小学数学归一归总问题总结
小学数学典型应用题归一和归总问题

小学数学典型应用题归一和归总问题归一问题含义:在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
数量关系:总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数。
解题思路和方法:先求出单一量,以单一量为标准,求出所要求的数量。
例题1:3头牛4天吃了24千克的草料,照这样计算5头牛6天吃草_____千克。
解:1、根据题意先算出1头牛1天吃草料的质量:24÷3÷4=2(千克)。
2、那么5头牛一天吃2×5=10(千克)的草料。
3、那么6天就能吃10×6=60(千克)草料。
例题2:5名同学8分钟制作了240张正方形纸片。
如果每人每分钟制作的数量相同,并且又来了2位同学,那么再过15分钟他们又能做_____张正方形纸片?解:1、可以先算出5名同学1分钟能制作正方形纸片的数量,240÷8=30(张)。
2、再算出1名同学1分钟制作的数量,30÷5=6(张)。
3、现在有5+2=7(名)同学,每人每分钟做6张,要做15分钟,那么他们能做7×6×15=630(张)正方形纸片。
例题3:某车间用4台车床5小时生产零件600个,照这样计算,增加3台同样的车床后,如果要生产6300个零件,需要_____小时完成?解:1、4台车床5小时生产零件600个,则每台车床每小时生产零件600÷4÷5=30(个)。
2、增加3台同样的车床,也就是4+3=7(台)车床,7台车床每小时生产零件7×30=210(个)。
3、如果生产6300个零件,需要6300÷210=30(小时)完成。
归总问题含义:解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时走的总路程等。
小学数学_归一及归总问题__图文

150 .. 5 8 150 或 150 .. 5 (8 5)
练5:看图填数 (1)甲站
3小时行27千米
2小时
乙站
( 45 )千米
(2)甲站
( )小时
5小时行50千米
乙站
110千米
• 【例题1】有一种幻灯机放映机,5秒钟可 以放映40张幻灯片。照这样计算,48秒钟 可以放映幻灯片多少张?
2.红红的妈妈早晨在菜场买了4斤青菜用了8角
钱,食堂的王阿姨想买12斤同样的青菜,需要多
少钱?
4斤青菜
8角
12斤青菜
?角
8÷4=2(角) 2×12=24 (角)
答:需要带24角钱.
想一想、做一做
3.一辆汽车4小时行了280千米.这辆汽车从甲
城到乙城一共行了7小时,甲、乙两城之间相
距多少千米? 4小时
分析与解:要求48秒钟可以放映幻灯片多 少张,首先要先求出1秒钟能放多少张幻 灯片。 解答:40÷5×48=388(张) 答: 48秒钟可以放映幻灯片388张
• 【例题2】 王叔叔养了4头奶牛,5天产牛奶 40千克,照这样计算,8头奶牛10天可产牛 奶多少千克?
•
分析:以1头奶牛1天产的牛奶为单一量。
准备题1 同学们参加建校劳动,王刚4次搬砖20块。照这样计算,
7次搬砖多少块?
例2 同学们参加建校劳动,王刚4次搬砖20块。照这样计算,
他再. 搬3次,一. 共. 搬砖多少块?
想: 每次搬的块数
一共搬的次数 = 一共搬的块数
20块 .. 4次
4次 + 3次
20 .. 4 (4 + 3)
想一想:还有别的解法吗?
小学应用题类型——归一归总问题

归一归总问题知识点拨知识点说明:一、归一问题归一问题是一类典型应用题,这类问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题,解答归一问题的方法叫做归一法。
归一问题可以分为两种:一种是求总量的,求出一个单位量之后,然后利用乘法求出结果,这种问题叫做正归一问题(也称正归一);如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?解决此类问题的关键是先求出单位数量,再求几个单位数量是多少;另一种是求份数的,求出一个单位量后,再用包含除法求出所求的结果,这类问题叫做反归一问题(也称反归一)。
如:修路队6小时修路180千米,照这样,修路240千米需几小时?解决此类问题的关键是先求出单位数量,再求一共包含多少个单位数量?正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,反归一是求包含多少个单一量.解答归一问题的关键是求出单位量的数值,再根据题中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。
有的问题一次归一不能解决,需要两次归一或与倍比相结合才能解决。
归一问题的基本关系式:总工作量=每份的工作量(单一量)⨯份数 (正归一)份数=总工作量÷每份的工作量(单一量) (反归一)每份的工作量(单一量) =总工作量÷份数二、归总问题与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果.所谓“总量”是指总路程、总产量、工作总量、物品的总价等.归一问题【例1】一只小蜗牛6分钟爬行12分米,照这样的速度,30分钟爬行多少分米?解析:本题属于正归一,有两种解题思想﹙方法一﹚归一思想:为了求出蜗牛30分钟爬多少分米,必须先求出1分钟爬多少分米﹙单一数﹚,“照这样的速度”说明小蜗牛每分钟爬行的速度是相等的,然后以这个数目为依据按要求算出结果。
归一问题口诀总结

