最新初中数学锐角三角函数的技巧及练习题

最新初中数学锐角三角函数的技巧及练习题
最新初中数学锐角三角函数的技巧及练习题

最新初中数学锐角三角函数的技巧及练习题

一、选择题

1.如图,某建筑物的顶部有一块标识牌CD,小明在斜坡上B处测得标识牌顶部C的仰角为 45°,沿斜坡走下来在地面A处测得标识牌底部D的仰角为 60°,已知斜坡AB的坡角为30°,AB=AE=10 米.则标识牌CD的高度是( )米.

A.15-53B.20-103C.10-53D.53-5

【答案】A

【解析】

【分析】

过点B作BM⊥EA的延长线于点M,过点B作BN⊥CE于点N,通过解直角三角形可求出BM,AM,CN,DE的长,再结合CD=CN+EN?DE即可求出结论.

【详解】

解:过点B作BM⊥EA的延长线于点M,过点B作BN⊥CE于点N,如图所示.

在Rt△ABE中,AB=10米,∠BAM=30°,

∴AM=AB?cos30°=3BM=AB?s in30°=5(米).

在Rt△ACD中,AE=10(米),∠DAE=60°,

∴DE=AE?tan60°=3

在Rt△BCN中,BN=AE+AM=10+3CBN=45°,

∴CN=BN?tan45°=10+3(米),

∴CD=CN+EN?DE=10+33=3

故选:A.

【点睛】

本题考查了解直角三角形?仰角俯角问题及解直角三角形?坡度坡脚问题,通过解直角三角形求出BM,AM,CN,DE的长是解题的关键.

2.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再一次折叠纸片,使点A落在EF上的点A′处,并使折痕经过点B,得到折痕BM,若矩形纸片的宽AB=4,则折痕BM的长为( )

A.83

3

B.

43

3

C.8 D.83

【答案】A 【解析】【分析】

根据折叠性质可得BE=1

2

AB,A′B=AB=4,∠BA′M=∠A=90°,∠ABM=∠MBA′,可得∠

EA′B=30°,根据直角三角形两锐角互余可得∠EBA′=60°,进而可得∠ABM=30°,在Rt△ABM 中,利用∠ABM的余弦求出BM的长即可.

【详解】

∵对折矩形纸片ABCD,使AD与BC重合,AB=4,

∴BE=1

2

AB=2,∠BEF=90°,

∵把纸片展平,再一次折叠纸片,使点A落在EF上的点A’处,并使折痕经过点B,∴A′B=AB=4,∠BA′M=∠A=90°,∠ABM=∠MBA′,

∴∠EA′B=30°,

∴∠EBA′=60°,

∴∠ABM=30°,

∴在Rt△ABM中,AB=BM?cos∠ABM,即4=BM?cos30°,

解得:BM=83

3

故选A.

【点睛】

本题考查了折叠的性质及三角函数的定义,折叠前后,对应边相等,对应角相等;在直角三角形中,锐角的正弦是角的对边比斜边;余弦是角的邻边比斜边;正切是角的对边比邻边;余切是角的邻边比对边;熟练掌握相关知识是解题关键.

3.在课外实践中,小明为了测量江中信号塔A离河边的距离AB,采取了如下措施:如

图在江边D 处,测得信号塔A 的俯角为40?,若55DE =米,DE CE ⊥,36CE =米,CE 平行于AB ,BC 的坡度为1:0.75i =,坡长140BC =米,则AB 的长为( )(精确到0.1米,参考数据:sin 400.64?≈,cos400.77?≈,tan 400.84?≈)

A .78.6米

B .78.7米

C .78.8米

D .78.9米

【答案】C

【解析】

【分析】 如下图,先在Rt △CBF 中求得BF 、CF 的长,再利用Rt △ADG 求AG 的长,进而得到AB 的长度

【详解】

如下图,过点C 作AB 的垂线,交AB 延长线于点F ,延长DE 交AB 延长线于点G

∵BC 的坡度为1:0.75

∴设CF 为xm ,则BF 为0.75xm

∵BC=140m

∴在Rt △BCF 中,()2220.75140x x +=,解得:x=112

∴CF=112m ,BF=84m

∵DE ⊥CE ,CE ∥AB ,∴DG ⊥AB ,∴△ADG 是直角三角形

∵DE=55m ,CE=FG=36m

∴DG=167m ,BG=120m

设AB=ym

∵∠DAB=40°

∴tan40°=1670.84120

DG AG y ==+ 解得:y=78.8

故选:C

【点睛】

本题是三角函数的考查,注意题干中的坡度指的是斜边与水平面夹角的正弦值.

4.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()

A.πB.2πC.3πD.(31)π

+

【答案】C

【解析】

【分析】

由三视图可知:该几何体是一个圆锥,其轴截面是一个高为3的正三角形.可计算边长为2,据此即可得出表面积.

【详解】

解:由三视图可知:该几何体是一个圆锥,其轴截面是一个高为3的正三角形.

∴正三角形的边长

3

2 sin60

==

?

∴圆锥的底面圆半径是1,母线长是2,∴底面周长为2π

∴侧面积为1

222

2

ππ

??=,∵底面积为2r

ππ

=,

∴全面积是3π.

故选:C.

【点睛】

本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.

5.如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于()

A.3

5

B.

4

5

C.

3

4

D.

4

3

【答案】C 【解析】

试题分析:如答图,过点O 作OD ⊥BC ,垂足为D ,连接OB ,OC ,

∵OB=5,OD=3,∴根据勾股定理得BD=4.

∵∠A=12∠BOC ,∴∠A=∠BOD. ∴tanA=tan ∠BOD=

43BD OD =. 故选D .

考点:1.垂径定理;2.圆周角定理;3.勾股定理;4.锐角三角函数定义.

6.如图,在等腰直角△ABC 中,∠C =90°,D 为BC 的中点,将△ABC 折叠,使点A 与点D 重合,EF 为折痕,则sin ∠BED 的值是( )

A 5

B .35

C .22

D .23

【答案】B

【解析】

【分析】

先根据翻折变换的性质得到DEF AEF ???,再根据等腰三角形的性质及三角形外角的性质可得到BED CDF ∠=,设1CD =,CF x =,则2CA CB ==,再根据勾股定理即可求解.

