电力电子技术实验大纲
电力电子技术实验大纲

电力电子技术实验大纲一、要紧内容1.实现操纵触发脉冲与晶闸管同步;2.观测单相半控桥在纯阻性负载时u d,u VT波形,测量最大移相范畴及输入-输出特性;3.单相半控桥在阻-感性负载时,测量最大移相范畴,观看失控现象并讨论解决方案;二、方法和要领1.实现同步:◆从三相交流电源进端取线电压Uuw〔约230v〕到降压变压器〔MCL-35〕,输出单相电压〔约124v〕作为整流输入电压u2;◆在〔MCL-33〕两组基于三相全控整流桥的晶闸管阵列〔共12只〕中,选定两只晶闸管,与整流二极管阵列〔共6只〕中的两只二极管组成共阴极方式的半控整流桥,保证操纵同步,并外接纯阻性负载。
摸索:接通电源和操纵信号后,如何判定移相操纵是否同步?2.半控桥纯阻性负载实验:◆连续改变操纵角α,测量并记录电路实际的最大移相范畴,用数码相机记录α最小、最大和90o时的输出电压u d波形〔注意:负载电阻不宜过小,确保当输出电压较大时,Id 不超过0.6A〕;摸索:如何利用示波器测定移相操纵角的大小?◆在最大移相范畴内,调剂不同的操纵量,测量操纵角α、输入交流电压u2、操纵信号u ct和整流输出Ud的大小,要求不低于8组数据。
3.半控桥阻-感性负载〔串联L=200mH〕实验:◆断开总电源,将负载电感串入负载回路;◆连续改变操纵角α,记录α最小、最大和90o时的输出电压u d波形,观看其特点〔Id 不超过0.6A〕;◆固定操纵角α在较大值,调剂负载电阻由最大逐步减小〔分别达到电流断续、临界连续和连续0.5A值下测量。
注意Id ≤0.6A〕,并记录电流Id波形,观看负载阻抗角的变化对电流Id的滤波成效;摸索:如何在负载回路猎取负载电流的波形?◆调整操纵角α或负载电阻,使Id≈0.6A,突然断掉两路晶闸管的脉冲信号〔模拟将操纵角α快速推到180o〕,制造失控现象,记录失控前后的u d波形,并摸索如何判定哪一只晶闸管失控;三、实验报告要求1.实验差不多内容〔实验项目名称、条件及实验完成目标〕2.实验条件描述〔要紧设备仪器的名称、型号、规格等;小组人员分工:要紧操作人、辅助操作人、数据记录人和报告完成人〕3.实验过程描述〔含每个步骤的实验方法、电路原理图、使用仪器名称型号、使用量程等〕;4.实验数据处理〔含原始数据记录单、运算结果及工程特性曲线,〕;5.实验综合评估〔对实验方案、结果进行可信度分析,提出可能的优化改进方案〕;6.摸索:◆阐述选择实验面板晶闸管序号构成半控桥的依据。
电力电子技术课程大纲

电力电子技术课程大纲一、课程简介电力电子技术是现代能源领域的重要分支,本课程旨在介绍电力电子技术的基本原理、应用场景和发展趋势,培养学生的电力电子设计和应用能力。
二、课程目标1. 了解电力电子技术的基本概念和原理;2. 熟悉电力电子器件的特性和使用方法;3. 掌握电力电子系统的设计和优化方法;4. 学会应用电力电子技术解决实际问题。
三、教学内容1. 电力电子器件1.1 二极管、晶闸管、可控硅等基本器件的原理和特性;1.2 MOSFET、IGBT等新型器件的原理和应用;1.3 调制技术在电力电子器件中的应用。
2. 电力电子转换器2.1 单相和三相整流电路的原理和控制方法;2.2 逆变电路的原理和应用;2.3 DC/DC变换器和DC/AC变换器的设计和调试。
3. 电力电子系统3.1 交流调速系统的原理和设计;3.2 UPS电源系统的结构和工作原理;3.3 电动汽车充电桩的设计与实现。
4. 典型应用案例4.1 可再生能源并网发电系统;4.2 交通运输电力电子系统;4.3 工业电力电子系统。
五、教学方法1. 理论讲授:通过课堂讲解,系统阐述电力电子技术的基本理论和原理;2. 实验操作:通过实验室实践,让学生熟悉电力电子器件的使用和系统的设计;3. 课程设计:通过综合实践项目,培养学生的应用能力和创新能力;4. 论文撰写:鼓励学生进行课程相关的研究,并撰写学术论文。
