七年级数学希望工程义演
5应用一元一次方程—“希望工程”义演-北师大版七年级数学上册教案

5 应用一元一次方程—“希望工程”义演-北师大版七年级数学上册教案一、教学目标1.通过了解“希望工程”义演活动,拓宽学生的视野,引导学生体验做公益的快乐;2.理解一元一次方程的概念,能够解决简单的一元一次方程问题;3.获得一些实际应用问题的解题经验,特别是在义演活动中的应用;4.养成良好的思维习惯和解题方法,培养学生的数学逻辑思维能力。
二、教学重难点1.难点:学生对于实际应用问题的理解和解题;2.重点:培养学生讲解解题思路和训练逻辑思维。
三、教学准备1.提前准备好义演活动的介绍,包括活动的意义、支持的对象和实现的方式等;2.准备足够的黑板粉笔和教学用具,如计算器、直尺和圆规等;四、教学过程1. 引入通过介绍“希望工程”义演活动,让学生了解公益活动的重要性,引导学生从小学会奉献和助人为乐,体验做公益的快乐。
2. 讲解一元一次方程1.引出一元一次方程的概念,引导学生从公式的意义上了解概念;2.指导学生掌握解一元一次方程的基本步骤和方法;3.给学生提供一些简单的练习题,在解决问题的过程中深化对一元一次方程的理解和应用。
3. 应用一元一次方程——“希望工程”义演活动1.教师讲解义演活动的背景和意义;2.将义演活动中遇到的一些问题抽象出来,转化成一元一次方程;3.引导学生通过解一元一次方程解决义演活动中实际应用的问题。
4. 总结与归纳1.结合义演活动,对学生进行总结展示;2.让学生讲解自己的解题思路,培养学生训练逻辑思维的能力;3.教师对学生的解题思路和方法做出评价和提出建议。
五、课堂作业1.答完课本上的相关习题,提交练习册;2.围绕“希望工程”义演活动,自己编写一些应用问题,并用一元一次方程解决。
六、教学反思通过本次教学,学生们对“希望工程”义演活动有了更深刻的理解和认识,掌握了一元一次方程的基本概念和解题方法。
在应用一元一次方程解决实际问题的过程中,学生们逐步养成了良好的思维习惯和解题方法,并培养了数学逻辑思维能力。
七年级 5.5希望工程义演

课题:第五章一元一次方程5.应用一元一次方程——“希望工程”义演一.备课标:(一)内容标准:(1)能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型。
(2)、能根据具体问题的实际意义,检验结果是否合理。
(二)核心概念:初步学会在具体情境中从数学的角度发现和提出问题,探索具体问题中的数量关系并能根据数量关系列出方程,归纳利用方程解决实际问题的一般步骤,发展灵活运用数学知识解决实际问题能力。
十大核心概念在本节课中突出培养的是模型思想、应用意识。
二、备重点、难点:(一)教材分析:本节课是七年级上册第五章第五节。
本节的学习将使学生进一步体会方程的模型思想,感受代数方法的优越性,也将有助于巩固一元一次方程等知识。
方程作为数学的一个重要分支,是刻画现实世界数量关系的一个有效数学模型,本课以“希望工程”义演为例引入课题,和前两节相比,本节的数量关系更复杂,通过学生自主探究、合作交流,教师点拨相结合的方式,引导学生借助列表的方法分析问题,体会用图表语言分析复杂问题表达思维方法的优点,从而抓住等量关系“部分量之和等于总量”展开教学活动,让学生经历抽象的符号变换应用等活动,展现运用方程解决实际问题的一般过程.本节的重点是通过丰富的实例学习体会方程的模型思想,学习利用表格分析数量关系列方程应用题的方法。
(二)重点、难点分析:本节通过丰富的实例,巩固建立列一元一次方程的步骤,总结方法,并从中体会方程的模型思想。
基于学生对前几节一元一次方程理解的基础上,教材从实际问题出发,通过引导学生经历自主探索和合作交流的活动确定:重点:分析问题中的条件和要求的结论,并找出等量关系,列出方程。
难点:准确分析确定具体情境的等量关系,从实际问题中抽象出一元一次方程的过程. 三.备学情:(一)学习条件和起点能力分析:经过前两节的学习,学生对用方程解决实际问题的步骤和方法有了基本的了解,与前两节相比,本节数量关系比较复杂,学生从题设条件中找不到列方程所依据的等量关系,或虽能找到两个等量关系但不知道依据哪一个等量关系列出方程。
北师大版七年级数学上册:应用一元一次方程——“希望工程”义演课件

3
票不可能出现分数,所以不可能 结论:在实际问题中,方程的解是有实际意义的,
因此应将解带入原方程看是否符合题意。
例2:某工厂三个车间共有180人,第二车间人 数是第一车间 人数的3倍还多1人,第三车间人 数是第一车间人数的 一半还少1人,三个车间 各有多少人?