【详解】

解:∵△DEF 是△AEF 翻折而成,

∴△DEF ≌△AEF ,∠A =∠EDF ,

∵△ABC 是等腰直角三角形,

∴∠EDF =45°,由三角形外角性质得∠CDF +45°=∠BED +45°,

∴∠BED =∠CDF ,

设CD =1,CF =x ,则CA =CB =2,

∴DF =FA =2﹣x ,

∴在Rt △CDF 中,由勾股定理得,

CF 2+CD 2=DF 2,

即x 2+1=(2﹣x )2, 解得:34x =, 3sin sin 5CF BED CDF DF ∴∠=∠=

=. 故选:B .

【点睛】 本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.

7.直角三角形纸片的两直角边长分别为6,8,现将ABC V 如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan CBE ∠的值是( )

A .247

B .7

C .724

D .13

【答案】C

【解析】

试题分析:根据题意,BE=AE .设BE=x ,则CE=8-x .

在Rt △BCE 中,x 2=(8-x )2+62,

解得x=254,故CE=8-254=74

, ∴tan ∠CBE=

724

CE CB =. 故选C. 考点:锐角三角函数.

8.如图,在矩形ABCD 中,BC =2,AE ⊥BD ,垂足为E ,∠BAE =30°,则tan ∠DEC 的值是( )

A .1

B .12

C 3

D 3【答案】C

【解析】

先根据题意过点C 作CF ⊥BD 与点F 可求得△AEB ≌△CFD (AAS ),得到AE =CF =1,EF =323-=33,即可求出答案 【详解】 过点C 作CF ⊥BD 与点F .

∵∠BAE =30°,

∴∠DBC =30°,

∵BC =2,

∴CF =1,BF =3 ,

易证△AEB ≌△CFD (AAS )

∴AE =CF =1,

∵∠BAE =∠DBC =30°, ∴BE =3 AE =3, ∴EF =BF ﹣BE =3 ﹣

3=233 , 在Rt △CFE 中,

tan ∠DEC =323CF

EF ==, 故选C .

【点睛】

此题考查了含30°的直角三角形,三角形全等的性质,解题关键是证明所进行的全等

9.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点B ,取145ABD ∠=o ,500BD m =,55D ∠=o ,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( )

A .500sin55m o

B .500cos55m o

C .500tan55m o

D .500cos55

m o 【答案】B

【解析】

根据已知利用∠D的余弦函数表示即可.【详解】

在Rt△BDE中,cosD=DE BD

∴DE=BD?cosD=500cos55°.

故选B.

【点睛】

本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键.

10.如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取PA的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽PA等于()

A.100sin35°米B.100sin55°米C.100tan35°米D.100tan55°米

【答案】C

【解析】

【分析】

根据正切函数可求小河宽PA的长度.

【详解】

∵PA⊥PB,PC=100米,∠PCA=35°,

∴小河宽PA=PCtan∠PCA=100tan35°米.

故选:C.

【点睛】

此题考查解直角三角形的应用,解题关键在于掌握解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.

11.如图,河坝横断面的迎水坡AB的坡比为3:4,BC=6m,则坡面AB的长为()

A .6m

B .8m

C .10m

D .12m

【答案】C

【解析】

【分析】 迎水坡AB 的坡比为3:4得出3tan 4BAC ∠=,再根据BC =6m 得出AC 的值,再根据勾股定理求解即可.

【详解】

由题意得3tan 4BAC ∠=

∴468tan 3BC AC m BAC =

=?=∠ ∴22228610AB AC BC m =

+=+=

故选:C.

【点睛】 本题考查解直角三角形的应用,把坡比转化为三角函数值是关键.

12.如图,AB 是垂直于水平面的建筑物.为测量AB 的高度,小红从建筑物底端B 点出发,沿水平方向行走了52米到达点C ,然后沿斜坡CD 前进,到达坡顶D 点处,DC BC =.在点D 处放置测角仪,测角仪支架DE 高度为0.8米,在E 点处测得建筑物顶端A 点的仰角AEF ∠为27?(点A ,B ,C ,D ,E 在同一平面内).斜坡CD 的坡度(或坡比)1:2.4i =,那么建筑物AB 的高度约为( )

(参考数据sin 270.45?≈,cos270.89?≈,tan 270.51?≈)

A .65.8米

B .71.8米

C .73.8米

D .119.8米

【答案】B

【解析】

【分析】 过点E 作EM AB ⊥与点M ,根据斜坡CD 的坡度(或坡比)1:2.4i =可设CD x =,则2.4 CG x =,利用勾股定理求出x 的值,进而可得出CG 与DG 的长,故可得出EG 的长.由矩形的判定定理得出四边形EGBM 是矩形,故可得出EM BG =,BM EG =,再由锐角三角函数的定义求出AM 的长,进而可得出结论.

【详解】

解:过点E 作EM AB ⊥与点M ,延长ED 交BC 于G ,

∵斜坡CD 的坡度(或坡比)1:2.4i =,52BC CD ==米,

∴设DG x =,则 2.4 CG x =.

在Rt CDG ?中,

∵222DG CG DC +=,即222

(2.4)52x x +=,解得20x =,

∴20DG =米,48CG =米,

∴200.820.8EG =+=米,5248100BG =+=米.

∵EM AB ⊥,AB BG ⊥,EG BG ⊥,

∴四边形EGBM 是矩形,

∴100EM BG ==米,20.8BM EG ==米.

在Rt AEM ?中,

∵27AEM ?∠=,

∴?tan 271000.5151AM EM ?=≈?=米,

∴5120.871.8AB AM BM =+=+=米.

故选B .

【点睛】

本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.

13.如图所示,Rt AOB ?中,90AOB ∠=? ,顶点,A B 分别在反比例函数()10y x x =>与()50y x x

=-<的图象器上,则tan BAO ∠的值为( )

A.5

B.5C

25

D.10

【答案】B

【解析】

【分析】

过A作AC⊥x轴,过B作BD⊥x轴于D,于是得到∠BDO=∠ACO=90°,根据反比例函数的性质得到S△BDO=

5

2

,S△AOC=

1

2

,根据相似三角形的性质得到=5

OB

OA

=,根据三角函数的定义即可得到结论.

