用于具有弹性转动 部分的连续梁和框架
适用条件
结构体系为连续梁或框架 结构具有刚性转动部分,且转动部分在分配力矩后不会出现弹性变形
结构具有弹性支撑,且弹性支撑在分配力矩后不会出现弹性变形
计算复杂度与精度要求
力矩分配法的计算复杂度取决于梁和框 架的自由度数量,自由度越多,计算越
。
误差传递
由于传递系数和分配系数的近似 计算,可能会引入一定的误差,
影响分析结果的准确性。
计算复杂度
对于大型复杂结构,力矩分配法 的计算量可能会变得很大,需要
借助计算机辅助分析。
改进与发展方向
01
02
03
04
数值优化
通过改进算法和优化计算方法 ,提高力矩分配法的计算效率
和精度。
考虑非线性因素
将非线性因素纳入力矩分配法 中,以适应更广泛的结构类型
在力矩分配法中,将结构中的结点分为两类:基本结点和附属结点。基本结点是承 受力矩的结点,附属结点则是传递力矩的结点。
力矩分配法的原理是将所有结点的力矩自由度进行分配,通过调整传递系数来使各 结点的力矩平衡,从而求解出各个结点的位移。
刚度系数与传递系数
刚度系数是指单位力矩作用下结 点的位移,它反映了结点的刚度
第九章 力矩分配法3-2

9.4 无剪力分配法
一、两个概念
1、有侧移杆与无侧移杆
杆件两端没有垂直于杆轴的相对线位移,称无侧移杆
杆件两端在垂直杆轴的方向上有相对线位移,称有侧移杆
2、剪力静定杆 杆件内的各截面剪力可以 由静力平衡条件唯一确定 的杆称为剪力静定杆
B
A C
A
图(A)
二、无剪力分配法
1、刚架特点:竖杆为剪力静定杆,节点A水平移动时,竖杆除 受本身的弹性约束外无其他杆件或支座的约束。 位移法解题:一般A处加刚臂,C点加支杆,基本结构如右下图 力矩分配法:通常只适用于计算仅以节点角位移为基本未知量
B
SBA
SBC 1
B C
i2
1
i2
0.2 0.8
3i1
-2.67 -3.75 1.28 5.14
-1.39 1.39 -5.33
i2 A
CBA 1
1.39
1.39 5.70
-1.28 -6.61
S BA i2 3 S BC 3i1 12 3 BA 3 12 0.2 12 0.8 BC 3 12
A
图(C)
B
A
A
图(D)
B
A
加刚臂阻止转动 放松节点使产生真实转角 A
A
C
A
C
SAC= 3iAC
SAB= iAB
A
B
A
(节点A处产生 不平衡力矩) B
(A处不平衡力矩 反号后待分配) MAB A
B 右1图因节点A,C 同时 水平移动,AC 杆作 刚体平 移不引起内力
SAB=iAB A 右2图A处实际转角时, 水平杆在A端有转动 Q=0 CAB=-1 刚度,AB杆受弯 B -MAB (参与A节点不平衡 力矩的分配)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、力矩分配法的三要素 (用力矩分配法计算连续梁和无侧移刚架,需要先 解决三个问题:)
1、力矩分配法:主要用于连续梁和无结点线位移(侧移) 刚架的计算,其特点是不需要建立和求解联立方程组, 而在其计算简图上直接进行计算或列表计算,就能直接 求得个杆端弯矩。
理论基础:位移法 力矩分配法 计算对象:杆端弯矩
计算方法:逐次逼近的方法 使用范围:连续梁和无结点线位移的刚架
2、力矩分配法的正负号规定
SAB =4i 1
SAB =3i 1
A
EI
B
A
B
l
SAB = i
1 A
SAB =0 1
B
A
B
远端固定,SAB = 4i;远端铰支,SAB = 3i 远端滑动,SAB = i;远端自由,SAB = 0
说明:在SAB中,A端是施力端,也称为近端,B端称为远端
杆端转动刚度不仅与杆件的线刚度i有关,而且与远端 的支承情况有关。
第七章 渐近法——力矩分配法
学习内容
转动刚度、分配系数、传递系数的概念及确定。 力矩分配法的概念,用力矩分配法计算连续梁和 无侧移刚架。 无剪力分配法的概念及计算。 超静定结构影响线及超静定结构的内力包络图。 利用对称性简化力矩分配法计算。
学习目的和要求
目的:力矩分配法是计算连续梁和无侧移刚架的一种实 用计算方法。它不需要建立和求解基本方程,直接得到杆 端弯矩。运算简单,方法机械,便于掌握。
(2)弯矩分配系数μ和弯矩分配
r 11
4i AB 3iAC
iAD
R1P M
1
R1P r
11
M 4i AB3iAC
iAD
M SAB SAC
SAD
M S
( A)
r 11
1