解:设第一车间有x人,则第二车间有3(x+1)人,
解: 设三个水管同时开放x小时可注满水池,
由题意得:
解得:
x =4
答:三个水管同时开放4小时可注满水池.
(2)若甲管先开放1小时,而后同时开放乙、丙两个水管,则共需 几小时可注满水池?
解:设共需y小时可注满水池,
由题意得: 解得: y =
答:共需 小时可注满水池
(3)若甲管先开放1小时后关闭,而后同时开放乙、丙两个水管, 能注满水池吗?并说明理由.
分析:果冻个数+巧克力=40个
果冻的钱+买巧克力的钱=115元
解: 设买了x个果冻,则买了(40-x)块巧克力,
由题意得:Biblioteka x×5+(40 2
x)
3=115
解得:
x = 10
当x=10时,40-x=40-10=30
答:他买了10个果冻,30块巧克力.
第三车间有(0.5x-1)人.
据题意得 x+3(x+1)+(0.5x-1)=180.
解得
x=40.
此时,
3(x+1)= 3(40+1)=121
0.5x-1=0.5×40-1=19
答:第一、二、三车间分别有40人,121人,19人.
练1:在甲处工作的有22人,在乙处工作的有 12人.现在调来18人,分别派往甲、乙两处,使 甲处工作的人数是乙处工作人数的2倍. 问:应派往甲、乙两处各多少人?
北师大版七年级数学上册:5.5应用一元一次方程-“希望工程”义演教案

(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元一次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,通过实际操作演示一元一次方程的求解过程。
a.通过“希望工程”义演案例,让学生体会数学在实际生活中的应用
b.运用一元一次方程解决义演中的票价、观众人数等问题
3.教学内容列举:
a.义演门票价格问题
b.观众人数与总收入的关系
c.通过一元一次方程解决实际问题,培养学生的逻辑思维能力和解决问题的能力
二、核心素养目标
1.培养学生运用数学知识解决实际问题的能力,提升数学应用素养。
北师大版七年级数学上册:5.5应用一元一次方程-“希望工程”义演教案
一、教学内容
北师大版七年级数学上册:5.5应用一元一次方程-“希望工程”义演教案
1.知识点:一元一次方程的应用
a.理解一元一次方程在实际问题中的运用
b.学会列出与实际问题相关的一元一次方程
c.掌握解一元一次方程的方法
2.教材案例:“希望工程”义演
2.通过小组讨论和实验操作,学生们在实践中掌握了一元一次方程的求解方法,这有助于提高他们解决实际问题的能力。
3.教学过程中,我注意到学生们在方程求解时容易出现的错误,并及时进行了纠正和指导,使得他们在理解上更加深入。
需要改进的地方:
1.在导入新课环节,我发现有些学生对于问题的理解不够深入,可能是因为问题与他们的生活实际联系不够紧密。在今后的教学中,我需要更加注重问题的选择,使之更贴近学生的生活。
初中数学七年级上册《56“希望工程”义演》-5页精选文档

观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。通过联想,幼儿能够生动形象地描述观察对象。课型:新授
家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。我和家长共同配合,一道训练,幼儿的阅读能力提高很快。
七年级数学上册 “希望工程”义演教案 北师大版

“希望工程”义演教学设计教学设计思想本节课以“希望工程”义演为例引入课题,通过学生自主探索、协作交流,教师点拨相结合的方式,引导学生借助列表的方法分析问题,体会用图表语言分析复杂问题表达思维方法的优点,从而抓住等量关系“部分量之和等于总量”展开教学活动。
对“想一想”由学生独立完成,并通过这个问题,使学生进一步明确必须检验方程的解是否符合实际。
教学目标知识与技能1.用列表格分析实际问题中的等量关系.2.用不同的设未知数的方法列方程.过程与方法情感态度价值观(二)能力训练要求1.借助表格分析复杂问题中的数量关系,从而建立方程解决实际问题,发展分析问题、解决问题的能力,进一步体会方程模型的作用.2.体会不同的设未知数的方法,通过比较,选择最优.(三)情感与价值观要求1.通过体会方程模型的实际价值,提高学习数学的兴趣.2.提高遇到较复杂数学问题的良好心理素质以及面对复杂问题时克服困难的勇气.教学重点1.借助表格分析复杂问题的数量关系.2.选择比较恰当的设未知数的方法.教学难点面对若干个等量关系,如何恰当地应用它们设出未知数并列出方程.教学方法引导—自主探索相结合方法.学生在教师的引导下,找出若干个较直接的等量关系,然后用不同的设未知数的方法让学生通过列表格自主探索根据等量关系,列出方程,从中体会设未知数方法的不同,方程的复杂程度也不同.教具准备投影片一张:(记作§)“希望工程”义演.教学过程Ⅰ创设情境,引入新课[师]上一节课,我们讨论过了用一元一次方程解决实际问题的一般步骤谁来给大家简单的陈述一下.