【详解】

解:过A作AC⊥x轴,过B作BD⊥x轴于D,

则∠BDO=∠ACO=90°,

∵顶点A,B分别在反比例函数()

1

y x

x

=>与()

5

y x

x

=-<的图象上,

∴S△BDO=

5

2

,S△AOC=

1

2

∵∠AOB=90°,

∴∠BOD+∠DBO=∠BOD+∠AOC=90°,

∴∠DBO=∠AOC,

∴△BDO∽△OCA,

251

5

22

BOD

OAC

S OB

S OA

??

==÷=

?

??

∴5

OB

OA

=,

∴tan∠BAO=5

OB

OA

=.

故选B.

【点睛】

本题考查了反比例函数的性质以及直角三角形的性质,三角形相似的判定和性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.

14.如图,在Rt ABC V 中,90ACB ∠=?,3tan 4B =

,CD 为AB 边上的中线,CE 平分ACB ∠,则AE AD

的值( )

A .35

B .34

C .45

D .67

【答案】D

【解析】

【分析】

根据角平分线定理可得AE :BE =AC :BC =3:4,进而求得AE =37

AB ,再由点D 为AB 中点得AD =

12AB ,进而可求得AE AD

的值. 【详解】 解:∵CE 平分ACB ∠,

∴点E 到ACB ∠的两边距离相等,

设点E 到ACB ∠的两边距离位h ,

则S △ACE =12AC·h ,S △BCE =12

BC·h , ∴S △ACE :S △BCE =

12AC·h :12

BC·h =AC :BC , 又∵S △ACE :S △BCE =AE :BE ,

∴AE :BE =AC :BC , ∵在Rt ABC V 中,90ACB ∠=?,3tan 4B =

, ∴AC :BC =3:4,

∴AE :BE =3:4

∴AE =37

AB , ∵CD 为AB 边上的中线, ∴AD =

12AB ,

∴3

6

7

17

2

AB

AE

AD AB

==,

故选:D.

【点睛】

本题主要考查了角平分线定理的应用及三角函数的应用,通过面积比证得AE:BE=AC:BC 是解决本题的关键.

15.如图,在平面直角坐标系中,四边形ABCD是菱形,点B的坐标是(0,4),点D的坐标是(83,4

),点M和点N是两个动点,其中点M从点B出发,沿BA以每秒2个单位长度的速度做匀速运动,到点A后停止,同时点N从点B出发,沿折线BC→CD以每秒4个单位长度的速度做匀速运动,如果其中一个点停止运动,则另一点也停止运动,设M,N两点的运动时间为x,△BMN的面积为y,下列图象中能表示y与x的函数关系的图象大致是()

A.B.C.D.

【答案】D

【解析】

【分析】

根据两个点的运动变化,写出点N在BC上运动时△BMN的面积,再写出当点N在CD上运动时△BMN的面积,即可得出本题的答案;

【详解】

解:当0

连接BD ,AC ,交于点O′,连接NM ,过点C 作CP ⊥AB 垂足为点P ,

∴∠CPB=90°,

∵四边形ABCD 是菱形,其中点B 的坐标是(0,4),点D 的坐标是(83,4), ∴BO ′=43,CO′=4, ∴

BC=AB=228O B O C +'=', ∵AC=8,

∴△ABC 是等边三角形,

∴∠ABC=60°,

∴CP=BC×sin60°=8×

3=43,BP=4, BN=4x ,BM=2x , 242BM x x BP ==,2

BN x BC =, ∴=BM BN BP BC

, 又∵∠NBM=∠CBP ,

∴△NBM ∽△CBP ,

∴∠NMB=∠CPB=90°,

∴114438322

CBP S BP CP =??=??=V ; ∴2NBM CBP S BN S BC ??= ???

V V , 即y=22

283=232NBM CBP BN x S S x BC ????=?=? ? ?????V V , 当2

∵四边形ABCD 是菱形,

∴AB ∥CD ,

∴3

BM=2x ,

∴y=11

=24343

22

BM NE x x ??=

g g;

故选D.

【点睛】

本题主要考查了动点问题的函数图象,掌握动点问题的函数图象是解题的关键.

16.将一副直角三角板如图放置,点C在FD的延长上,AB∥CF,∠F=∠ACB=90°,∠E =30°,∠A=45°,AC=122,则CD的长为()

A.43B.12﹣43C.12﹣63D.63

【答案】B

【解析】

【分析】

过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=60°,进而可得出答案.

【详解】

解:过点B作BM⊥FD于点M,

在△ACB中,∠ACB=90°,∠A=45°,AC=122,

∴BC=AC=122.

∵AB∥CF,

∴BM=BC×sin45°=

2 12212

2

?=

CM=BM=12,

在△EFD中,∠F=90°,∠E=30°,∴∠EDF=60°,

∴MD=BM÷tan60°=43,

∴CD=CM﹣MD=12﹣43.

故选B.

【点睛】

本题考查了解直角三角形,难度较大,解答此类题目的关键根据题意建立直角三角形利用所学的三角函数的关系进行解答.

17.如图,已知△A 1B 1C 1的顶点C 1与平面直角坐标系的原点O 重合,顶点A 1、B 1分别位于x 轴与y 轴上,且C 1A 1=1,∠C 1A 1B 1=60°,将△A 1B 1C 1沿着x 轴做翻转运动,依次可得到△A 2B 2C 2,△A 3B 3C 3等等,则C 2019的坐标为( )

A .(30)

B .(3,0)

C .(4035233

D .(30) 【答案】B

【解析】

【分析】

根据题意可知三角形在x 轴上的位置每三次为一个循环,又因为20193673÷=,那么2019C 相当于第一个循环体的3673C 个即可算出.

【详解】

由题意知,111C A =,11160C A B ?∠=,

则11130C B A ?∠=,11222A B A B ==,1122333C B C B C B ===

结合图形可知,三角形在x 轴上的位置每三次为一个循环,

Q 20193673÷=, ∴2019673(123)20196733OC =+=+, ∴2019C (20196733,0)+,

故选B .

【点睛】

考查解直角三角形,平面直角坐标系中点的特征,结合找规律.理解题目中每三次是一个循环是解题关键.