六、教材及参考资料1. 主教材:《电力电子技术导论》,作者:XXX;2. 参考资料:- 《现代电力电子技术》,作者:XXX;- 《电力电子技术应用与实践》,作者:XXX;- 《电力电子器件及其应用》,作者:XXX。
七、考核方式1. 平时成绩:包括出勤率、课堂表现和实验报告等;2. 期中考试:笔试形式,考察学生的理论基础和应用能力;3. 期末考试:笔试形式,综合考察学生的知识掌握程度和综合应用能力;4. 实践项目:要求学生完成一个与电力电子技术相关的实践项目,并撰写实践报告。
《电力电子技术》实践教学计划及教学大纲

《电力电子技术》实践教学计划及教学大纲预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制前言本课程是自动化专业、电气工程及其自动化专业的一门专业基础课,是学生学习专业课和从事本专业的科研、生产工作必备的理论基础。
通过本课程的学习,使学生掌握电能变换的基本概念和基本方法,能正确、熟练地进行常用变流电路的设计与计算,了解电力电子学理论的最新发展动态。
本课程的实践性教学是学习电力电子技术课程的一个重要组成部分。
在实验中应侧重掌握实验方法和运用所学的理论知识来分析研究实验中所出现的各种问题,得出相应的结论,从而达到培养学生具有分析问题和解决问题的初步能力。
通过实验这个重要的实践环节来验证所学的理论,使学生掌握实验的基本技能和方法,培养学生严肃认真和实事求是的科学作风。
通过该课程的实验,应使学生达到以下目标:1、熟悉电力电子器件的类型和特性,并掌握合理选用的原则。
2、根据题目的设计要求及实验室提供的实验设备,设计并制作出实际电路,并要求调试、测量合格。
3、培养学生独立分析问题和解决工程实际问题的能力,着重锻炼动手能力。
《电力电子技术》实践教学计划及教学大纲《×××××》专业实践教学计划《电力电子技术》单元教学计划一、培训目标本课程的教学与学习要重点掌握各种电力电子器件的工作原理和特性,掌握用电力半导体进行电压、电流、频率、波形和相数等的变换方法及变换电路。
能设计可控整流等的主电路及触发电路。
了解基本变流装置的试验调试方法。
通过实训使学生了解、掌握正确连接电路、熟悉电子仪器的正确使用方法、学会电力电子电路的安装与调试技能、撰写实训报告。
(一)《电力电子技术》理论课本课程是自动化专业、电气工程及其自动化专业的一门专业基础课,通过本课程的学习,要求掌握晶闸管的工作原理、特性及主要参数,能正确选用晶闸管。
了解其它电力电子器件的基本特性。
《电力电子技术》课程实验教学大纲

《电力电子技术》课程实验教学大纲课程名称:电力电子技术(Power Electronics)课程编号:021531课程性质:非独立设课课程属性:专业(技术)基础课实验教材或指导书名称:电力电子技术实验指导书(自定)课程总学时:45 学分: 3 实验学时:9面向专业:自动化(A)实验室名称:电气工程与控制实验教学中心一、课程简介:电力电子技术是一门利用电力电子器件对电能进行变换与控制的技术学科。
它包括对电压、电流、频率和相位的波形分析以及电能变换与控制方法。
主要内容包括:各种电力电子器件的特性分析及应用、整流电路原理及应用、直流斩波电路原理及应用、交流电力控制电路和交交变频电路原理及应用;逆变电路以及组合变流电路原理及应用、PWM控制技术和软开关技术等。
二、课程实验目的与要求:1. 通过实验掌握进行《电力电子技术》实验的有关知识和实验技能。
2. 通过实验让学生从“虚”到“实”,使书本知识通过实验课得到验证,从而提高学生的学习兴趣,培养学生的动手能力。
3. 加深对《电力电子技术》课程的认识和掌握,培养学生的创新意识。
三、考试(考核)方式:实验过程中考核和实验报告成绩综合评分。
四、主要仪器设备及台(套)数:1.DJK-1型实验装置共7套:DJK01电源控制屏;DJK02晶闸管主电路控件;DTK02-1三相晶闸管触发电路挂件;DJK03晶闸管触发电路挂件;DJK05直流斩波电路,DJK10变压器实验挂件。
