直流电机位置随动系统设计

合集下载

直流电动机位置随动系统动态性能的分析

直流电动机位置随动系统动态性能的分析

中图分 类号 :P7 . T 2 41
文 献 标 识 码 : A
文 章 编 号 :6 2 7 0 (0 8 0 — 0 2 0 17 — 8 0 2 0 )4 0 2 — 2
0 引言
位置 随动 系统是 应用领 域非 常广泛 的一类 系统 , 又称 为侍 服 系统 , 的根本 任务 就是 实现执行 机构 对位 置指令 ( 它 给定量 ) 的准确 跟 踪 , 控制 量 一般 是负 载 的空 间位 移 , 被 当给定 量 随机 变 化时 , 系统 能使 被控 制量准 确无误 地跟 随并 复现给定 量 。 位置 随动 系统在 直流 电动机 中作 为执行元 件 , 输入 的 电 把 压 信号 ( 制信号 ) 控 变换成 转轴 的角位 移和角 速度输 出 , 变控 改
摘 要 :首 先 对 直 流 电 动 机 位 置 随 动 系统 的 工 作 原 理 进 行 了解 释 , 然后 建 立 了 直 流 电动 机 位 置 随 动 系 统 的 控 制 模
型. 最后通 过 实例 比较 了其 不 同参 数下 的动 态性能 并做 出 了分析 。
关 键 词 : 流 电动 机 ; 置 随 动 系统 ; 态性 能 直 位 动
据具 体情况 在其 中加入 校正 系统 , 这样 输 出的 电压 可 以驱 动 电
动机 。
力 ; 为 电动 机转 矩 系数 ;= 2 n Ⅳ/ 为矢 轮传 动 比,假 设直 流放 Ⅳ
大 器 的增 益 为 " 1 3 。
() 3 执行 机构 : 流电动 机作 为带动 负载 运动 的执 行机 构 , 直
1 工 作 原 理
直 流 电动 机 的位置 随动系 统如 图1 示 。基 本组 成包 括 以 所
下几部 分 :

毕业设计基于直流电机的精准定位系统设计

毕业设计基于直流电机的精准定位系统设计

XX大学本科毕业论文(设计、创作)题目:基于直流电机的精准定位系统设计学生姓名:学号:院(系):电子信息工程学院专业:电子信息工程入学时刻:二00八年九月导师姓名:职称/学位:导师所在单位:完成时刻:二0一二年五月基于直流电机的精准定位系统设计摘要为达到某医疗操纵系统平安、快速、精准定位的技术要求,并保证系统的稳固和靠得住性,专门采纳内部资源丰硕的MSP430F149为主控芯片,配合利用高性能带有光电编码器的直流电机。