[生]当用一元一次方程解决实际问题时,首先要从实际问题中抽象出数学问题;然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性,合理就用以解决实际问题,不合理需重新开始讨论.[师]应用一元一次方程解决实际问题的关键步骤是什么[生]根据题意,首先寻找“等量关系”同时,解出方程后应注意检验求出的值是不是方程的解,是否符合实际.[师]接下来,我们就用一元一次方程解决生活中一个献爱心的问题——“希望工程”义演.Ⅱ讲授新课[师]在我们的生活中,还有不少贫困地区的孩子因为贫穷而上不起学,也有不少有爱心的好人为了他们而献出自己的一片“爱心”下面我们就来看投影:“希望工程”义演.出示投影片(§)分析:售出的票包括成人票和学生票,所得票款包括成人票款和学生票款由第(1)问和第(2)问可知:票款=票数×价格/张因此上述问题存在两个等量关系.成人票数学生票数=总票数,①成人票款学生票款=总票款②解:(1)填写下表:由上表可知共得票款:600×5300×8=30002400=5400(元).(2)填写下表:由上表可知共卖出学生和成人票为:2500÷56400÷8=500800=1300(张).(3)解法一:设售出的学生票为张,填写下表:根据等量关系②,可列出方程:58(1000-)=6950解,得=350.1000-350=650(张)答:售出的成人票650张,学生票350张.解法二:设所得学生票款元,填写下表根据等量关系①可得869505y y =1000解,得=17501750÷5=3501000-350=650答:售出的学生票数为350张,成人票650张.讨论:从上述(3)的两种设未知数方法,同时根据自己的亲身体验,相互交流各自的意见.[生]我认为第二种方法比第一种方法复杂.[师]在以前,我们列方程时,通常找一个等量关系即可列出方程,为什么在这个题中寻找到了两个等量关系,它们各有何用途.[生]我们在填表的时候就可以看出:如果设售出的学生票数为张,根据等量关系①就可设成人票数为(1000-)张这时,等量关系②元,则根据等量关系②就可设成人票款为(6950-)元,此时,等量关系①就用来列方程.[生]我认为这个问题中有两个未知量:售出的学生票和成人票,可我们现在只设一个未知数,而另一个未知数就需要题意中的等量关系用含有第一个未知数的代数式来表示.[师]同学们的分析很好现在我们遇到的这个问题比前面的问题要复杂,含有两个未知量,而只设一个未知数表示一个量,另一个量就需用题中的等量关系,用含有第一个未知数的代数式来表示,而另一个等量关系则用来列方程.[师]在这个较为复杂的实际问题中,为了搞清楚各个量之间的关系,我们采用了一个非常清楚明了的方法——列表格希望同学们慢慢地学着用它来分析较复杂的问题.想一想:如果票价不变,那么售出1000张票所得的票款可能是6930元吗我们也列表来完成(由两个学生板演)解:可设售出的学生票为元,填写下表:根据题意,可得方程:58(1000-)=6930解,得=35632显然,=35632是不符合题意的因此如果票价不变,售出1000张票所得票款不可能是6930元.[师]因此,我们用方程这样的数学模型解决实际问题时,一定要注意检验方程的解是否符合实际.Ⅲ课堂练习、1课本P171解:单价为18元的本买了本,单价为10元的本买了(10-)本,列表如下:根据题意,得1810(10-)=172解,得=9.10-9=1答:单价为18元、10元的本各买9本、1本.Ⅳ课时小结这节课我们通过列表的方式分析实际问题中的等量关系,使题中的已知条件与未知条件的关系清晰明了同时我们还尝试着用多种方法去解决问题.Ⅴ课后作业1.课本P习题1712.到网上收集有关方程史的资料.Ⅵ活动与探究小张在商店中买了14瓶汽水,又知每3个空汽水瓶可换1瓶汽水,问小张最多能够喝到多少瓶汽水过程:乍看题目觉得甚为简单,有同学就认为是18瓶汽水,原因是14瓶水喝完后可换4瓶,故可喝18瓶那么4瓶喝完后呢应该是4瓶喝完后,总共还有6个空瓶可换2瓶汽水,总共可喝20瓶其实这还不是最多,最后2个空瓶虽不能换一瓶汽水,但我可以用“先借后还”的方法多喝一瓶汽水,即先借商店一瓶汽水喝完,还三个瓶,换一瓶汽水,再将那一瓶汽水还掉.结果:通过分析,我们会发现最后的14个空瓶,通过先借后还,实际总共可换七瓶汽水即平均2个空瓶换1瓶汽水.板书设计三、课时小结:(由学生先来完成)。
七年级数学上册 5.5应用一元一次方程“希望工程”义演课时练习含答案解析