2.MCL-Ⅱ型实验装置共6套:MCL-Ⅱ主控屏;MCL-20组件;MCL-05组件;MEL-02组件;MCL-03组件。
3.数字示波器。
五、主要参考书目:[1] 王兆安黄俊. 电力电子技术. 北京:机械工业出版社,第4版[2] 陈坚. 电力电子学——电力电子变换和控制技术. 北京:高等教育出版社,第1版[3] 林辉.王辉. 电力电子技术. 武汉:武汉理工大学出版社第1版大纲编写人:林忠岳大纲审核人:卢子广大纲批准人:何小阳日期:2004 年11 月20 日更多相关内容: 希望你过的开心,快乐,谢谢。
电力电子技术实验指导书最新版

电力电子技术实验指导书第一章概述一、电力电子技术实验内容与基本实验方法电力电子技术是20世纪后半叶诞生和发展的一门新技术,广泛应用于工业领域、交通运输、电力系统、通讯系统、计算机系统、能源系统及家电、科研领域。
电力电子技术课程既是一门技术基础课程,也是一门实用性很强的应用型课程,因此实验在教学中占有十分重要的位置。
电力电子技术实验课的主要内容为:电力电子器件的特性研究,重点是开关特性的研究;电力电子变换电路的研究,包括:三相桥式全控整流电路(AC/DC 变换)、SPWM逆变电路(DC/AC变换)、直流斩波电路(DC/DC变换)、单相交流调压电路(AC/AC变换)四大类基本变流电路。
电力电子技术实验借助于现代化的测试仪器与仪表,使学生在实验的同时熟悉各种仪器的使用,以进一步提高实验技能。
波形测试方法是电力电子技术实验中基本的、常用的实验方法,电力电子器件的开关特性依据波形测试而确定器件的工作状态及相应的参数;电力电子变换电路依据波形测试来分析电路中各种物理量的关系,确定电路的工作状态,判断各个器件的正常与否。
因此,掌握不同器件、不同电路的波形测试方法,可以使学生进一步掌握电力电子电路的工作原理以及工程实践的方法。
本讲义参考理论课的内容顺序编排而成,按照学生掌握知识的规律循序渐进,旨在加强学生实验基本技能的训练、实现方法的掌握;培养和提高学生的工程设计与应用能力。
由于编者水平有限,难免有疏漏之处,恳请各位读者提出批评与改进意见。
二、实验挂箱介绍与使用方法(一)MCL—07挂箱电力电子器件的特性及驱动电路MCL—07挂箱由GTR驱动电路、MOSFET驱动电路、IGBT驱动电路、PWM 发生器、主电路等部分组成。
1、GTR驱动电路:内含光电耦合器、比较器、贝克箝位电路、GTR功率器件、串并联缓冲电路、保护电路等。
可对光耦特性(延迟时间、上升时间、下降时间),贝克电路对GTR导通关断特性的影响,不同的串、并联电路对GTR开关特性的影响以及保护电路的工作原理进行分析和研究。
电力电子技术试验指导书

“电力电子技术”实验指导书(一)一、实验课程编码:二、实验课程名称:电力电子技术三、实验项目名称:单相桥式全控整流电路实验四、实验目的1.了解单相桥式全控整流电路的工作原理。
2.研究单相桥式全控整流电路在电阻负载、电阻—电感负载的工作。
3.熟悉NMCL-36锯齿波触发电路的工作。
五、主要设备1.MCL系列教学实验台主控制屏。
2.NMCL-002、NMEL-24、NMCL-331、NMCL-33、NMEL-03、NMEL-06、NMCL-36、NMCL-31A 组件。
3.双踪示波器。
4.万用表。
六、实验内容1.单相全控整流电路供电给电阻负载。
2.单相桥式全控整流电路供电给电阻—电感性负载。
七、实验步骤1.将NMCL-36面板上左上角的同步电压输入直接与NMCL-002的U、V输出端相连。
再依照图1-1连线,先将NMEL-24与NMCL-36断开。
将NMCL-31A面板的RP1逆时针旋到底,将S2开关拨下。
2.三相调压器逆时针调到底,合上主电路电源开关,调节NMCL-002输出电压UUV=220V。
用示波器观察NMCL-36面板上各观察孔的电压波形,示波器的地线接于“7”端。