从数字式直流电机定位系统的数学模型动身,选取电流,和电机转速作为反馈信号,采纳PWM调制作为系统的输出信号,操纵电机的转速,形成一个双闭环反馈直流脉宽调速系统。

并以工程操纵中普遍应用的PI算法作为系统的核心操纵方案,从而实现系统的高速,精准定位。

关键字:MSP430F149;直流电机;光电编码器;PWM ;PI操纵Design of precise Positing system Based on DC motorAbstractIn order to keep an medical control system operating safely,fastly, position accurately, and ensure the stability and reliability , we specifically use the internal resources MSP430F149 as the main chip, in conjunction with high-performance DC motor with optical encoder. Base on the mathematical model of the digital dc motor positioning system, we choose the current and the motor speed as feedback signals, using the PWM as the system output signal, forming a double closed loop feedback speed regulation system to control the motor speed. In order to realize the system of thigh speed and accurate location, we use the extensive application in project —the PI algorithm as the Core control theory.Keywords: MSP430F149 ;DC motor; PI ;Double closed loop目录1 引言 (1)1.1 开发背景 (1)1.2 选题的目的与意义 (1)2 系统的设计方式研究 (2)2.1 执行电机的选择 (2)2.1.1 伺服电机 (3)2.1.2 步进电机 (4)2.1.3 综述 (5)2.2 位置和速度传感器的选择 (6)2.2.1 光电编码器 (6)2.2.2 霍耳式传感器 (8)2.3 直流定位系统的数学模型分析 (8)2.3.1 直流电机调速方式概述 (8)2.3.2 转速、电流双闭环直流调速系统 (10)3 硬件电路设计 (13)3.1 直流电机精准定位系统整体方案设计 (13)3.2 MSP430F149单片机系统 (13)3.3 隔离与驱动电路 (14)3.3.1 隔离单元模块 (14)3.3.2 电机驱动模块 (15)3.3.3 过流爱惜模块 (16)3.4 反馈电路 (17)3.4.1 速度检测电路 (17)3.4.2 电流反馈电路 (18)4 操纵软件设计 (18)4.1 整体程序模块 (18)4.2 操纵算法模块 (19)5 终止语 (20)要紧参考文献 (21)致谢 (22)引言1.1 开发背景现代工业生产中,电动机是要紧的操纵执行部件,目前在直流电机拖动系统中已大量采纳晶闸管(即可控硅)装置向电动机供电的KZ—D拖动系统,取代了笨重的发电动一电动机的F—D系统,又伴随着电子技术的高度进展,促使直流电机调速慢慢由模拟化向数字化转变,专门是运动操纵芯片的应用,使直流电机调速技术又进入到一个新的时期,智能化、高靠得住性已成为它进展的趋势。

直流伺服电机控制系统设计

直流伺服电机控制系统设计

电子信息与电气工程系课程设计报告设计题目:直流伺服电机控制系统设计系别:电子信息与电气工程系年级专业:学号:学生姓名:2006级自动化专业《计算机控制技术》课程设计任务书摘要随着集成电路技术的飞速发展,微控制器在伺服控制系统普遍应用,这种数字伺服系统的性能可以大大超过模拟伺服系统。

数字伺服系统可以实现高精度的位置控制、速度跟踪,可以随意地改变控制方式。

单片机和DSP在伺服电机控制中得到了广泛地应用,用单片机作为控制器的数字伺服控制系统,有体积小、可靠性高、经济性好等明显优点。

本设计研究的直流伺服电机控制系统即以单片机作为核心部件,主要是单片机为控制核心通过软硬件结合的方式对直流伺服电机转速实现开环控制。

对于伺服电机的闭环控制,采用PID控制,利用MATLAB软件对单位阶跃输入响应的PID 校正动态模拟仿真,研究PID控制作用以及PID各参数值对控制系统的影响,通过试凑法得到最佳PID参数。

同时能更深度地掌握在自动控制领域应用极为广泛的MATLAB软件。

关键词:单片机直流伺服电机 PID MATLAB目录1.引言 ...................................................... 错误!未定义书签。

2.单片机控制系统硬件组成.................................... 错误!未定义书签。

微控制器................................................ 错误!未定义书签。

DAC0808转换器.......................................... 错误!未定义书签。

运算放大器............................................... 错误!未定义书签。

按键输入和显示模块....................................... 错误!未定义书签。

基于DSP的全数字直流伺服电动机位置随动系统的设计

基于DSP的全数字直流伺服电动机位置随动系统的设计

的干预 就 能进 行系 统诊 断 和错 误修 正 。
步完 善 , 旦形 成批 量生 产 , 制装 置 的价格 会 一 控
各种大功率 电子器件, I  ̄ MOS E 、 T F TI GB 、 C MF T MC 和S T 的使用 , 有微 机处理器 O E 、 T T等 还 DS 等硬件 的应用 , P 为电动汽车的 电动机控制方 法和智能控制提供重要保证 。
・2 8・ 2 0 0 6年第 1期 《 机 技 术》 电
2 陈清 泉等 编 著 . 代 电 动汽 车技 术 . 京理 工 大 学 出版 社 ,0 2 现 北 20 . 3 陈清 泉 等编 译 . 合 电动 车 辆基 础 . 京理 工大 学 出版 社 ,0 1 混 北 20 . 4 张 煜 等 . 电动汽 车 核心 技 术及 其 发展趋 势 . 车 电器 , 0 49. 汽 20 . ( 稿 日期 :0 4 1-3 收 20 — 12 ) 作 者简 介 ; 刘 伟 ,9 8 , , 17 生 男 硕士 研 究生 , 辆 工程 专 业 。 究方 向 车 研
维普资讯
现代驱 动与控制
基于DS 的全数字直流伺服 电动机位 置随动系统 的设计 P
李本红
佛山职业技术学院(22 7 58 3 )
De i n o mp ee Di ia sg fCo l t g t lDC e v mo o sto a e v - c a s Ba e n DS S ro t rPo ii n lS r o me h nim s d o P
-- .…