北师大版数学七年级上册5.5应用一元一次方程--“希望工程”义演同步练习一、选择题1.足球比赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,那么这个对共胜了()场.A.3B.4C.5D.6答案:C解析:解答:设该队共平x场,则该队胜了14-x-5=9-x场,胜场得分是3(9-x)分,平场得分是x分.根据等量关系列方程得:3(9-x)+x=19,解得:x=4场,∴该队胜了14-x-5=9-4=5场.故选:C.分析:首先理解题意找出题中的等量关系:平场得分+胜场得分=19分,根据此列方程即可.2.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()A.1800元B.1700元C.1710元D.1750元答案:C解析:解答:设手机的原售价为x元,由题意得,0.8x-1200=1200×14%,解得:x=1710.即该手机的售价为1710元.故选C.分析:设手机的原售价为x元,根据原价的八折出售可获利14%,可得出方程,解出即可.3.某个商贩同时卖出两件上衣,售价都是140元.按成本计算,其中一件盈利75%,另一件亏损30%,在这次交易中,该商贩()A.不赔不赚B.赚10元C.赔10元D.赔20元答案:A解析:解答:设两件上衣的进价分别为a元,b元,根据题意得:(1+75%)a=140,(1-30%)b=140,解得:a=80,b=200,∴这次买卖中盈利的钱为140-80+140-200=0(元),则这次买卖中他不亏不赢.故选A.分析:设两件上衣的进价分别为a元,b元,根据题意列出算式求出a与b的值,由售价-进价=利润计算即可得到结果.4.小彬一家人在2013年8月到北京旅游了4天,这4天的日期数(如8月1日的日期数为1)之和是38,则他们一家在北京旅游最后一天的日期数是()A.8号B.9号C.10号D.11号答案:D解析:解答:设他们一家在北京旅游最后一天的日期数是x,则前面3天的日期分别为x-1,x-2,x-3,由题意,得x-1+x-2+x-3+x=38,解得:x=11.故选D.分析:设他们一家在北京旅游最后一天的日期数是x,则前面3天的日期分别为x-1,x-2,x-3,根据四天的日期和为38建立方程求出其解即可.5.小明每天早晨在8时前赶到离家1千米的学校上学.一天,小明以80米/分的速度从家出发去学校,5分钟后,小明爸爸发现小明的语文书落在家里,于是,立即以180米/分的速度去追赶.则小明爸爸追上小明所用的时间为()A.2分钟B.3分钟C.4分钟D.5分钟答案:C解析:解答:设小明爸爸追上小明所用的时间为x分钟,则小明走的路程为80(x+5)米,小明的爸爸走的路程为180x米,由题意,得80(x+5)=180x,解得:x=4,故选C.分析:设小明爸爸追上小明所用的时间为x分钟,则小明走的路程为80(x+5)米,小明的爸爸走的路程为180x米,根据小明走的路程=小明爸爸走的路程建立方程求出其解即可.6.为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a、b、c对应的密文a+1,2b+4,3c+9,例如明文1,2,3,对应的密文为2,8,18,如果接收方收到密文7,18,15,则解密得到的明文为()A.6,5,2B.6,5,7C.6,7,2D.6,7,6答案:C解析:解答:根据题意得:a+1=7,解得:a=6.2b+4=18,解得:b=7.3c+9=15,解得:c=2.所以解密得到的明文为6、7、2.故选:C.分析:要求解密得到的明文,就要根据明文和密文之间的关系列方程,这个关系为:明文a,b,c对应的密文a+1,2b+4,3c+9.根据这个关系列出方程求解.7.泰兴市新区对曾涛路进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.则原有树苗()棵.A.100B.105C.106D.111答案:C解析:解答:设原有树苗x棵,由题意得:5(x+21-1)=6(x-1),解得:x=106.故选:C.分析:设原有树苗x棵,根据两种栽种方法树苗的数量相等,可得出方程,解出即可.8.小红在月历的同一列上圈出相邻的三个数,若算出它们的和是39,则该列第一个数是()A.6B.12C.13D.14答案:A解析:解答:设中间的为x,则上面的数是x-7,下面的数是:x+7,根据题意得:x+x-7+x+7=39,解得,x=13.根据题意可知,该列第一个数x-7=6故选:A.分析:日历的一个竖列上圈出相邻的两个数相差为7,设较小的数是x,则较大的数是x+7,又x是整数,故两个数的和减去7后,必须是偶数.根据次规律可从下列答案中判断出正确答案.9.某商店换季准备打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的成本为()A.230元B.250元C.270元D.300元答案:B解析:解答:设该商品的售价为x元,由题意得,0.75x+25=0.9x-20,解得:x=300,则成本价为:300×0.75+25=250(元).故选B.分析:设该商品的售价为x元,根据按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,列方程求出售价,继而可求出成本.10.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的和为46,则这9个数的和为()A.69B.84C.126D.207答案:D解析:解答:设圈出的数字中最小的为x ,则最大数为x +16,根据题意得:x +x +16=46,移项合并得:2x =30,解得:x =15,∴9个数之和为:15+16+17+22+23+24+29+30+31=207.