18.一艘轮船从港口O 出发,以15海里/时的速度沿北偏东60°的方向航行4小时后到达A 处,此时观测到其正西方向50海里处有一座小岛B .若以港口O 为坐标原点,正东方向为x 轴的正方向,正北方向为y 轴的正方向,1海里为1个单位长度建立平面直角坐标系(如图),则小岛B 所在位置的坐标是( )

A .(303-50,30)

B .(30, 303-50)

C .(303,30)

D .(30,303)

【答案】A

【解析】

【分析】

【详解】 解:OA =15×4=60海里, ∵∠AOC =60°,∴∠CAO =30°,

∵sin 30°=

OC AO =12

, ∴CO =30海里, ∴AC =303海里,

∴BC =(303-50)海里,

∴B (303-50,30).

故选A

【点睛】

本题考查掌握锐角三角函数的应用.

19.在一次数学活动中,嘉淇利用一根拴有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD .如图,嘉淇与假山的水平距离BD 为6m ,他的眼睛距地面的高度为1.6m ,嘉淇的视线经过量角器零刻度线OA 和假山的最高点C ,此时,铅垂线OE 经过量角器的60?刻度线,则假山的高度CD 为( )

A .()23 1.6m

B .()22 1.6m

C .()43 1.6m

D .23m

【答案】A

【解析】

【分析】

根据已知得出AK=BD=6m ,再利用tan30°= 6CK CK AK =,进而得出CD 的长. 【详解】

解:如图,过点A 作AK ⊥CD 于点K

∵BD=6米,李明的眼睛高AB=1.6米,∠AOE=60°,

∴DB=AK ,AB=KD=1.6米,∠CAK=30°,

∴tan30°=6CK CK AK =, 解得:CK=23

即CD=CK+DK=23+1.6=(23+1.6)m .

故选:A .

【点睛】

本题考查的是解直角三角形的应用,根据题意构造直角三角形,解答关键是应用锐角三角函数定义.

20.如图所示,在△ABC 中,∠C =90°,AB =8,CD 是AB 边上的中线,作CD 的中垂线与CD 交于点E ,与BC 交于点F .若CF =x ,tanA =y ,则x 与y 之间满足( )

A .2244x y +=

B .2244x y -=

C .2288x y -=

D .2288x y

+= 【答案】A

【解析】

【分析】

由直角三角形斜边上的中线性质得出CD =12

AB =AD =4,由等腰三角形的性质得出∠A =

∠ACD ,得出tan ∠ACD =GE CE =tan A =y ,证明△CEG ∽△FEC ,得出GE CE CE FE ,得出y =2FE ,求出y 2=24FE ,得出24y

=FE 2,再由勾股定理得出FE 2=CF 2﹣CE 2=x 2﹣4,即可得出答案.

【详解】

解:如图所示:

∵在△ABC 中,∠C =90°,AB =8,CD 是AB 边上的中线,

∴CD =

12

AB =AD =4, ∴∠A =∠ACD ,

∵EF 垂直平分CD , ∴CE =12

CD =2,∠CEF =∠CEG =90°, ∴tan ∠ACD =

GE CE =tanA =y , ∵∠ACD+∠FCE =∠CFE+∠FCE =90°,

∴∠ACD =∠FCE ,

∴△CEG ∽△FEC ,

∴GE CE =CE FE

, ∴y =2FE

, ∴y 2=

24FE , ∴24y

=FE 2, ∵FE 2=CF 2﹣CE 2=x 2﹣4,

∴24y

=x 2﹣4, ∴24y

+4=x 2, 故选:A .

【点睛】

本题考查了解直角三角形、直角三角形斜边上的中线性质、等腰三角形的性质、相似三角形的判定与性质等知识;熟练掌握直角三角形的性质,证明三角形相似是解题的关键.

初中数学证明题

初中数学证明题Prepared on 21 November 2021

1.如图 1,△ABC 中,AB =AC ,∠BAC 和∠ACB 的平分线相交于点D ,∠ADC =130°,求∠BAC 的度数. 2.如图,△ABC 中,AD 平分∠CAB ,BD ⊥AD ,DE ∥AC 。求证:AE=BE 。 .3.如图,△ABC 中, AD 平分∠BAC ,BP ⊥AD 于P ,AB=5,BP=2,AC=9。求证:∠ABP=2∠ACB 。 4.如图1,△ABC 中,AB =AC ,∠BAC 和∠ACB 的平分线相交于点D ,∠ADC =130°,求∠BAC 的度数. 5.点D 、E 在△ABC 的边BC 上,AB =AC ,AD =AE 求证:BD =CE 6.△ABC 中,AB=AC,PB=PC .求证:AD⊥BC 7. 已知:如图,BE 和CF 是△ABC的高线,BE=CF,H 是CF 、BE 的交点.求证:HB=HC 8 如图,在△ABC 中,AB=AC,E 为CA 延长线上一点,ED⊥BC 于D 交AB 于F.求证:△AEF 为等腰三角形. 9.如图,点C 为线段AB 上一点,△ACM 、△CBN 是等边三角形,直线AN 、MC 交于点E ,直线BM 、CN 交于点F 。 (1)求证:AN=BM; (2)求证:△CEF 是等边三角形 10 如图,△ABC 中,D 在BC 延长线上,且AC=CD,CE 是△ACD 的中线,CF 平分∠ACB,交AB 于F,求证:(1)CE⊥CF;(2)CF∥AD. 11.如图:Rt△ABC中,∠C=90°,∠A=22.5°,DC=BC, DE⊥AB.求证:AE=BE . 12.已知:如图,△BDE 是等边三角形,A 在BE 延长线上,C 在BD 的延长线上,且AD=AC 。求证:DE+DC=AE 。 13.已知ΔACF ≌ΔDBE ,∠E =∠F ,AD = 9cm ,BC = 5cm ;求AB 的长. 图1 B E C D A A P D C B 图1 A B C D E

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

用锐角三角函数概念解题的常见方法(含答案11页)

用锐角三角函数概念解题的常见方法 1.锐角三角函数 (1)锐角三角函数的定义 我们规定: sinA=a c ,cosA= b c ,tanA= a b ,cotA= b a . 锐角的正弦、余弦、正切、余切统称为锐角的三角 函数. (2)用计算器由已知角求三角函数值或由已知三 角函数值求角度 对于特殊角的三角函数值我们很容易计算,甚至可 以背诵下来,但是对于一般的锐角又怎样求它的三角函数值呢?用计算器可以帮我们解决大问题. ①已知角求三角函数值; ②已知三角函数值求锐角. 2 直角三角形中,30°的锐角所对的直角边等于斜边的一半. 3.锐角三角函数的性质 (1)0