… …
崮 ………- … 崮 …………… } 回 ・ … } … “
Байду номын сангаас

直流电机位置随动系统设计要点

直流电机位置随动系统设计要点

中北大学信息商务学院课程设计说明书学生姓名:学号:学院:中北大学信息商务学院专业:自动化题目:直流电机位置随动系统设计(第六组)职称: 副教授2013 年 12 月 9 日中北大学信息商务学院课程设计任务书2013-2014 学年第一学期学院:中北大学信息商务学院专业:自动化学生姓名:学号:课程设计题目:直流电机位置随动系统设计(第六组)起迄日期: 12月 9 日~ 12月20日课程设计地点:德怀楼七层实验室指导教师:下达任务书日期: 2013年 12月 9日课程设计任务书课程设计任务书位置随动系统的概述一.位置随动系统的概念位置随动控制系统又名伺服控制系统。

其参考输入是变化规律未知的任意时间函数。

随动控制系统的任务是使被控量按同样规律变化并与输入信号的误差保持在规定范围内。

这种系统在军事上应用最为普遍.如导弹发射架控制系统,雷达天线控制系统等。

其特点是输入为未知。

伺服驱动系统(Servo System )简称伺服系统,是一种以机械位置或角度作为控制对象的自动控制系统,例如数控机床等。

使用在伺服系统中的驱动电机要求具有响应速度快、定位准确、转动惯量较大等特点,这类专用的电机称为伺服电机。

当然,其基本工作原理和普通的交直流电机没有什么不同。

该类电机的专用驱动单元称为伺服驱动单元,有时简称为伺服,一般其内部包括电流、速度和/或位置闭环。

二.位置随动系统的基本组成 1.电位器式位置随动系统的组成下面通过一个简单的例子说明位置随动系统的基本组成,其原理图如图1-1所示。

这是一个电位器式的小功率位置随动系统,有以下五个部分组成:图1-1 电位器式位置随动系统原理图(1)位置传感器 由电位器1RP 和2RP 组成位置传感器。

1RP 是给定位置传感器,其转轴与操纵轮连接,发出转角给定信号*m θ;2RP 是反馈位置传感器,其转轴通过传动机构与负载的转轴相连,得到转角反馈信号m θ。

两个电位器由同一个直流电源s U 供电,使电位器输出电压*U 和U ,直接将位置信号转换成电压量。

基于ARM的直流电机位置伺服系统设计

基于ARM的直流电机位置伺服系统设计

率管构成的 H桥 电机驱动电路 , 采用带有速度前馈加速度前馈的 PD调节算法实现 了直流 电机位置伺 I 服控制。试验结果表明该控制 系统能够满足 图像跟踪 中对转台快速性和准确性的要求。 度前 馈加 速度 前 馈 位 轴 I 10 速 R
HAN Bi , n XU a — e Xi o w n
( c ol f uo t n N r w s r oy cncl n esy X’ 19 C ia Sho t i , ot et nPl eh i i r t, in7 0 2 , hn) o A mao h e t aU v i a 1
中图分 类 号 :P 7 . T 2 35
文献 标识 码 : A
文章 编 号 :00— 89 2 1 )3— 13— 5 10 82 (0 2 0 02 0
Po i o e v y tm sg fDC o o s d o st n S r o S se De i n o i M t r Ba e n ARM
a c r c e u r me ti ma e ta k n . c u a y r q ie n n i g r c i g
K e r s p st n s r o RD I 2 3 ; p e d a c l r t n fe f r r y wo d : o i o e v ; C; R 1 0 s e d a c ee ai e d o wa d i n o
a d a c l r t n f e f r a d T e r s l fe p rme t s o a i o t l y t m a a i y t e s e d a d n c ee a i e d w r . h e u t o x e o o s i n s h w t t h sc n r s h t o s e c n s t f p e n s h