依次观察“1”、“2”孔的波形。
观察“3”~“6”孔波形,调整电位器RP1,使3的锯齿波刚出现平顶。
3.调整脉冲移相范围用示波器观察U1电压(即“1”孔)及UG1K1的波形,调节RP2,使α角到0度,同样,用示波器观察U1电压(即“1”孔)及UG3K3的波形,调节RP3,使α角到180度。
图1-1 单相桥式全控整流电路的接线图4.断开主电源,再将NMEL-24与NMCL-36连接,将S2开关拨上,调节NMCL-31A 上RP1,使α角分别调到60度和90度。
当60度时,电阻负载,观察U d 、U VT 波形,并测电压;当90度时,分别在电阻,阻感负载时,并测电压,观察波形。
5.用万用表分别测量U ct 、d U 的值,填写下表:八、实验结果1.绘出单相桥式晶闸管全控整流电路供电给电阻负载情况下,当a=60°,90°时的U d 、U VT 波形,并加以分析。
《电力电子技术》课程教学大纲

电力电子技术课程教学大纲(POWERE1ECTRONIC)总学时数:40其中:实验学时数:0课外学时数:0学分数:2.5适用专业:电气工程与自动化专业一、课程的性质、目的和任务本课程是自动化专业的基础课程,它的任务是使学生掌握各类电力电子器件的工作原理,特性和主要参数及其各类变流装置发生的电磁过程,基本原理,控制方法,设计计算,实验技能以及它们的技术经济指标。
以便学生毕业后具有进一步掌握各种变流装置的能力,并为后续课“电力拖动与运动控制系统”打好基础。
二、课程教学的基本要求(一)掌握电力电子器件(主要为晶闸管,电力晶体管,可关断晶闸管、电力场效应晶体管和绝缘栅双极晶体管)的工作原理,特性和主要参数(含驱动、缓冲和保护电路)。
(二)熟练掌握单相,三相整流电路和有源逆变电路的基本原理,波形分析和各种负载对电路运行的影响,并能对上述电路进行初步的设计计算(包括触发电路与保护环节)。
(三)3.了解无源逆变、直流斩波、交流调压和交-交变频电路的工作原理,了解并掌握PWM控制技术及PW型逆变电路的基本原理和控制方法。
(四)初步了解软开关技术的基本概念和常用的组合变流电路的主要形式。
(五)初步了解电力电子学科的发展趋势。
(六)掌握基本变流装置的调试实验方法。
三、课程的教学内容、重点和难点绪论基本内容:电力电子技术的基本概念和内涵,电力电子技术发展历程,电力电子技术应用领域,本课程在国民经济中的作用意义,本课程的特点和学习方法。
基本要求:使学生了解电力电子技术的基本概念和内涵,了解本课程的重要性,认识到他所学的内容仅是电力电子学科中的最基本的内容,而本学科还有很多重要的课题有待去学习,去解决。
第一章电力电子器件一、电力电子器件概述基本内容:电力电子器件的概念和特征;电力电子系统的构成;电力电子器件的分类。
基本要求:1、了解电力电子器件的基本概念、主要特征以及主要类型;2、了解应用电力电子器件构成的系统的主要组成部分及各部分功能。
电力电子技术 教学大纲

电力电子技术教学大纲电力电子技术教学大纲电力电子技术是现代电力系统中不可或缺的一部分,它涉及到电力的转换、控制和传输等方面。
在电力电子技术的教学中,需要明确教学目标、内容和方法,以确保学生能够全面掌握相关知识和技能。
一、教学目标电力电子技术的教学目标主要包括以下几个方面:1. 理解电力电子技术的基本原理和概念,包括电力电子器件的工作原理、电力电子电路的设计和分析方法等。
2. 掌握电力电子器件的特性和参数,能够正确选择和使用电力电子器件。
3. 能够设计和分析各种类型的电力电子电路,包括直流-直流变换器、直流-交流变换器、交流-交流变换器等。
4. 熟悉电力电子系统的控制方法和技术,能够设计和实现电力电子系统的控制策略。
5. 能够应用电力电子技术解决实际问题,提高电力系统的效率和可靠性。
二、教学内容电力电子技术的教学内容应包括以下几个方面:1. 电力电子器件:包括二极管、晶闸管、可控硅、功率场效应管等,要求学生了解其结构、工作原理和特性。