(2)tan α·cot α=1或tan α=1 cot α ; (3)tan α= sin cos αα,cot α=cos sin α α . (4)sin α=cos (90°-α),tan α=cot (90°-α). 有关锐角三角函数的问题,常用下面几种方法: 一、设参数 例1. 在ABC ?中,?=∠90C ,如果125 tan = A ,那么sin B 的值等于( ) 5 12.12 5. 13 12. 13 5. D C B A 解析:如图1,要求sinB 的值,就是求 AB AC 的值,而已知的12 5 tan =A ,也就是12 5 =AC BC 可设k AC k BC 125==, 则k k k AB 13)12()5(22=+= 13 12 1312sin == ∴k k B ,选B 二、巧代换 例2. 已知3tan =α,求 α αα αcos sin 5cos 2sin +-的值。 解析:已知是正切值,而所求的是有关正弦、余弦的值,我们可以利用关系式 3cos sin tan == α α α,作代换ααcos 3sin =,代入即可达到约分的目的,也可以把所求的分式的分子、分母都除以αcos 。 图1

初中数学锐角三角函数的难题汇编含答案

初中数学锐角三角函数的难题汇编含答案 一、选择题 1.如图,点O 为△ABC 边 AC 的中点,连接BO 并延长到点D,连接AD 、CD ,若BD=12,AC=8,∠AOD =120°,则四边形ABCD 的面积为( ) A .23 B .22 C .10 D .243 【答案】D 【解析】 【分析】 分别过点A 、C 作BD 的垂线,垂足分别为M 、N ,通过题意可求出AM 、CN 的长度,可计算三角形ABD 和三角形CBD 的面积,相加即为四边形ABCD 的面积. 【详解】 解:分别过点A 、C 作BD 的垂线,垂足分别为M 、N , ∵点O 为△ABC 边 AC 的中点,AC=8, ∴AO=CO=4, ∵∠AOD =120°, ∴∠AOB=60°,∠COD=60°, ∴342 AM AM sin AOB AO ===∠, 342 CN CN sin COD CO ===∠, ∴AM=23CN=3 ∴12231232ABD BD AM S ?===g △ 12231232BD CN S ?===g △BCD , ∴=123123243ABD BCD ABCD S S S +==△△四边形 故选:D. 【点睛】

本题考查了三角函数的内容,熟练掌握特殊角的三角函数值是解题的关键. 2.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点B ,取145ABD ∠=o ,500BD m =,55D ∠=o ,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( ) A .500sin55m o B .500cos55m o C .500tan55m o D .500cos55m o 【答案】B 【解析】 【分析】 根据已知利用∠D 的余弦函数表示即可. 【详解】 在Rt △BDE 中,cosD= DE BD , ∴DE=BD ?cosD=500cos55°. 故选B . 【点睛】 本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键. 3.如图,在ABC ?中,4AC =,60ABC ∠=?,45C ∠=?,AD BC ⊥,垂足为D ,ABC ∠的平分线交AD 于点E ,则AE 的长为( ) A .22 B .223 C .23 D .322 【答案】C 【解析】 【分析】 在Rt △ADC 中,利用等腰直角三角形的性质可求出AD 的长度,在Rt △ADB 中,由AD 的长度及∠ABD 的度数可求出BD 的长度,在Rt △EBD 中,由BD 的长度及∠EBD 的度数可求出DE 的长度,再利用AE=AD?D E 即可求出AE 的长度. 【详解】 ∵AD ⊥BC ∴∠ADC=∠ADB=90?

初三数学几何证明题(经典)

如图;已知:在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O 交AB于点D,过点D作⊙O 的切线DE交BC于点E. 求证:BE=CE 证明:连接CD ∵AC是直径 ∴∠ADC=90° ∵∠ACB=90°,ED是切线 ∴CE=DE ∴∠ECD=∠EDC ∵∠ECD+∠B=90°,∠EDC+∠BDE=90° ∴∠B=∠BDE ∴BE=DE ∴BE=CE 如图,半圆O的直径DE=10cm,△ABC中,∠ABC=90°,∠BCA=30°,BC=10cm,半圆O 以2cm/s的速度从左向右运动,在运动过程中,D、E始终在直线BC上,设运动时间为t(s),当t=0(s)时,半圆O在△ABC的左侧且OB=9cm。(1)当t为何值时,△ABC的一边所在的直线与半圆O所在的圆相切; (2)当△ABC一边所在直线与半圆O所在的圆相切时,如果半圆O与直径DE围成的区域与△ABC的三边围成的区域有重叠部分,求重叠部分的面积。 (1)当t为何值时,△ABC的一边所在的直线与半圆O所在的圆相切; 相切分两种情况,如图, ①左图:当t=0时,原图中OB=9,此时圆移动了OB-OE=9-5=4cm 则:t=4/2=2s; --------------- ②右图:设圆O与边AC的切点为F,此问不用三角函数是无法求出的==>∵∠C=30==>∴OC=OF/sinC=5/sin30=10=BC ==>O与B重合,此时圆移动的长即为OB的长,即9cm ==>t=9/2; =========

(2)如右图:由②得:∠AOE=90 ==>S阴=(90*π*5^2)/360=6.25π 不明之处请指出~~

初三锐角三角函数知识点与典型例题

锐角三角函数: 知识点一:锐角三角函数的定义: 一、 锐角三角函数定义: 在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA= , ∠A 的余弦可表示为cosA= ∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数 【特别提醒:1、sinA 、∠cosA 、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与 有关,与直角三角形的 无关 2、取值范围 】 例1.如图所示,在Rt △ABC 中,∠C =90°. 第1题图 ①斜边)(sin = A =______, 斜边)(sin = B =______; ②斜边 ) (cos =A =______, 斜边 ) (cos =B =______; ③的邻边A A ∠= ) (tan =______, ) (tan 的对边 B B ∠= =______. 例2. 锐角三角函数求值: 在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______, sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______. 例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3. 求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR . 典型例题: 类型一:直角三角形求值

1.已知Rt △ABC 中,,12,43 tan ,90==?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3 sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4. 已知A ∠是锐角,17 8 sin =A ,求A cos ,A tan 的值 对应训练: (西城北)3.在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,则tan A 的值为 A . 55 B .255 C .12 D .2 (房山)5.在△ABC 中,∠C =90°,sin A=5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 类型二. 利用角度转化求值: 1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B .