8 位置随动系统解析

8 位置随动系统解析

指导教师评定成绩:审定成绩:重庆邮电大学自动化学院自动控制原理课程设计报告设计题目:位置随动系统单位(二级学院):学生姓名:专业:班级:学号:指导教师:设计时间:重庆邮电大学自动化学院制目录一、设计题目 (2)二.报告正文 (3)摘要 (3)2.1 问题一的分析与求解 (4)2.2 问题二的分析与求解 (5)2.3 问题三的分析与求解 (10)2.4 问题四的分析与求解 (14)三、设计总结 (18)四、参考文献 (19)五、附录 (20)附录一 (20)附录二 (20)一、 设计题目自动控制原理课程设计任务书1某位置随动系统原理如下图所示。

输入量为转角r θ,输出量为转角c θ,p R 为圆盘式滑动电位器,SM 为伺服电动机,TG 为测速发电机。

要求:(1)查阅相关资料,分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。

(2)分析系统每个环节的输入输出关系,代入相关参数求取系统传递函数。

(3)分析系统时域性能和频域性能。

(4)运用根轨迹法或频率法校正系统,使之满足给定性能指标要求。

(已知条件和性能要求待定)二、设计报告正文摘要随动系统是指系统的输出以一定的精度和速度跟踪输入的自动控制系统,并且输入量是随机的,不可预知的,主要解决有一定精度的位置跟随问题,如数控机床的刀具给进和工作台的定位控制,工业机器人的工作动作,导弹制导、火炮瞄准等。

控制技术的发展,使随动系统得到了广泛的应用。

位置随动系统是反馈控制系统,是闭环控制,其位置指令是经常变化的,要求输出量准确跟随给定量的变化,输出响应的快速性、灵活性和准确性成了位置随动系统的主要特征。

本次课程设计研究的是一类位置随动系统的滞后校正,首先通过分析原理求出传递函数,并利用主导极点进行降阶,得出一个二阶系统传递函数,并通过MATLAB分析时域和频域的各个性能,得出相角裕度太小和超调量太大,然后设计PD控制装置,改善系统的阻尼比,来使系统的各个性能达到要求。

电枢控直流电动机随动系统

电枢控直流电动机随动系统

引言位置随动系统是应用非常广泛的一类自动控制系统,主要实现执行机构对位置指令的准确跟踪,被控制量一般是负载的空间位移,当位置指令随机变化时,系统能使被控制量准确无误地跟随。

在实现角位置闭环控制的伺服系统中,完成角位置测量是实现闭环控制的先决条件。

角位置测量是这类控制系统的重要组成部分,同时也是实现其它控制功能的基础。

自整角机由于具有结构简单、工作可靠和精度高等特点,经常用于轴角的测量。

随动控制技术是自动化学科中与产业部门联系最紧密、服务最广泛的一个分支。

本次课程设计的主要环节有:自整角机、相敏整流器、可逆功率放大器、执行机构及减速器。

1.系统概述1.1设计目的1 掌握自动控制原理课程中所学的理论知识;2 了解控制自整角、相敏检波电路和功放电路的基本原理和等效框图;3 掌握反馈系统的基本理论和方法,对工程实际系统进行全面分析和综合;4设计一个位置随动系统,使用工程设计方法,达到相应的技术指标要求.1.2 系统原理电枢控直流电动机随动系统性能分析与综合设计系统的原理图见图1所示:图1-1模拟式随动系统原理框图电枢控直流电动机随动系统是一种位置反馈控制系统。

因此,自整角机测角装置ZF一Z B产生的偏差信号经输出变压器B )、环形解调器(相敏整流器)DM后变成直流信号,由集成运算放大器F006放大之后再经电子电路组成的直流功率放大器放大,去控制直流电动机D的电枢电压,进而控制电动机的转角(或转速),电动机的输出轴经传动比为 n:1 的减速器后再输出,从而实现系统的闭环控制。