故选D分析:设圈出的数字中最小的为x ,则最大数为x +16,根据题意列出方程,求出方程的解得到x 的值,进而确定出9个数字,求出之和即可.11.某种商品的进价为100元,出售标价为150元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则最多可打( )A .6折B .7折C .8折D .9折答案:C解析:解答:设最多可打x 折, 根据题意得:150********%10x ⨯-=⨯, 整理得:15x -100=20,解得:x =8,则最多打8折.故选C .分析:要保证利润率不低于20%,则最多可打x 折,根据题意列出方程,求出方程的解即可得到结果.12.国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期的利率为2.25%,今小磊取出一年到期的本金及利息时,交纳了4.5元利息税,则小磊一年前存入银行的钱为( )A .1000元B .900元C .800元答案:A解析:解答:设小磊的利息为x元,由题意,得20%x=4.5,解得x=22.5.设存入银行的本金为y元,由题意,得2.25%y=22.5,解得:y=1000.故选A.分析:先设小磊的利息为x元根据利息税求出利息,再设存入银行的本金为y元由利息问题的数量关系就可以求出结论.13.元旦节日期间,某商场为了促销,每件夹克按成本价提高50%后标价,后因季节关系按标价的8折出售,每件以168元卖出,这批夹克每件的成本价是()A.80元B.84元C.140元D.100元答案:C解析:解答:设这批夹克每件的成本价是x元,依题意得:(1+50%)×0.8x=168,解得:x=140.即这批夹克每件的成本价是140元.故选:C.分析:设这批夹克每件的成本价是x元,然后按照成本价×(1+50%)×0.8=60列出方程,解方程就可以成本价.14.购买一本书,打八折比打九折少花2元钱,那么这本书的原价是()A.10B.15C.20D.25解析:解答:设原价为x元,由题意得:0.9x-0.8x=2解得x=20.故选:C.分析:等量关系为:打九折的售价-打八折的售价=2.根据这个等量关系,可列出方程,再求解.15.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?()A.35人B.40人C.45人D.50人答案:C解析:解答:设有x名学生,根据书的总量相等可得:3x+20=4x-25,解得:x=45.故选:C.分析:可设有x名学生,根据总本数相等和每人分3本,剩余20本,每人分4本,缺25本可列出方程,求解即可.二、填空题16.一家商店某种裤子按成本价提高50%后标价,又以八折以后出卖,结果每条裤子获利10元,则是这条裤子的成本是______.答案:50元.解析:解答:设这种裤子的成本是x元,由题意得:(1+50%)x×80%-x=10,解得:x=50,故答案为:50元.分析:设这种裤子的成本是x元,标价为(1+50%)x,根据题意可得等量关系:标价×八折-进价=利润,根据等量关系列出方程即可.17.如图是一个玩具火车轨道,A点有个变轨开关,可以连接B或C.小圈轨道的周长是1.5米,大圈轨道的周长是3米.开始时,A连接C,火车从A点出发,按照顺时针方向再轨道上移动,同时变轨开关每隔一分钟变换一次轨道连接.若火车的速度是每分钟10米,则火车第10次回到A点时用了______分钟.答案:2.1解析:解答:第一分钟走10米.这样走AC轨道,经过了3次A点,距离A点1米,然后开通AB轨道,会向A点前进,就是说要在1.2分钟才能第4次经过4次A点,在经过0.8分钟,会经过10×0.8÷1.5会经过5次,还会超过A点0.5米,再开通AC轨道,只需0.1分钟就能走完AB轨道再从AC轨道前进.所以一共要走的距离为4×3+6×1.5=21米.设需要时间为x,则得到方程:10x=21解得:x=2.1答:需要时间为2.1分钟.分析:要求用多少时间,就要理解本题的等量关系,本题中注意在AC轨道上,如果变轨开关突然改成AB轨道,也会走到A点再走AB轨道.18.一列匀速前进的火车,从它进入600米的隧道到离开,共需30秒,又知在隧道顶部的一盏固定的灯发出的一束光线垂直照射火车5秒,则这列火车的长度是______米.答案:120解析:解答:设这列火车的长度是x米.由题意得:(600+x)÷30=x÷5,解得:x=120.∴这列火车的长度是120米.分析:等量关系为:(隧道长度+火车长度)÷30=火车长度÷5.19.元旦节日期间,百货商场为了促销,对某种商品按标价的8折出售,仍获利160元,若商品的标价为2200元,那么它的成本为______元.答案:1600解析:解答:设它的成本是x元,由题意得:2200×80%-x=160,解得:x=1600,故答案为:1600.分析:首先设它的成本是x元,则售价是0.8x元,根据售价-进价=利润可得方程2200×80%-x=160,再解方程即可.20.