初中数学重点梳理:二次函数拓展
初中数学中考复习二次函数知识点总结归纳整理

初中数学中考复习二次函数知识点总结归纳整理二次函数是中学数学中非常重要的一个内容,也是中考数学中的重点。
下面是对初中数学中考复习二次函数知识点的总结和归纳整理。
一、二次函数的定义1. 二次函数的一般形式:y = ax² + bx + c,其中a、b、c为常数,且a ≠ 0。
2.二次函数的图像为抛物线,开口方向与a的正负有关。
-当a>0时,抛物线开口向上。
-当a<0时,抛物线开口向下。
二、二次函数的性质1.对称轴:二次函数的对称轴与抛物线的开口方向垂直,其方程为x=-b/2a。
2.顶点:二次函数的顶点位于对称轴上,其坐标为(-b/2a,f(-b/2a))。
-当a>0时,顶点是抛物线的最低点。
-当a<0时,顶点是抛物线的最高点。
3. 判别式:对于二次函数y = ax² + bx + c,其判别式Δ = b² -4ac表示方程ax² + bx + c = 0的根的情况。
-当Δ>0时,方程有两个不相等的实根。
-当Δ=0时,方程有两个相等的实根。
-当Δ<0时,方程没有实根。
4.单调性:-当a>0时,二次函数在对称轴左侧单调递增,右侧单调递减。
-当a<0时,二次函数在对称轴左侧单调递减,右侧单调递增。
三、二次函数的图像特征1.a的正负决定了抛物线的开口方向。
2.,a,的大小决定了抛物线的陡峭程度,a,越大抛物线越陡峭。
3.当b=0时,抛物线经过原点。
4.当c=0时,抛物线经过x轴。
5.当a>0时,函数值在顶点处取得最小值。
6.当a<0时,函数值在顶点处取得最大值。
四、二次函数的方程求解1. 解二次方程ax² + bx + c = 0的一般步骤:- 利用判别式Δ = b² - 4ac判断方程的根的情况。
-若Δ>0,方程有两个不相等的实根,可以用求根公式x₁=(-b+√Δ)/2a和x₂=(-b-√Δ)/2a求解。
二次函数知识点总结

二次函数知识点总结二次函数是初中数学的重要内容,也是高中数学的基础。
它在数学和实际生活中都有广泛的应用。
下面就来对二次函数的知识点进行一个全面的总结。
一、二次函数的定义一般地,形如$y = ax^2 + bx + c$($a$、$b$、$c$是常数,$a ≠ 0$)的函数,叫做二次函数。
其中,$x$是自变量,$a$叫做二次项系数,$b$叫做一次项系数,$c$叫做常数项。
需要注意的是,二次函数的二次项系数$a$不能为$0$,否则就变成了一次函数。
二、二次函数的图像二次函数的图像是一条抛物线。
当$a > 0$时,抛物线开口向上;当$a < 0$时,抛物线开口向下。
抛物线的对称轴是直线$x =\frac{b}{2a}$。
抛物线的顶点坐标为$\left(\frac{b}{2a},\frac{4ac b^2}{4a}\right)$。
三、二次函数的表达式1、一般式:$y = ax^2 + bx + c$($a ≠ 0$)2、顶点式:$y = a(x h)^2 + k$($a ≠ 0$,顶点坐标为$(h, k)$)3、交点式:$y = a(x x_1)(x x_2)$($a ≠ 0$,$x_1$、$x_2$是抛物线与$x$轴交点的横坐标)四、二次函数的性质1、当$a > 0$时,在对称轴左侧,$y$随$x$的增大而减小;在对称轴右侧,$y$随$x$的增大而增大。
当$a < 0$时,在对称轴左侧,$y$随$x$的增大而增大;在对称轴右侧,$y$随$x$的增大而减小。
2、二次函数的最值:当$a > 0$时,函数有最小值,$y_{min} =\frac{4ac b^2}{4a}$。
当$a < 0$时,函数有最大值,$y_{max} =\frac{4ac b^2}{4a}$。
五、二次函数与一元二次方程的关系抛物线$y = ax^2 + bx + c$与$x$轴的交点的横坐标就是一元二次方程$ax^2 + bx + c = 0$的根。
初三数学《二次函数》考点整理与例题解析