2. 电力电子电路:包括直流-直流变换器、直流-交流变换器、交流-交流变换器等,要求学生能够设计和分析这些电路。
3. 电力电子系统的控制:包括开环控制和闭环控制,要求学生掌握控制方法和技术,并能够设计和实现电力电子系统的控制策略。
4. 电力电子应用:包括电力质量改善、电力传输和分配、可再生能源等方面的应用,要求学生能够应用电力电子技术解决实际问题。
三、教学方法在电力电子技术的教学中,应采用多种教学方法,以提高学生的学习效果和兴趣。
1. 理论讲授:通过课堂讲授,向学生介绍电力电子技术的基本原理和概念,讲解电力电子器件和电路的工作原理,以及电力电子系统的控制方法和技术。
2. 实验教学:通过实验,让学生亲自动手操作电力电子器件和电路,观察和分析实验现象,提高学生的动手能力和实际应用能力。
3. 计算机仿真:通过计算机仿真软件,模拟和分析电力电子电路和系统的工作过程,帮助学生理解和掌握相关知识和技能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一、单相半控桥整流电路实验一、主要容1.实现控制触发脉冲与晶闸管同步;2.观测单相半控桥在纯阻性负载时u d,u VT波形,测量最大移相围及输入-输出特性;3.单相半控桥在阻-感性负载时,测量最大移相围,观察失控现象并讨论解决方案;二、方法和要领1.实现同步:◆从三相交流电源进端取线电压Uuw(约230v)到降压变压器(MCL-35),输出单相电压(约124v)作为整流输入电压u2;◆在(MCL-33)两组基于三相全控整流桥的晶闸管阵列(共12只)中,选定两只晶闸管,与整流二极管阵列(共6只)中的两只二极管组成共阴极方式的半控整流桥,保证控制同步,并外接纯阻性负载。
思考:接通电源和控制信号后,如何判断移相控制是否同步?2.半控桥纯阻性负载实验:◆连续改变控制角,测量并记录电路实际的最大移相围,用数码相机记录α最小、最大和90o时的输出电压u d波形(注意:负载电阻不宜过小,确保当输出电压较大时, Id 不超过0.6A);思考:如何利用示波器测定移相控制角的大小?◆在最大移相围,调节不同的控制量,测量控制角、输入交流电压u2、控制信号u ct和整流输出Ud的大小,要求不低于8组数据。
3.半控桥阻-感性负载(串联L=200mH)实验:◆断开总电源,将负载电感串入负载回路;◆连续改变控制角α,记录α最小、最大和90o时的输出电压u d波形,观察其特点(Id 不超过0.6A);◆固定控制角α在较大值,调节负载电阻由最大逐步减小(分别达到电流断续、临界连续和连续0.5A值下测量。
注意 Id ≤0.6A),并记录电流Id波形,观察负载阻抗角的变化对电流Id的滤波效果;思考:如何在负载回路获取负载电流的波形?◆调整控制角α或负载电阻,使Id≈0.6A,突然断掉两路晶闸管的脉冲信号(模拟将控制角α快速推到180o),制造失控现象,记录失控前后的u d波形,并思考如何判断哪一只晶闸管失控;三、实验报告要求1.实验基本容(实验项目名称、已知条件及实验完成目标)2.实验条件描述(主要设备仪器的名称、型号、规格等;小组人员分工:主要操作人、辅助操作人、数据记录人和报告完成人)3.实验过程描述(含每个步骤的实验方法、电路原理图、使用仪器名称型号、使用量程等);4.实验数据处理(含原始数据记录单、计算结果及工程特性曲线,);5.实验综合评估(对实验方案、结果进行可信度分析,提出可能的优化改进方案);6.思考:◆阐述选择实验面板晶闸管序号构成半控桥的依据。
◆测绘电阻负载时u d = f (α)和u d = f (u ct)的实验特性曲线(注:由数据处理软件自动生成),其中将实验u d = f (α)与理论推算u d = f (α)特性曲线比较(在同一坐标系),若存在误差,分析成因。
◆分析阻-感性负载时,为什么减小负载电阻输出电流的波形越趋平稳?基于有较大的感抗值,电路能否接纯感性负载工作,为什么?◆分析同样的阻感负载时,本电路与单相全控桥电路的输出电压u d特征差异,说明原因。