一只船沿河顺水而行的航速为30千米/小时,若按同样的航速在该河上顺水航行3小时和逆水航行5小时的航程相等,则此船在该河上顺水漂流半小时的航程为______千米.答案:3解析:解答:设船在静水中的速度为x km/时,则水的流速为(30-x)千米/小时,根据题意得5[x-(30-x)]=30×3,解得x=24,所以30-x=6,6×12=3.答:此船在该河上顺水漂流半小时的航程为3千米.故答案为:3.分析:设船在静水中的速度为x km/时,则水的流速为(30-x)千米/小时,根据速度公式和同样的航速在该河上顺水航行3小时和逆水航行5小时的航程相等得到5[x-(30-x)]=30×3,解得x=24,则30-x=6,然后计算6×12即可.三、解答题21.有一些分别标有3,6,9,12…的卡片,后一张卡片上的数比前一张卡片上的数大3,小华拿到了相邻的5张卡片,这些卡片之和为150.(1)小华拿到了哪5张卡片?答案:24,27,30,33,36解答:(1)设中间的卡片上的数为x,则左边两数为x-3,x-6,右边两数为x+3,x+6,根据题意得:(x-6)+(x-3)+x+(x+3)+(x+6)=150,解得x=30,则五数分别为:24,27,30,33,36;(2)你能拿到5张相邻卡片,使得这些卡片上的数之和为100吗?答案:不可能拿到满足条件的5张卡片.解答; 设这5张卡片为x-6,x-3,x,x+3,x+6,则5x=100,即x=20由于20不是3的倍数,所以不可能拿到满足条件的5张卡片.解析:分析:(1)可设中间的卡片上的数为x,则左边两数为x-3,x-6,右边两数为x +3,x+6;根据五数之和为150列出方程求解即可.(2)同(1)理求得中间数的解,再判断符合不符合题意即可.22.王强参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程,又以4米/秒的速度跑完了其余的路程,一共花了10分钟,王强以6米/秒的速度跑了多少米?答案:1800米.解析:解答:解法1:设王强以6米/秒速度跑了x米,那么以4米/秒速度跑了(3000-x)米.根据题意列方程:30001060 64x x-+⨯=去分母得:2x+3(3000-x)=10×60×12.去括号得:2x+9000-3x=7200.移项得:2x-3x=7200-9000.合并同类项得:-x=-1800.化系数为1得:x=1800.解法二:设王强以6米/秒速度跑了x秒,则王强以4米/秒速度跑了(10×60-x)秒.根据题意列方程6x+4(10×60-x)=3000,去括号得:6x+2400-4x=3000.移项得:6x-4x=3000-2400.合并同类项得:2x=600.化系数为1得:x=300,6x=6×300=1800.答:王强以6米/秒的速度跑了1800米.分析:若设王强以6米/秒的速度跑了x米,则根据总时间=以6米/秒的速度跑的时间+以4米/秒的速度跑的时间列出方程即可.23.A、B两地相距450千米,甲,乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过多少小时两车相距50千米相遇?答案:经过2小时或2.5小时相距50千米相遇.解答:设第一次相距50千米时,经过了x小时.(120+80)x=450-50x=2.设第二次相距50千米时,经过了y小时.(120+80)y=450+50y=2.5经过2小时或2.5小时相距50千米相遇.解析:分析:应该有两种情况,第一次应该还没相遇时相距50千米,第二次应该是相遇后交错离开相距50千米,根据路程=速度×时间,可列方程求解.24.某种商品进货后,零售价定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%(相对于进价),问这种商品的进价为多少元?答案:700元.解答:设进价为x元,可列方程:x×(1+10%)=900×90%-40,解得:x=700,答:这种商品的进价为700元.解析:分析:通过理解题意可知商店按零售价的九折且让利40元销售即销售价=900×90%-40,得出等量关系为x×(1+10%)=900×90%-40,求出即可.25.一份数学竞赛试卷有20道选择题,规定做对一题得5分,一题不做或做错■■■■(此处因印刷原因看不清楚).文文做对了16道,但只得了74分,这是为什么?答案:一题不做或做错扣1.5分解答:设一题不做或做错扣x分,则16×5-(20-16)x=74,解得:x=1.5答:一题不做或做错扣1.5分.解析:分析:文文做对了16道,做对一题得5分.按说应该得80分,但只得了74分.说明一题不做或做错要扣分.本题可根据得分情况来列等量关系.得分-扣分=74,即74=5×对的题数-x×错的题数.。
七年级数学5.5“希望工程”义演(用)优秀课件

方案1
方案2
等量关系:邮票总张数相等 解:设这个班有学生x人, 依据题意得 3x+24=4x-26. 解,得 x=50 此时,3x+24=150+24=174(张). 答:共有学生50人,邮票174张.