初三数学《二次函数》考点整理与例题解析二次函数重难点分析:1、二次函数的图像2、二次函数的性质以及性质的综合应用3、二次函数的应用性问题:①面积最值问题②高度、长度最值问题③利润最大化问题④求近似解知识点归纳:1、二次函数的概念y=ax2+bx+c(a≠0)2、求二次函数的解析式一般式y=ax2+bx+c、顶点式y=a(x+m)2+k交点式y=a(x-x1)(x-x2)3、二次函数的图像和性质当a>0时,图像开口向上,有最低点,有最小值当a<0时,图像开口向下,有最高点,有最大值顶点式对称轴:直线x=-m一般式对称轴:直线x=-b/2a交点式对称轴:直线x=(x1+x2)/24.二次函数图像的平移函数y=a(x+m)2+k的图像,可以由函数y=ax2的图像先向右(当m<0时)或向左(m>0时)平移|m|个单位,再向上(当k>0时)或向下(当k<0时)平移|k|个单位得到5、抛物线与系数的关系二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
常数项c决定抛物线与y轴交点抛物线与y轴交于(0,c)抛物线与x轴交点个数?= b2-4ac>0时,抛物线与x轴有2个交点。
?= b2-4ac=0时,抛物线与x轴有1个交点。
?= b2-4ac<0时,抛物线与x轴没有交点知识拓展:初中数学最重要的部分,在中考中占的比重大,跟其他知识点联系多,以数形结合的题型考查几何,解方程、代数等都相互联系,知识点多题型多变,压轴题多以此为出题点1、考查形式:以选择题、填空题形式考察二次函数图像的性质,以解答题形式考察以二次函数为载体的综合题。
2、考察趋势:二次函数图像与系数的关系,二次函数的应用仍是重点3、二次函数求最值的应用:依据实际问题中的数量关系,确定二次函数的解析式,结合方程、一次函数等知识解决实际问题(对于二次函数最大(小)值的确定,一定要注意二次函数自变量的取值范围,同时兼顾实际问题中对自变量的特殊约定,结合图像进行理解)经典例题。
初中数学二次函数知识点总结归纳

初中数学二次函数知识点总结归纳一、二次函数的定义及表示法:二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a, b, c为常数,且a ≠ 0。
二、二次函数的图像:1.抛物线:二次函数的图像成为抛物线,该抛物线的开口方向由a的符号决定。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
2.顶点:抛物线的顶点坐标为(-b/2a,f(-b/2a)),其中(-b/2a)为抛物线的对称轴。
若a>0,则顶点为最小值点;若a<0,则顶点为最大值点。
3.轴对称性:二次函数的图像关于x=-b/2a对称。
3. 平移:二次函数的图像可以通过平移进行变换。
对f(x) = ax^2 + bx + c,平移后的二次函数为f(x) = a(x - h)^2 + k。
若h>0,则向右平移h个单位;若h<0,则向左平移,h,个单位。
若k>0,则向上平移k个单位;若k<0,则向下平移,k,个单位。
4. 变伸缩:二次函数的图像也可以通过变伸缩进行变换。
对f(x) = ax^2 + bx + c,缩放后的二次函数为f(x) = a(cx)^2 + b(cx) + c。
若c>1,则在x轴方向上缩小,纵轴方向上拉长;若0<c<1,则在x轴方向上拉长,纵轴方向上缩小。
若b>0,则抛物线的顶点向左移动;若b<0,则抛物线的顶点向右移动。
二次函数的图像通过平移和变伸缩可以得到不同的形状,从而对应不同的函数。
三、二次函数的性质:1.零点:即二次函数的解,即f(x)=0的解。
根据二次函数的特点,f(x)=0有两个解、一个解或者无解。
2.零点坐标的关系:对于f(x) = ax^2 + bx + c:若b^2 - 4ac = 0,则有且只有一个零点,即二次函数与x轴交于一点;若b^2 - 4ac > 0,则有两个不相等的零点,即二次函数与x轴交于两点;若b^2 - 4ac < 0,则没有实数解,即二次函数与x轴不交。
(完整版)初中二次函数知识点汇总(史上最全)

二次函数知识点一、基本概念:1.二次函数的概念:一般地,形如2y ax bx c=++(a b ca≠)的函数,叫做二次函数。
,,是常数,0这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、基本形式1. 二次函数基本形式:2=的性质:y axa 的绝对值越大,抛物线的开口越小。
2. 2y ax c=+的性质:(上加下减)3. ()2y a x h =-的性质:(左加右减)4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法1:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法2:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k=-+与2y axbx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
初高中数学衔接知识复习二次函数