下面我们结合实际,介绍一个位置随动系统的一般工作过程。

原理图如图2所示:图1-2 位置随动系统原理框图随动系统又称为伺服系统,它所要解决的是未知的自动跟踪问题。

随动系统无论是在国防上还是在自动化生产上应用极为广泛,比如火炮的跟踪瞄准、光电跟踪仪的目标跟踪等等;在轧钢机械、仿真机床、数控机床、工业机器人、自动火炮及雷达天线等应用领域都要求有较高的定位或轨迹控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中北大学信息商务学院课程设计说明书学生姓名:学号:学院:中北大学信息商务学院专业:自动化题目:直流电机位置随动系统设计(第六组)职称: 副教授2013 年 12 月 9 日中北大学信息商务学院课程设计任务书2013-2014 学年第一学期学院:中北大学信息商务学院专业:自动化学生姓名:学号:课程设计题目:直流电机位置随动系统设计(第六组)起迄日期:12月9 日~12月20日课程设计地点:德怀楼七层实验室指导教师:下达任务书日期: 2013年 12月 9日课程设计任务书课程设计任务书位置随动系统的概述一.位置随动系统的概念位置随动控制系统又名伺服控制系统。

其参考输入是变化规律未知的任意时间函数。

随动控制系统的任务是使被控量按同样规律变化并与输入信号的误差保持在规定范围内。

这种系统在军事上应用最为普遍.如导弹发射架控制系统,雷达天线控制系统等。

其特点是输入为未知。

伺服驱动系统(Servo System )简称伺服系统,是一种以机械位置或角度作为控制对象的自动控制系统,例如数控机床等。

使用在伺服系统中的驱动电机要求具有响应速度快、定位准确、转动惯量较大等特点,这类专用的电机称为伺服电机。

当然,其基本工作原理和普通的交直流电机没有什么不同。

该类电机的专用驱动单元称为伺服驱动单元,有时简称为伺服,一般其内部包括电流、速度和/或位置闭环。

二.位置随动系统的基本组成1.电位器式位置随动系统的组成下面通过一个简单的例子说明位置随动系统的基本组成,其原理图如图1-1所示。

这是一个电位器式的小功率位置随动系统,有以下五个部分组成:图1-1 电位器式位置随动系统原理图(1)位置传感器 由电位器1RP 和2RP 组成位置传感器。

1RP 是给定位置传感器,其转轴与操纵轮连接,发出转角给定信号*m θ;2RP 是反馈位置传感器,其转轴通过传动机构与负载的转轴相连,得到转角反馈信号m θ。

两个电位器由同一个直流电源s U 供电,使电位器输出电压*U 和U ,直接将位置信号转换成电压量。

误差电压U U U -=∆*反映了给定与反馈的转角误差m mθθθ-=∆*,通过放大器等环节拖动负载,最终消灭误差。

(2)电压比较放大器(A ) 两个电位器输出的电压信号*U 和U 在放大器A 中进行比较与放大,发出控制信号c U 。

由于U ∆是可正可负的,放大器必须具有鉴别电压极性的能力。

输出的控制电压c U 也是可逆的。

(3)电力电子变换器(UPE ) 它主要起功率放大的作用(同时也放大了电压),而且必须是可逆的。

在小功率直流随动系统中多用P-MOSFET 或IGBT 桥式PWM 变换器。

对于大功率位置随动系统,会用到可逆的脉宽调制式PWM 变换器。

(4)伺服电机(SM ) 在小功率直流随动系统中多用永磁式直流伺服电机,在不同情况下也可采用其它直流或交流伺服电机。

大功率随动系统中也可采用永磁式直流伺服电机,由伺服电机和电力电子变换器构成可逆拖动系统是位置随动系统的执行机构。

(5)减速器与负载 在一般情况下负载的转速是很低的,在电机与负载之间必须设有传动比为i 的减速器。

在现代机器人、汽车电子机械等大功率设备中,为了减少机械装置,倾向于采用低速电机直接传动,可以取消减速器。

以上五个部分是各种位置随动系统都有的,在不同情况下,由于具体条件和性能要求的不同,所采用的具体元件、装置和控制方案可能有较大的差异。

2.位置随动系统的分类随着科学技术的发展出现了各类随动系统由于位置随动系统的特征体现在位置上,体现在位置给定信号和位置反馈信号及两个信号综合比较方面,因此可根据这个特征将它划分为两个类型,一类是模拟式随动系统,一类是数字式随动系统。