练习2:某工厂三个车间共有180人,第二车间人数是 第一车间 人数的3倍还多1人,第三车间人数是第一车 间人数的 一半还少1人,三个车间各有多少人?
等量关系:1、三个车间的人数和=180人 2、二车间的人数=3×一车间的人数+1 3、三车间的人数=0.5×一车间的人数-1
解:设第一车间有x人, 那么第二车间有(3x+1)人, 第三车间有x-1)人. 依题意得 x+3(x+1)+x-1)=180.
1.两个未知量,两个等量关系,如何列方程; 2.寻找中间量; 3.学会用表格分析数量间的关系.
例1:某文艺团体为“希望工程〞募捐义演, 成人票8元,学生票5元.
如果本次义演共售出1000张票,筹得票款6950元, 成人票与学生票各售出多少张?
分析:此题中存在2个等量关系:
总票数=成人总票数+学生总票数;
总票款=成人总票款+学生总票款.
方法1分析:列表
学生
成人
票数(张)
票款(元)
学生
票数(张)
变式:如果票价不变,那么售出1000张票所得的 票款可能是6930元吗?
票数(张) 票款(元)
学生
成人
例1:某文艺团体为“希望工程〞募捐义演, 成人票8元,学生票5元.
变式:如果票价不变,那么售出1000张票所得的 票款可能是6930元吗?
解:设售出学生票为x张, 那么成人票〔1000-x)张 依题意得 5x+8(1000-x) =6930. 解,得 x= 356 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
www.第四色.com
[单选]信息经济核算法是由()经济学家马克卢普提出的。A.英国B.法国C.美国D.日本 [单选]行政补偿的目的是()。A.为了弥补私人为公共利益所付出的特别牺牲B.为了使公民获得充分补偿C.取得私人财产利益所有权补偿D.为了公共利益而实施管理行为 [单选]21-三体综合征属于()A.染色体疾病B.单基因遗传病C.多基因遗传病D.免疫缺陷病E.遗传代谢病 [问答题,简答题]甄选销售人员的程序? [单选,B1型题]持续存在的局限性干啰音的疾病是()A.支气管内膜结核B.心源性哮喘C.支气管肺炎D.慢性支气管炎E.支气管哮喘 [名词解释]芽的晚熟性 [单选]在骨关节炎与类风湿关节炎的鉴别要点中,以下最具鉴别意义的是()A.发病年龄不同B.性别比例不同C.是否有晨僵D.类风湿因子是否阳性E.关节X线表现不同 [单选]“拟请”“报请”“恳请”为公文的()语式。A.承启B.引叙C.经办D.期请 [单选,A1型题]医疗机构从业人员行为规范适用人员包括()A.管理人员B.医护人员C.药学技术人员与医技人员D.其他人员E.以上都是 [单选,A1型题]下肢静脉曲张晚期的临床表现中最主要的是()A.皮肤厚硬B.色素沉着C.小腿水肿D.局部瘙痒E.小腿下1/3内侧溃疡 [多选]直接融资是指没有金融中介介入的资金融通,主要包括()等。A.融资租赁B.发行企业债券C.发行短期融资券D.委托贷款E.发行中期票据 [单选]下列各项不属于处理农村土地承包纠纷原则的是()。A.依法调处B.维护农民土地承包权益C.保证农业正常生产D.以司法解决方式为主 [单选]中度以上支气管扩张病人适当而有效的治疗方案()A.病变局限于一肺段、一叶或多段者,可作肺段或肺叶切除B.应用抗生素治疗感染C.体位引流排除脓液D.一般支持疗法E.以上均不正确 [判断题]玻璃、陶瓷、纸、塑料、碳等都是绝缘材料。()A.正确B.错误 [判断题]单向离合器又称为自由轮机构、超越离合器,其功用是实现导轮的单向锁止,即导轮只能顺时针转动而不能逆时针转动,使得液力变矩器在高速区实现偶合传动。()A.正确B.错误 [单选]残疾人个人提供加工、修理修配劳务的可以免征()?A.营业税B.增值税C.个人所得税D.印花税 [填空题]酿酒用的葡萄,果皮中含有()和()两种有效物质。 [单选]人体的血液循环路径是().A、左心室—动脉—毛细血管—静脉—右心房B、左心室—静脉—毛细血管—动脉—右心房C、右心房—动脉—毛细血管—静脉—左心室 [单选]在腰肌劳损的治疗方法中,不正确的是()A.注意休息,防止再发病B.加强功能锻炼,练习弯腰持物的力量C.疼痛部位进行理疗D.疼痛剧烈,痛点可注射肾上腺皮质类固醇E.