若以u d = f (u ct)的实验特性曲线作为控制电源的静态模型建模依据,该电源的近似放大系数Ks≈?我们需要什么样的专业课实验报告书?当进入大三以后,会面对很多专业课程的实验项目,如何让这些实验的报告体现出它应该有的“专业”性?撇开具体的实验容不谈,实验报告应该具有以下共同的特质:1.报告具有尽可能丰富的实验信息。
例如实验的工作条件描述、实验团队的分工构成描述、实验预期结果的描述等等,这些都在为成就一个专业工程师做着有益的铺垫。
2.实验数据的处理手段应体现专业性。
面对大量的数据计算和分析,必须充分利用信息化手段,请即刻摒弃手绘坐标纸之类的落后方法处理数据,不要让报告失去应有的客观性和专业性。
3.实验结果不能如同列的僵尸躺在报告上,应该赋予它鲜活的血肉和生命力。
●测试结果(数据或波形图等)应附有明确的测试条件说明,应有足够的量纲标识;●实验结果与理论预期的比对是必要的,误差分析应该是实实在在的,不要务虚;●实验结果说明了什么?请拿出你的看法,如同一场电影看罢,总会有所评价一样,提炼和升华是学习的终极;●对现有实验方案的优劣应有所思考,可以试试提出优化方案或展望;●数据结果可以不准确,方案可以不完美,但发自心原生态的思考是绝对不可或缺的和最最重要的,它是一份报告的价值所在,也为老师所乐见。
4.一次实验是有限的,但对它的思考应该是无限的。
报告在具备基本要素的前提下,不要太拘泥于固定的模板格式,不要太局限于实验本身的畴,如果报告上出现了由此而衍生的许许多多,例如扩展仿真实验、扩展的方案讨论、扩展的的器件或设备描述、扩展的应用案例、扩展的…,对于教授者和学业者,就是莫大的幸事。
如果你是这样做的,就不用去重复做许多的实验,举一反三即可。
5.请强化报告的可读性,表现出你的热忱和投入。
写作考虑到读者的体验度了吗?要尽可能的提升条理性和可视性,不要提交一份只有自己才能读懂的报告,当你调用所有的资源和手段投入到这份报告之中时,或许能从中读出你的热情和心血,我们就该向你致敬了。
一句话概之,实验报告不仅仅是记录,更应该有思考和扩展……实验二、三相全桥整流及有源逆变实验四、主要容1.观测整流状态下阻性负载、阻-感性负载时u d,u VT波形;2.观测逆变状态下(阻-感性-反电动势负载)u d,u VT波形及逆变功率测量;五、方法和要领1.连接三相整流桥及逆变回路◆由三相隔离变压器(MCL-32)二次绕组接至三相降压变压器(MCL-35),输出三相电源(线电压约110~130v)作为三相变流桥的交流输入;◆由三相隔离变压器(MCL-32)二次绕组接至由二极管组成的三相不可控全波整流桥,作为逆变时负载回路的电动势源(大小恒定的电压源);◆由双刀双置开关构成整流和逆变选择回路(严禁主回路带电时切换此开关);◆约定整流、逆变临界控制点为Uct = 0,当Uct﹥0时,处于整流移相控制;Uct﹤0时处于逆变移相控制:2.整流工作◆阻性(450)负载测试:双置开关选择整流回路,负载电阻设定为最大(约450),加正给定电压。
1)观测并记录整流状态下α≈0O,60O,90O时u d、u VT波形(注意限制Id≤0.6A);2)α≈0O时封锁任1只晶闸管的脉冲信号,记录u d的波形及大小值;3)α≈0O时封锁任2只晶闸管的脉冲信号,记录u d的波形及大小值;(一次:共阴极组2只;一次:阴极阳极组各1只)◆阻-感(300+ 700mH )负载测试:双置开关选择整流回路,观测并记录α=30O,90O时u d、u VT波形(注意限制Id≤0.6A);α=60O封锁分别1只和2只晶闸管的脉冲信号,记录u d的波形及大小值。
3.逆变工作断掉主回路电源,将负载回路切换到逆变条件,注意逆变电动势源的直流极性。
◆选负给定信号,保持负载为(450Ω+700mH),再合上电源,观测逆变状态下β=60O,90O时u d,u VT波形;◆在恒定负载情况下(电阻450Ω,电感700mH,直流反电动势E基本恒定),在最大逆变移相围,测定电网实际吸收直流功率Pk = f (Ud)的函数曲线(不低于8组数据点)。