初中数学锐角三角函数定义大全

初中数学:锐角三角函数定义大全 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。 正弦(sin)等于对边比斜边;sinA=a/c 余弦(cos)等于邻边比斜边;cosA=b/c 正切(tan)等于对边比邻边;tanA=a/b 余切(cot)等于邻边比对边;cotA=b/a 正割(sec)等于斜边比邻边;secA=c/b 余割(csc)等于斜边比对边。cscA=c/a 互余角的三角函数间的关系 sin(90°-α)=cosα,cos(90°-α)=sinα, tan(90°-α)=cotα,cot(90°-α)=tanα. 平方关系:

sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) 积的关系: sinα=tanα·cosα cosα=cotα·sinα tanα=sinα·secα cotα=cosα·cscα secα=tanα·cscα cscα=secα·cotα 倒数关系: tanα·cotα=1

sinα·cscα=1 cosα·secα=1 特殊的三角函数值 0°30°45°60°90° 01/2√2/2√3/21←sinA 1√3/2√2/21/20←cosA 0√3/31√3None←tanA None√31√3/30←cotA 诱导公式 sin(-α)=-sinαcos(-α)=cosα tan(-α)=-tanαcot(-α)=-cotα

sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα

初二数学下册证明题

(1)求证:BG FG =; (2)若2 ==,求AB的长. AD DC 二:如图,已知矩形ABCD,延长CB到E,使CE=CA,连结AE并取中点F,连结AE并取中点F,连结BF、DF,求证BF⊥DF。 三:已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.

求证:AE平分∠BAD. 四、(本题7分)如图,△ABC中,M是BC的中点,AD是∠A的平分线,BD⊥AD于D,AB=12, AC=18,求DM的长。

五、(本题8分)如图,四边形ABCD 为等腰梯形,AD ∥BC ,AB=CD ,对角线AC 、BD 交于点O , 且AC ⊥BD ,DH ⊥BC 。 ⑴求证:DH=2 1(AD+BC ) ⑵若AC=6,求梯形ABCD 的面积。 六、(6分) 、如图,P 是正方形ABCD 对角线BD 上一点,PE ⊥DC ,PF ⊥BC ,E 、F 分别为垂足,若CF=3,CE=4,求AP 的长.

七、(8分)如图,等腰梯形ABCD 中,AD ∥BC ,M 、N 分别是AD 、BC 的中点,E 、F 分别是BM 、CM 的中点. (1)在不添加线段的前提下,图中有哪几对全等三角形?请直接写出结论; (2)判断并证明四边形MENF 是何种特殊的四边形? (3)当等腰梯形ABCD 的高h 与底边BC 满足怎样的数量关系时?四边形MENF 是正方形(直接写出结论,不需要证明). 选择题: 15、如图,每一个图形都是由不同个数的全等的小等腰梯形拼成的,梯形上、下底及腰长如 图,依此规律第10个图形的周长为 。 …… 第一个图 第二个图 第三个图 16、如图,矩形ABCD 对角线AC 经过原点O ,B 点坐标为 (―1,―3),若一反比例函数x k y 的图象过点D ,则其 解析式为 。 M F E N D C A B

人教中考数学锐角三角函数-经典压轴题附详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

(人教版初中数学)锐角三角函数

锐角三角函数 一.〖基础训练〗 1、在△ABC 中,∠C =90°,则sinA= ,cosA= tanA= cotA= . 2、根据直角三角形的 元素(至少有一个边),求出 其它所有元素的过程,即解直角三角形 3.Rt △ABC 中,若sinA =45 ,AB =10,那么BC = ,tanB = 4.写出适合条件的锐角α Sin600= , tan300= ,cos α=32 ,α= , 5、在△ABC 中,∠C =90°,AC=6,BC=8,那么sinA= 6、sin300+tan450= . 7、若sin α=cos70°,则角α等于 A .70°; B .60°; C .45°; D .20°. 8、(讲解)若∠A 为锐角,且cosA ≤ 12 ,那么( ) A 、00≤A ≤600 B 、600≤A ≤900 C 、00≤A ≤300 D 、300≤A ≤90 0 二.〖中考在线〗(讲解) 1、(2004年中考题).在△ABC 中,∠C =90°,sinA =35 ,则cosA 的值是( ) (A ) 35 (B )45 (C )925 (D )1625 2、如图,(2003年第21题)在△ABC 中,AD 是BC 边上的高,tanB=cos ∠DAC. (1)求证:AC=BD (2)若sinC=1213 ,BC=12,求AD 的长. 三.〖考点训练〗 1.Rt △ABC 中,∠C =90°,AB =6,AC =2,则sinA =( ) (A ) 13 (B )23 (C )23 2 (D )23 2.已知∠A +∠B =90°,则下列各式中正确的是( ) A B C D

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A ) 513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB tan A 的值为( ) A B C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A = 5 12 ,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A= 5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ABC 中, 90=∠C ,3cosB=2, AC=52 ,则AB= . 3.已知Rt △ABC 中,,12,4 3tan ,90==?=∠BC A C 求AC 、AB 和cos B . 4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长.