数字式随动系统又可分为数字相位随动系统和数字脉冲随动系统。

由于本次设计研究的是模拟随动系统,数字随动系统就不做介绍。

对于模拟随动系统可按闭环系统分为三类。

多环位置随动系统这里只详细介绍经典的位置、转速、电流三环控制系统转速,这类系统适用广泛。

多环系统还包括只有位置环、电流环,没有转速环;或是只有位置环、转速环,没有电流环,其实同三环系统大同小异,分析和设计方法相同。

位置、转速、电流三环系统在电流环、转速环双闭环调速系统的基础上,外边再加一个位置控制环,便形成一个三环控制系统,如图1-2所示。

三环的调节器分别称为位置调节器(APR )、转速调节器(ASR )、电流调节器(ACR )。

其中位置环属外环,是最主要的环,转速环即是位置环的内环,又是电流环的外环,电流环是系统内环。

在设计调节器时,转速调节器和电流调节器可按原双闭环系统的设计和整定方法来解决。

其中位置调节器APR 就是位置环校正装置,它的类型和参数决定了位置随动系统的系统误差和动态跟随性能,其输出限幅值决定了电机的最高转速。

位置、转速、电流三个闭环都画成单位反馈,反馈系数都已计入各调节器的比例系数中去。

和双闭环控制系统一样,多环控制系统调节器的设计方法也是从内环到外环,逐个设计各环节的调节器。

按此规律,对于如图1-2所示的三环位置随动系统,应首先设计电流调节器ACR ,然后将电流环简化成转速环中的一个环节,和其它环节一起构成转速调节器ASR 的控制对象,再设计ASR 。

最后,再把整个转速环简化为位置环中的一个环节,从而设计位置调节器APR 。

逐环设计可以使每个控制环都是稳定的,从而保证整个控制系统的稳定性。

当电流环和转速环内的对象参数变化或扰动时,电流反馈和转速反馈都能够起到及时的抑制作用,使之对位置环的工作影响很小。

同时每个环节都有自己的控制对象,分工明确,易于调整。

但这样的逐环设计的多环控制系统也有明显的不足,即对外环的控制作用的响应不会很快。

这是因为设计每个环节时,都要将内环等效成其中的一个环节,而这种等效环节传递函数之所以能够成立,是以外环的截止频率远远低于内环为前提的。

在一般模拟控制的随动系统中,电流环的截位置、转速、电流三环位置随动系统的原理图BQ-光电位置传感器 DSP-数字转速信号形成环节止频率约Hz ci 150~100=ω,转速环的截止频率cn ω约在20~30Hz 之间,最高不超过50Hz ,照此推算,位置环的截止频率只有Hz c 10=θω左右。

位置环的截止频率被限制的太低,会影响系统的快速性,因为这类三环控制的位置随动系统只适用于对快速跟随性能要求不高的场合,例如点位控制的机床随动系统。

在近代数字控制的随动系统中,控制对象的快速响应性能已经大大提高,各控制环的采样周期也可以大大缩短,其转速环的截止频率达Hz cn 200~100=ω,因而位置环的截止频率也可以提高,在要求高动态性能的数控机床轨迹控制和机器人控制中都取得了很好的应用效果。