R1P
0
M AB
4i AB 1
S AB M S
( A)
M AC
3iAC 1
S AC M S
( A)
M
AD
i AD 1
杆端 B1 A1 1A 1B 1C C1
1/2 3/8 1/8
MF
要求:熟练掌握力矩分配法的基本概念与连续梁和无侧 移刚架的计算。掌握无剪力分配法的计算,了解用力矩分 配法计算有侧移刚架。
第一节 力矩分配法的基本概念
一、引言
对于超静定结构的内力计算,我们前面学习了两种基本的 方法—力法和位移法,二者的共同特点是都要建立和求解联立 方程组,当未知量太多时,计算量也相应的增大,同时,在求 得未知量后,还需要利用杆端弯矩的叠加公式求得杆端弯矩, 整个计算求解过程较繁琐。
C
10m
ql 2/12
ql2/12 RBP 100 kN m
q 12kN/m
RBP
A
B
C
RB' P RBP
A
B
C
最终状态:
q 12kN / m
杆端弯矩=固端
A EI
B EI
C
弯矩+分配弯矩
10m
10m
+传递力矩
M AB 100 28.6 128.6
ql 2/12
ql2/12 RBP 100 kN m
为了寻求计算超静定刚架更简捷的途径,自20世纪30年代 以来,又陆续出现了各种渐近法,如力矩分配法、无剪力分配 法、迭代法等。而这些方法的理论基础都是位移法,共同特点 是避免了组成和解算典型方程,而以逐次渐近的方法来计算杆 端弯矩,其结果的精度随计算轮次的增加而提高,最后收敛于 精确值。
二、力矩分配法的概念
q 12kN / m
RBP
M BA 100 57.1 42.9 A
B
C
M BC 0 42.9 42.9 M CB 0
A
RB' P RBP
B
C
通常采用列 表方式计算
q 12kN / m
A EI
10m
B EI
C
10m
0.571 0.429
M F 100 100 0
0
分 配
28.6
近端弯矩=分配系数×结点弯矩 远端弯矩=近端弯矩×传递系数
(3)弯矩传递系数和弯矩传递
传递系数C:表示当杆端发生转角时,杆件远端弯矩 与近端弯矩的比值。 当杆件的某一端发生转角时,在该端产生的弯矩称为 近端弯矩,另一端产生的弯矩称为远端弯矩。
远端弯矩与近端弯矩的比值称为弯矩传递系数。
CAj
M jA M Aj
S AD M S
( A)
可以看出,刚结点A在外力偶荷载作用下,结点A上各杆在A
端的弯矩与各杆的转动刚度成正比,由此我们进入分配系
数
Aj
SM Aj S
(
j
B、C、D)
( A)
定义:结点处,某杆的转动刚度与汇交于该结点的所有杆
件的转动刚度之和的比值。
ቤተ መጻሕፍቲ ባይዱ
特性:相交于的所有杆件的分配系数之和为1
弯矩分配:
待分配力矩
C
Z1 MA'
D
A
Z1
Z1
MBA 2iABA
M CA 0
M DA iAD Z1
B
M BA M AB
CAB
1 2
M CA M AC
C AC
0
M DA M AD
CAD
1
MA' A
1
MAC
MAD
远端固定 C Aj 2 远端滑动 CAj 1 远端铰M支AB CAj 0
在等截面杆件中,弯矩传递系数C随远端的支承情况 而不同。三种基本等截面直杆的传递系数如下:
57.1 42.9
0
传
递
M 128.6 42.9 42.9
0
128.6
42.9
M
练习:用力矩分配法求图示结构弯矩图。
40 kN
q 10 kN/m
A EI
4m
MF
分 配 传 递
M
B
4m
EI C
6m
例题:用力矩分配法求图示结构弯矩图(EI=常数) 。
q
结点 B A
1
C
B
1
C
2ql
l
Al
l/2 l/2
例题:用力矩分配法求图示结构弯矩图。
固定状态:
M
F AB
1 12
ql 2
100
kN m
M
F BA
100
kN m
M
F BC
M
F CB
0
放松状态:
不平衡力矩变号,再乘以 分配系数即为分配弯矩
M
BA
BA (RBP )
57.1
M
BC
BC (RBP )
42.9
q 12kN/m
A EI
10m
B EI
(1)计算单跨超静定梁的固端弯矩 固端弯矩:常用的三种基本结构的单跨超静定梁,
在支座移动和几种常见的荷载作用下的杆端弯矩,可用力 法计算或在计算表中查得。
(2)计算结点各杆端的弯矩分配系数μ
(3)计算杆件由近端向远端传递的弯矩传递系数C
4、相关参数的概念
(1)转动刚度S:表示杆端对转动的抵抗能力,在 数值上等于杆端产生单位转角时所需要施加的力矩。