第8题图 A D E C B F 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则c o s ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为 3 2 ,2AC =,则s in B 的值是( )A .23 B .32 C .34 D .4 3 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =, AB=8,则tan EFC ∠的值为 ( )A.34 B.43 C.35 D.45 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若 1tan 5 DBA ∠ = ,则AD 的长为( ) A .2 C .1 D .4. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧 圆弧上一点,则cos ∠OBC 的值为( )A . 12 B .2 C .35 D .45 5.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= . 6.(庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5 A =,则这个菱形的面积= cm 2 . 7. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A AD = 3 3 16求 ∠B 的度数及边BC 、AB 的长. D A B C

初三数学锐角三角函数通用版

初三数学锐角三角函数通用版 【本讲主要内容】 锐角三角函数 包括:正弦、余弦、正切。 【知识掌握】 【知识点精析】 1. 在Rt △ABC 中,∠C =90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA 。 即 c a A A sin == 斜边的对边∠;把∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即c b A A cos =∠=斜边的邻边;把∠A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即 b a A A A t an =∠∠=的邻边的对边。 2. 锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数。 3. 特殊角的三角函数值: 30° 45° 60° sin α 1 2 22 32 cos α 32 22 12 tan α 33 1 3 4. 记忆方法: 【解题方法指导】 例1. (2000年成都市)如图,在△ABC 中,∠C =90°,∠ABC =60°,D 是AC 的中点,那么tan ∠DBC 的值是________。 锐 角 α 三 角 函 数

分析:在Rt △ABC 中,由∠ABC =60°,可知3BC AC 60tan == ,即AC =3BC ,又CD = 1 2 AC ,tan ∠DBC 可求。 解:在△ABC 中, ∵∠C =90°,∠ABC =60°, ∴tan ∠ABC =tan60°=3BC AC =, ∴AC =3BC 。 又D 是AC 中点, ∴DC = 12AC =32 BC 。 ∴2 3 BC BC 23 BC DC DBC tan = ==∠。 评析:在解题中紧紧扣住tan α的定义。 例2. (2001年四川)在Rt △ABC 中 ,CD 是斜边AB 上的高,已知3 2 ACD sin = ∠,那么=AB BC ______。 分析:由Rt △ABC 中CD ⊥AB 于D ,可得∠ACD =∠B ,由sin ∠ACD = 2 3 ,那么sinB =23,设AC =2,AB =3,则BC =32522-=,则AB BC 可求。 解:∵∠ACB =90°,CD ⊥AB 于D , ∴∠ACD =∠B 。 又sin ∠ACD =sinB = 23 , 可设AC =2,AB =3, ∴BC =32522-=。

初中数学证明题汇总(含参考答案)

证明(一) 一、选择题 1.下列句子中,不是命题的是() (A )三角形的内角和等于180 度( B)对顶角相等 (C)过一点作已知直线的平行线( D)两点确定一条直线 2.下列说法中正确的是() (A )两腰对应相等的两个等腰三角形全等( B )两锐角对应相等的两个直角三角形全等(C)两角及其夹边对应相等的两个三角形全等(D )面积相等的两个三角形全等 3.下列命题是假命题的是() (A )如果a∥b,b∥c,那么a∥c(B)锐角三角形中最大的角一定大于或等于60°(C)两条直线被第三条直线所截,内错角相等(D)矩形的对角线相等且互相平分 4. △ABC中,∠A∠B 120,∠C ∠A,则△ABC 是(). (A )钝角三角形( B)等腰直角三角形( C)直角三角形(D )等边三角形5. 在△ABC中,∠A,∠B的外角分别是 120°、 150°,则∠C(). (A ) 120°( B) 150°( C) 60°(D ) 90°6.如图 1, l 1∥ l2,∠ 1=50° , 则∠ 2 的度数是() (A ) 135°( B )130°( C)50°( D) 40° 7.如图 2 所示,不能推出AD∥BC的是()图 1 (A )∠DAB∠ABC 180(B)∠2∠4 (C)∠1∠3( D)∠CBE∠ DAE 图 2 8. 如图 3,a∥b,c a ,∠1 130 ,则∠ 2 等于() (A ) 30°(B)40°(C)50°(D)60° 图 3 9.如图4,AB∥CD,AC BC ,图中与∠ CAB 互余的角 有() (A)1个(B)2个(C)3个(D)4个

10.若三角形的一个外角等于和它相邻的内角,则这个三角形是() (A )锐角三角形(B)直角三角形(C)钝角三角形(D)都有可能 二、填空题 11.将命题“对顶角相等”改写成“如果 ,, ,那么,,”的形式:如果,那么. 12.如图 5 所示,如果BD 平分∠ ABC ,补上 一个条件作为已知,就能推出AB ∥ CD . 图 5 13.如图 6,AB∥CD,AF交AB、CD于A,C,CE平分∠DCF,∠1120 ,则2. 图6 图 7 14.如图 7,一个顶角为 40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则 ∠1∠ 2. 15.若一个三角形的三个内角之比为4∶3∶ 2,则这个三角形的最大内角的外角为. 三、解答题 16.如图 8,直线 AB、CD 相交与点 O,∠ AOD =70o, OE 平分∠ BOC,求∠ DOE 的度数。 A C O 70o E D图8B 17.已知:如图9,BE∥DF,∠B=∠D. 求证: AD∥BC.

锐角三角函数专项复习经典例题

1、平面内,如图17,在□ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90?得到线段PQ . (1)当10DPQ ∠=?时,求APB ∠的大小; (2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号); (3)若点Q 恰好落在□ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 2、如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41) 3、如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) B A P C D Q 备用图17 A B C D P Q

4、如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度. 5、一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米. 6、如图,某小区①号楼与?号楼隔河相望,李明家住在①号楼,他很想知道?号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算?号楼的高度CD. 7、某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31°. (1)求甲楼的高度及彩旗的长度;(精确到0.01m) (2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m) (cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧 锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳 出 锐角三角函数的常见题型,并结合例题介绍一些解题技巧。 、 化简或求值 例1 (1) 已知tan 2cot 1,且 是锐角,求乙tan 2 cot 2 2的值。 (2) 化简 a sin bcos ? acos bsin ?。 分析 (1)由已知可以求出tan 的值,化简?、tan 2 cot 2 2可用 1 tan cot ; (2)先把平方展开,再利用sin 2 cos 2 1化简 解(1)由tan 2cot 1得tan 2 2 tan ,解关于tan 的方程得 tan 2或 tan 1。又是锐角,二 tan 2。二、tan 2 cot 2 2 = 1 2 2 2,「 tan cot 2 = tan cot (2) a sin bcos ? acos bsin 2 -2 ? 2 2 cos b sin cos = a 、已知三角函数值,求角 求C 的度数。 分析 几个非负数的和为0,则这几个数均为0。由此可得cosA 和sin B 的 值,进而求出 代B 的值,然后就可求出 C 的值。 \ tan 2 2tan cot cot 2 = : (tan cot )2 tan cot 由tan 得cot a 2 sin 2 2ab sin cos b 2 cos 2 + a 2 cos 2 2ab cos sin b 2s in 2 2 2 a sin 2 b 2 tan 说明 在化简或求值问题中,经常用到 cot 1 等。 “ 1” 的代换, 即 sin 2 2 cos J 2 例2在厶ABC 中,若cosA — 2 .3 2 sin B 0 A, B 均为锐角,