在位置、转速 、电流三环系统中,位置调节器的输出是转速调节器的输入,速度调节器是电流调节器的输入,电流调节器的输出直接控制功率变换单元,也就是脉宽调制系统。

这三个环的反馈信号都是负反馈,三个环都是反相放大器。

三环相制约,使控制达到极其完美的地步。

三.三环随动系统的基本组成及其数学模型的建立1.三环随动系统的基本组成:系统可分为以下八个部分:1.位置环我们只分析它的数学模型,不会把它作具体介绍。

可以近似为一阶惯性环节,传递函数为=)(s W j 1+s T K j j2.位置传感器模拟随动系统的位置传感器如前所述,大体可以分为两种,电位器和基于电磁感应原理的位置传感器。

基于电磁感应原理的位置传感器有自整角机、旋转变压器、感应同步器等,是应用比较广泛的模拟式位置传感器,可靠性和精度都比较高。

本次设计采用的位置传感器是自整角机。

自整角机是角位移传感器,在随动系统中总是成对应用的。

与指令轴相联的自整角机称为发送机,与执行轴相联的称作接收机。

按用途不同,自整角机可分为力矩式自整角机和控制式自整角机两类。

力矩式自整角机可以不经中间放大环节,直接传递转角信息,一般用于微功率同步旋转系统。

对功率较大的负载,力矩式自整角机带动不了,可采用控制式自整角机,将自整角接收机接成变压器状态,其输出电压通过中间放大环节带动负载,组成自整角机随动系统。

下面简单分析本次设计使用的控制式自整角机的工作原理和使用。

先看单相自整角机的结构和工作原理。

它具有—个单相励磁绕组和一个三相整步绕组,单相励磁绕组安置在转子上,通过两个滑环引入交流励磁电流,励磁磁极通常做成隐极式。

这样可使输入阻抗不随转子位置而变化。

整步绕组是三相绕组,一般为分布绕组,安置在定子上,它们被此在空间相隔o 120,并接成Y 形。

BST 为自整角发送机,BSR 为自整角接收机。

本次模型中采用的自整角机的放大系数)(25.1o bs V K =。

自整角机本身的检测误差o d e 5.0=。

传递函数为式(4-2),是简单的线性函数在数学模型将不会出现,但在计算稳态误差时将会用到自整角机的参数。

自整角机还包括相敏整流器URP ,可以把它当作自整角机的一部分,相当于一个电压放大器,并反映m θ∆的极性,放大系数=rp K 2,当然它在数学模型中也不会出现。

3.电压比较放大器(A )这是位置随动系统所必须有的装置。

它的作用是发出控制信号c U ,由于U ∆可正可负。

放大器必须具有鉴别电压极性的能力,输出的控制的电压c U 也是可逆的。

放大系数5=a K ,函数关系U K U a c ∆=。

这个简单的函数关系也不会在数学模型中出现。

4.电力电子变换器(UPE )起功率放大作用,而且是可逆的。

PWM 变换器有可逆和不可逆两类,可逆变换器又有双极式、单极式和受限单极式等。

在本次大功率随动系统中选取双极式控制的桥式可逆PWM 变换器,因为是大功率系统变换器采用可关断晶闸管。

采用PWM 的调速系统发展越来越成熟,用途也很广,与单纯的晶闸管调速系统相比有很多优点1)主电路线路简单,需用的功率器件少;2)开关频率高,电流容易连续,谐波少,电机损耗及发热都较小;3)低速性能好,稳速精度高,调速范围宽,可达1:10000左右;4)若与快速响应的电机配合,则系统频带宽,动态响应快,动态抗扰能力强;5)功率开关器件工作在开关状态,导通损耗小,当开关频率适当时,开关损耗也不大,因而装置效率较高;6)直流电源采用不控整流时,电网功率因数比相控整流器高。

桥式可逆PWM 变换器的原理图 本次设计采用的PWM 变换器的开关频率f =2500Hz ,即失控时间s T =0.4ms ,失控时间已经非常小,大大提高了系统的快速性,所以时间常数这么小的滞后环节可以近似看成是一个一阶惯性环节(其中s T =1T ),传递函数为 1)(111+=s T K s W 5.电流调节器(ACR )按工程设计法选择典型I 型系统,PI 调节器。

传递函数为 s T s T K s W i i piACR 1)(+= 6.转速调节器(ASR )按工程设计法选择典型I 型系统,选用PI 调节器。

相关文档
最新文档