已知,三相全控桥输出等效电阻Rn=12 。
六、实验报告要求:1.实验项目名称2.实验基本容(已知条件及实验要求)3.实验条件描述(主要设备仪器的名称、型号、规格等;小组人员分工:主要操作人、辅助操作人、数据记录人和报告完成人)4.实验过程描述(含每个步骤的实验方法、电路原理图、使用仪器名称型号、使用量程等);5.实验数据处理(含原始数据清单、计算结果、特性曲线等);6.误差分析(分析方案、方法、仪器、操作等带入的必然、偶然误差因素);7.特别要求:◆分析比较整流工作时,阻性负载和阻感负载再缺相(丢失一路触发信号)故障下,Ud瞬时波形的差异性?◆整流状态下阻-感负载时,α=90O时ud的瞬时波形就一定有正负半波对称吗,为什么?◆说明逆变状态下,逆变电源的负载波形是电路上哪两端的波形?为什么逆变输出电压Ud越高,负载电流Id越小?对Pk = f (Ud)曲线结果作趋势分析。
实验三 半桥型开关稳压电源的性能研究一、主要容1. 熟悉PWM 专用芯片SG3525的基本功能和应用特色,测试其典型功能端波形; 2. 测试和分析半桥型开关电源在开环和闭环两种模式下的输出性能二、主要实验容和技术要领i. PWM 控制芯片SG3525的测试1) 连接:将开关S 1打向“半桥电源”,屏蔽误差调节器反馈输入端。
2) 测试:用示波器分别观察锯齿波振荡器和A (或B )路PWM 信号的波形,并记录波形的频率和幅值,调节“脉冲宽度调节”电位器,记录其占空比可调围(最大、最小占空比)。
3) 连接:断开主电路和控制电路的电源,将光电藕输出信号端与半桥电路中的Power-MOSFET 管正确相连。
4)测试:接通控制电路电源开关“S 2”,观察Power-MOSFET 管VT 1的栅极G 和源极S 间的电压波形,记录波形周期宽度T 、幅值U GS 及上升t r 、下降时间t f 。
ii.构成开环电压系统向负载供电1) 连接:断开主电路和控制电路的电源,将“主电源1”将直流电压输出至半桥电路的输入端,连接半桥输出负载R1+R2(负载电阻为33Ω)。
2) 测试:调节“脉冲宽度调节”电位器,记录不同占空比(不低于8组数据)时输出电源电压u o大小;iii.构成闭环电源系统,测试稳压性能1)连接:开放误差调节器反馈输入端,从“半桥型开关稳压电源”输出端“13”取电压反馈信号连至SG3525的反馈输入“2”端,并将“半桥型稳压电源”的“9”端和“PWM 波形发生”的地端相连(共地):2)测试:半桥输出回路“9”,“11”端连通(负载电阻为3Ω),调节PWM 占空比使电源输出端电压u 0为5V ;然后断开“9”,“11”端连线,连接“9”,“12”端(负载电阻改变至33Ω),测量输出电压u 0的值,计算负载强度变化十倍时的电压调整率(抗负载变化的电压稳定能力):%100500⨯-U VU 断开输出端“13”电压反馈信号,重新屏蔽误差调节器反馈输入端,回复到开环状态,重复上述3Ω和33Ω不同负载时“5V ”输出电压的电压调整率。
与闭环系统的结果进行比较。
三、实验报告要求1. 实验项目名称2. 实验基本容(已知条件及实验要求)3. 实验条件描述(主要设备仪器的名称、型号、规格等;小组人员分工:主要操作人、辅助操作人、数据记录人和报告完成人)4.实验过程描述(含每个步骤的实验方法、电路原理图、使用仪器名称型号、使用量程等);5.实验数据处理(含原始数据清单、计算结果及工程特性曲线,注:利用数据处理软件自动生成);6.误差分析(分析方案、方法、仪器、操作等可能带入的必然、偶然误差因素);7.特别要求:●根据实验数据,生成开环时Uo=f (σ%)的函数曲线(负载为R1+R2,不少于8组数据点)●为什么在2、3步要分别将“PWM波形发生”的“3”,“4”两点短接或断开?分析闭环后的稳压控制是如何实现的。