疼痛严重可口服止痛药物 [判断题]在重整期间,经债务人申请,人民法院批准,债务人可以在管理人的监督下自行管理财产和营业事务。A.正确B.错误 [名词解释]拉面罩(FACEMASK) [单选]分包工程发包人没有将其承包的工程进行分包,在施工现场所设项目管理机构的①项目负责人、②技术负责人、③项目核算负责人、④质量管理人员、⑤安全管理人员不是工程承包人本单位人员的,视同()。A.肢解发包B.劳务分包C.再分包D.允许他人以本企业名义承揽工程 [多选]下列关于着作权主体的说法中,正确的有()。A.招标文件属于单位作品,着作权完全归单位所有B.单位作品的作者是单位,而职务作品的作者是个人C.一般情况下,职务作品的着作权由作者享有D.职务作品的作者可以许可第三人使用该作品E.委托作品的着作权属于委托人。 [单选]A企业购建一条新的生产线,该生产线预计可以使用5年,估计每年年末的现金净流量为25万元。假设年利率为12%,则该生产线未来现金净流量的现值为()万元。[已知(P/F,12%,5)=0.5674,(P/A,12%,5)=3.6048]A.14.19B.90.12C.92D.100 [单选]按照《注册建造师管理规定》,下列中不予注册的情形是()。A.申请人年近花甲,已达59岁高龄B.因执业活动受到刑事处罚,自处罚执行完毕之日起至申请注册之日已满3年C.被吊销注册证书,自处罚决定之日起至申请注册之日止已经满2年D.申请人申请注册之日止4年前担任项目经 [单选]下列哪项不是寒冷疗法的作用机制()A.开始血管收缩,继之血管扩张B.降低毛细血管壁通透性C.降低新陈代谢(抑制炎症)D.始疼痛减轻,继之加重疼痛(如寒冷、麻醉、止痛)E.降低肌肉活动性(抑制肌肉痉挛) [单选,A3型题]3岁小儿,请判断其各种能力的正常状态。有关思维能力的发展,正常的是()A.产生萌芽状态的表象B.逐步发展其具体形象思维C.感知动作思维D.操纵动作的思维E.思维活动占主导地位 [单选]引起呼吸衰竭最常见的疾病是A.肺炎B.肺结核C.自发性气胸D.慢性阻塞性肺病E.支气管肺癌 [单选]患者多处骨折,结合颈部超声图像,最可能的诊断是()A.甲状腺瘤B.甲状旁腺瘤C.甲状旁腺增生D.甲状旁腺癌E.甲状腺炎 [单选]以下不属于工程监理依据的是()。A.法律法规B.承包合同约定的推荐性标准C.设计文件D.监理合同 [单选]产后恢复排卵时间为()A.不哺乳产妇恢复排卵时间平均为产后12周B.哺乳产妇恢复排卵时间平均为产后8周C.哺乳产妇恢复排卵时间平均为产后6~8个月D.哺乳产妇恢复排卵时间平均为产后2~4个月E.以上都不是 [单选,A1型题]五倍子鞣质从结构上看属于()A.没食子鞣质B.逆没食子鞣质C.可水解鞣质低聚体D.咖啡鞣质E.缩合鞣质 [单选]关于经济法的本质,下列说法不正确的是()。A.经济法是平衡协调法B.经济法是权力本位法C.经济法是以公为主、公私兼顾的法D.经济法是经济民主和经济集中对立统一法 [单选]()是中世纪建筑艺术的巅峰,其代表作在法国有巴黎圣母院教堂、夏特尔教堂,在德国有科隆大教堂,在意大利有著名的米兰大教堂。A.哥特式建筑B.罗马式建筑C.希腊式建筑D.拜占庭式建筑 [单选]氧气输送管道上每个阀门法兰之间跨接导线,并保证跨接电阻小于()Ω。A、0.01B、0.02C、0.03D、0.04 [单选]近年来,减轻农民负担工作的重点相应转入到()。A.巩固农村税费改革成果、有效防止反弹阶段B.实施税费改革阶段C.工业反哺农业阶段D.实施农业补贴阶段 [单选]要定量检测人血清中的生长激素,采用的最佳免疫检测法是()A.免疫荧光法B.免疫酶标记法C.细胞毒试验D.放射免疫测定法E.补体结合试验 [单选,A2型题,A1/A2型题]腹内实质性脏器病变宜先采用何种检查()A.透视B.摄片CTD.B超E.脑血管造影 [单选,A2型题,A1/A2型题]关于慢性粒细胞白血病下列说法不正确的是().A.急变期仍然按慢性期治疗B.90%以上可查到Ph染色体C.NAP积分最低D.WBC高,脾大为突出特征E.嗜酸、嗜碱性粒细胞易见 [单选,A2型题,A1/A2型题]所有卒中患者溶栓前都必须做的辅助检查是()A.平扫脑CT或脑MRIB.肝功化验C.脑电图D.动脉血气分析E.凝血常规