归一问题口诀总结
归一问题口诀总结如下:
1.解题口诀:解题口诀要牢记,归一问题用比例。
2.解题方法:先求出单一量,再求出对应的总量。
例如,我们可以这样解释:
归一问题,就是将一个量分成若干份,求出其中一份的数量。
比如,我们有一个苹果,要将其分成若干份,每份的数量是相同的。
如果我们知道每份的数量和份数,就可以求出总共有多少个苹果。
在解题时,我们可以先找到单一量,也就是每份的数量。
然后,我们可以根据比例关系,求出对应的总量。
比如,如果每份有1/3个苹果,那么6份就有2个苹果。
此外,我们还可以通过其他方式来解决归一问题。
比如,我们可以使用代数方法,将一个量表示为另一个量的函数。
我们还可以使用方程式来求解归一问题。
总之,归一问题是数学中常见的问题之一。
通过掌握解题口诀和方法,我们可以轻松地解决这类问题。
同时,我们还需要掌握其他数学知识和技能,以便更好地解决各种数学问题。
三年级数学归一问题和归总问题

一、引言在三年级数学课程中,归一问题和归总问题是两个常见而重要的概念。
通过这两个概念,学生可以培养归纳和总结的能力,培养逻辑思维和解决问题的能力。
本文将对三年级数学中的归一问题和归总问题进行介绍和解析,以帮助学生更好地理解和掌握这些概念。
二、归一问题1.1 什么是归一问题归一问题是指将一个整体分解成若干个部分,然后按照一定的规律重新组合成原来的整体。
在这个过程中,学生需要观察、分析和归纳,培养逻辑思维和解决问题的能力。
1.2 归一问题的例子举例来说,假如一个盒子里有12颗糖果,老师让学生分成三组,每组有几颗糖果,这就是一个典型的归一问题。
学生需要计算出每组有几颗糖果,然后将它们重新组合成原来的12颗糖果。
1.3 归一问题的解决方法学生可以通过绘图、列式、分组或其他方法来解决归一问题。
在解决问题的过程中,学生需要注意观察规律,运用数学知识进行分析和计算,最终得出正确答案。
三、归总问题2.1 什么是归总问题归总问题是指将一些零散的信息或现象按照一定的规律进行总结和分类,以便更好地理解和掌握这些信息或现象。
通过归总,学生可以培养整理和总结的能力,培养系统性思维和分析问题的能力。
2.2 归总问题的例子举例来说,假如老师让学生总结小学三年级所有学过的数字,包括自然数、负数、小数、分数等,这就是一个典型的归总问题。
学生需要按照不同的规律进行分类和总结,以便更好地理解和记忆这些数字。
2.3 归总问题的解决方法学生可以通过绘图、表格、分类、总结或其他方法来解决归总问题。
在解决问题的过程中,学生需要注意分类规律,进行信息整合和比对,最终得出清晰和系统的总结结果。
四、归一问题和归总问题的通信3.1 归一问题和归总问题的共同点归一问题和归总问题都需要学生观察、分析、归纳和总结,培养学生的逻辑思维和解决问题的能力。
在解决这些问题的过程中,学生需要动脑筋、灵活思维,注重细节和整体,积极探索和实践,从而培养全面发展的学习能力。
小升初数学《归一问题和归总问题》PPT重点知识课件