中考数学锐角三角函数真题汇编

中考数学真题汇编:锐角三角函数 (WORD版本真题试卷+名师解析答案,建议下载保存) 一、选择题 1.的值等于() A. B. C. 1 D. 【答案】B 2.如图,过点,,,点是轴下方上的一点,连接,,则的度数是() A. B. C. D. 【答案】B 3.如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是( ) A.3 B. C. D. 【答案】D

4.如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角,升旗台底部到教学楼底部的距离米,升旗台坡面CD的坡度,坡长米,若旗杆底部到坡面CD的水平距离米,则旗杆AB的高度约为()(参考数据:,,) A. 12.6米 B. 13.1米 C. 14.7米 D. 16.3米 【答案】B 5.一艘在南北航线上的测量船,于A点处测得海岛B在点A的南偏东30°方向,继续向南航行30海里到达C点时,测得海岛B在C点的北偏东15°方向,那么海岛B离此航线的最近距离是(结果保留小数点后两位)(参考数据:)() A. 4.64海里 B. 5.49海里 C. 6.12海里 D. 6.21海里 【答案】B 6.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为() A. B. C. D. 【答案】B

7. 如图,已知在中,,,,则的值是() A. B. C. D. 【答案】A 8. 如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B 在同一条直线上)() A. B. C. D. h?cosα 【答案】B 二、填空题 9.如图.一-艘渔船正以60海里/小时的速度向正东方向航行,在处测得岛礁在东北方向上,继续航行1.5小时后到达处此时测得岛礁在北偏东方向,同时测得岛礁正东方向上的避风港在北偏东方向为了在台风到来之前用最短时间到达处,渔船立刻加速以75海里/小时的速度继续航行 ________小时即可到达(结果保留根号) 【答案】 10.如图,旗杆高AB=8m,某一时刻,旗杆影子长BC=16m,则tanC=________。

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧 锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳出锐角三角函数的常见题型,并结合例题介绍一些解题技巧。 一、 化简或求值 例1 (1)已知tan 2cot 1αα-=,且α是锐角,的值。 (2)化简()()22 sin cos cos sin a b a b αααα++-。 分析 (1)由已知可以求出tan α1tan cot αα=?;(2)先把平方展开,再利用22sin cos 1αα+=化简。 解 (1)由tan 2cot 1αα-=得2tan 2tan αα-=,解关于tan α的方程得 tan 2α=或tan 1α=-。又α是锐角,∴tan 2α== tan cot αα-。由tan 2α=, 得1cot 2α==tan cot αα-=13222 -=。 (2)()()22sin cos cos sin a b a b αααα++-= 2222sin 2sin cos cos a ab b αααα+??++2222cos 2cos sin sin a ab b αααα-??+=()()222222sin cos sin cos a b αααα+++=22a b +。 说明 在化简或求值问题中,经常用到“1”的代换,即22sin cos 1αα+=,tan cot 1αα?=等。 二、已知三角函数值,求角 例2 在△ABC 中,若2 cos sin 02A B ?-+= ??(),A B ∠∠均为锐角,求C ∠的度数。 分析 几个非负数的和为0,则这几个数均为0。由此可得cos A 和sin B 的值,进而求出,A B ∠∠的值,然后就可求出C ∠的值。

初三数学锐角三角函数含答案

锐角三角函数 中考要求 重难点 1.掌握锐角三角函数的概念,会熟练运用特殊三角函数值; 2.知道锐角三角函数的取值范围以及变化规律; 3.同角三角函数、互余角三角函数之间的关系; 4.将实际问题转化为数学问题,建立数学模型. 课前预习 “正弦”的由来 公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献.尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了.三角学中“正弦”和“余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表. 托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的.印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应,这样,他们造出的就不再是“全弦表”,而是“正弦表”了.印度人称连结弧(AB)的两端的弦(AB)为“吉瓦”,是弓弦的意思;称AB的一半(AC) 为“阿尔哈吉瓦”.后来“吉瓦”这个词译成阿拉伯文时被误解为“弯曲”、“凹处”,阿拉伯语是“dschaib”.十二世纪,阿拉伯文被转译成拉丁文,这个字被意译成了“sinus”.三角学输入我国,开始于明崇祯4年(1631年),这一年,邓玉函、汤若望和徐光启合编《大测》,作为历书的一部份呈献给朝廷,这是我国第一部编译的三角学.在《大测》中,首先将sinus译为“正半弦”,简称“正弦”,这就成了正弦一词的由来.

例题精讲 模块一 三角函数基础 一、锐角三角函数的定义 如图所示,在Rt ABC △中,a 、b 、c 分别为A ∠、B ∠、C ∠的对边. (1)正弦:Rt ABC ?中,锐角A 的对边与斜边的比叫做A ∠的正弦,记作sin A ,即sin a A c =. (2)余弦:Rt ABC ?中,锐角A 的邻边与斜边的比叫做A ∠的余弦,记作cos A ,即cos b A c =. (3)正切:Rt ABC ?中,锐角A 的对边与邻边的比叫做A ∠的正切,记作tan A ,即tan a A b =. 注意: ① 正弦、余弦、正切都是在直角三角形中给出的,要避免应用时对任意三角形随便套用定义. ② sin A 、cos A 、tan A 分别是正弦、余弦、正切的数学表达符号,是一个整体,不能理解为sin 与A 、 cos 与A 、tan 与A 的乘积. ③ 在直角三角形中,正弦、余弦、正切分别是某个锐角的对边与斜边、邻边与斜边、对边与邻边的比值,当这个锐角确定后,这些比值都是固定值. 二、特殊角三角函数 这些特殊角的三角函 数值一定要牢牢记住! 三、锐角三角函数的取值范围 在Rt ABC ?中,90C ∠=?,000a b c a c b c >>><<,,,,,又sin a A c =,cos b A c =,tan a A b =,所以 0sin 10cos 1tan 0A A A <<<<>,,. 四、三角函数关系 a A

相关文档
最新文档