正
=30 ÷2 ×20 × 5 =15 ×20 × 5
解
=1500(个)
答:可以生产机器
零件1500个。
易错2
四年级同学排队做广播操,每行排15人,正 好排8行。如果每行少排5人,可以排多少行?
错解
15 ×8 ÷5 =120 ÷5 =24(行) 答:可以排24行。
分析
正确理解题意, “每行少排5人”, 而不是“每排5人”。
重点3
归总问题
解题时先找出 “总数量”,然后 再根据其他条件得 出所求的问题,叫 做归总问题。
所谓“总数量” 是指总路程、总 产量、工作总量、 物品的总价等。
重点4
归总问题的数量关系
每份的量×份数=总量 总量÷每份的量=份数 总量÷份数=每份的量
源题解析
题1
甲、乙两城相距490千米,一辆汽车4小时行了280 千米。照这样计算,从甲城到乙城一共行了几小时?
12×10÷8 =120 ÷8 =15(米) 答:每天修15米.
易错点拨
易错1 18台车床2小时生产机器零件540件,照这样计算,
20台这样的车床5小时可以生产机器零件多少件?
错解:
540 ÷ 18 ×20=600(个)
解析:
先求1台车 床1小时生 产的零件个 数。
540 ÷ 18 ÷2 ×20 × 5
正解
15 ×8 ÷(15-5) = 15 ×8 ÷10 =120 ÷10 =12(行) 答:可以排12行。
归纳总结
准,求出所要 求的量。
归总问题
先求出总数量,再根 据题题,求出所要求 的量。
本课结束
4小时280千米
甲
乙
490千米?小时
先求每小时行了多少千 米,再求一共行了几小时。
四年级数学归一问题、归总问题例题思路也练习题

四年级数学归一问题、归总问题例题思路也练习题1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
【例1】买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解:(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
【例2】3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解:(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。
【例3】5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解:(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。
2、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
三年级上册数学 《归一归总问题》必考题型

三年级上册数学
《归一归总问题》必考题型
一、归一问题:知多求少,用除法
例:小松鼠吃坚果,给5只松鼠7天准备350个坚果,每只每天吃的一样多,每只小松鼠每天吃多少坚果? 5只7天:350个
5只1天:350÷7=50(个)
1只1天:50÷5=10(个)
二、归总问题:知少求多,用乘法
例:1只小马1天吃了3捆草,照这样计算,3只小马4天吃多少捆草?
1只1天:3捆
3只1天:3×3=9(推)
3只4天:9×4=36(捆)
三、归一又归总问题
例:3人5小时种150棵树,照这样计算,6人7小时种多少棵树?
3人5小时:150棵
1人1小时:150÷3÷5=10(棵)
6人7小时:10×6×7=420(棵)
四、当除不开时,利用倍数关系解决问题
例:张爷爷家养了5头奶牛,3天生产牛奶100千克,照这样计算,10头奶牛9天可生产牛奶多少千克? 5头3天:100千克 10÷5=2 9÷
10头9天:108×3×2=320(千克)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学归一归总问题总结一、问题描述
归一问题:单一量不变
归总问题:总量不变
二、处理方法
抓不变量(归一、归总、倍比)
三、例题
1、15元5个包子,照这样计算,30个包子多少钱?分析:包子单价不变,归一问题。
方法一:归一法,先求单一量。
15÷5=3(元)
30×3=90(元)
方法二:倍比法,先求倍数。
90÷5=6
15×6=90(元)
2、15元5个包子,照这样计算,30元能买几个包子?分析:包子单价不变,归一问题。
方法一:归一法
15÷5=3(元)
30÷3=10(个)
方法二:倍比法
30÷15=2
5×2=10(元)
3、一本书每天看3页,30天能看完。
如果每天看6页,多少天能看完?
分析:书的总页数不变,归总问题。
方法一:归总法
30×3=90(页)
90÷6=15(天)
方法二:倍比法
6÷3=2
30÷2=15(天)
4、一本书每天看3页,30天能看完。
如果要10天看完,平均每天看多少页?
分析:书的总页数不变,归总问题。
方法一:归总法
30×3=90(页)
90÷10=9(页)
方法二:倍比法
30÷10=3
3×3=9(页)
小结:
1、倍比法一般用于相关量是整数倍时,且一般用于归一问题,归总问题相关量成反比,较难理解,故运用减少。
2、归一、归总问题虽较简单,但也特别易错,尤其是归一问题第二步乘除的判断,一定要好好理解题意。
3、归一、归总问题主要体现了“抓不变量”的思想,在处理许多其它问题时也会用到。