初、高中数学衔接知识复习:二次函数一.要点回顾1. 二次函数y =ax 2+bx +c (a ≠0)配方得:y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+b x a+224b a )+c -24b a 224()24b b ac a x a a-=++, 所以,y =ax 2+bx +c (a ≠0)的图象可以由函数y =ax 2的图象作左右平移、上下平移而得到。
2.二次函数y =ax 2+bx +c (a ≠0)的性质:[1] 当a >0时,函数y =ax 2+bx +c 图象开口向 ;顶点坐标为 ,对称轴为直线 ;当x 时,y 随着x 的增大而 ;当x 时,y 随着x 的增大而 ;当x 时,函数取最小值 .[2] 当a <0时,函数y =ax 2+bx +c 图象开口向 ;顶点坐标为 ,对称轴为直线 ;当x 时,y 随着x 的增大而 ;当x 时,y 随着x 的增大而 ;当x 时,函数取最大值 .3.二次函数的三种表示方式[1]二次函数的三种表示方式:(1).一般式: ; (2).顶点式: ; (3).交点式: . 说明:确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.二次函数的关系式可设如下三种形式:①给出三点坐标可利用一般式来求;②给出两点,且其中一点为顶点时可利用顶点式来求.③给出三点,其中两点为与x 轴的两个交点)0,(1x .)0,(2x 时可利用交点式来求.2 二次函数图像的变换----------平移二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”. 选择题:(1)下列函数图象中,顶点不在坐标轴上的是 ( )(A )y =2x 2 (B )y =2x 2-4x +2(C )y =2x 2-1 (D )y =2x 2-4x(2)函数y =2(x -1)2+2是将函数y =2x 2( )(A )向左平移1个单位、再向上平移2个单位得到的 (B )向右平移2个单位、再向上平移1个单位得到的 (C )向下平移2个单位、再向右平移1个单位得到的 (D )向上平移2个单位、再向右平移1个单位得到的(3)把函数y =-(x -1)2+4的图象向左平移2个单位,向下平移3个单位,所得图象对应的解析式为 ( )(A )y = (x +1)2+1 (B )y =-(x +1)2+1(C )y =-(x -3)2+4 (D )y =-(x -3)2+二.题型演练例1.抛物线()21252y x =--+的顶点坐标是_________,对称轴是_________,开口向_____,当x =_______时,y 有最______值,最大值为 ________。
二次函数的相关知识点总结
二次函数的相关知识点总结一、二次函数的概念。
1. 定义。
- 一般地,形如y = ax^2+bx + c(a,b,c是常数,a≠0)的函数,叫做二次函数。
其中x是自变量,a、b、c分别是二次项系数、一次项系数、常数项。
- 例如y = 2x^2+3x - 1,这里a = 2,b=3,c=-1。
二、二次函数的图象。
1. 二次函数y = ax^2+bx + c(a≠0)的图象是一条抛物线。
2. 抛物线的顶点坐标。
- 对于二次函数y = ax^2+bx + c(a≠0),其顶点坐标公式为(-(b)/(2a),frac{4ac - b^2}{4a})。
- 例如,对于二次函数y=x^2-2x - 3,其中a = 1,b=-2,c=-3。
根据顶点坐标公式,-(b)/(2a)=-(-2)/(2×1)=1,frac{4ac - b^2}{4a}=frac{4×1×(-3)-(-2)^2}{4×1}=(-12 - 4)/(4)=-4,所以顶点坐标为(1,-4)。
3. 抛物线的对称轴。
- 对称轴方程为x =-(b)/(2a)。
4. 抛物线的开口方向。
- 当a>0时,抛物线开口向上;当a < 0时,抛物线开口向下。
- 例如,y = 3x^2+2x - 1中a = 3>0,开口向上;y=-2x^2+5x+3中a=-2 < 0,开口向下。
三、二次函数的性质。
1. 增减性。
- 当a>0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而减小;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而增大。
- 当a < 0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而增大;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而减小。
2. 最值。
- 当a>0时,抛物线开口向上,函数有最小值,y_min=frac{4ac - b^2}{4a},此时x =-(b)/(2a)。
初中数学二次函数知识点总结
初中数学二次函数知识点总结二次函数是初中阶段数学中重要的一个章节,掌握好二次函数的知识点对学习整个数学学科都非常重要。
下面是二次函数的完整版知识点总结。
一、二次函数的定义与图像特征1. 二次函数的定义:形如y=ax²+bx+c(a≠0)的函数称为二次函数。
2.二次函数的图像特征:a)抛物线开口方向:a>0时,抛物线开口向上;a<0时,抛物线开口向下。
b)对称轴:对称轴的方程为x=-b/(2a)。
c)最值点:a>0时,最小值点是对称轴上的点;a<0时,最大值点是对称轴上的点。
d) 零点:抛物线与x轴相交的点称为零点,解二次方程ax²+bx+c=0可以求出。
e)单调性:当a>0时,二次函数在对称轴两侧单调递增;当a<0时,二次函数在对称轴两侧单调递减。
二、二次函数的基本公式1. 平方公式:(a+b)²=a²+2ab+b²2. 完全平方公式:a²+2ab+b²=(a+b)²3.差平方公式:a²-b²=(a+b)(a-b)三、一元二次方程1.一元二次方程的定义:只含一个未知数的二次方程称为一元二次方程。
2.一元二次方程的解法:a)完全平方公式法:对一元二次方程进行配方,化成完全平方的形式,从而求出解。
b)因式分解法:将一元二次方程化简为(a-b)(a+b)=0的形式,然后利用乘法原理。
c)直接求解法:对一元二次方程直接利用二次根公式求解。
四、二次函数的变形及其性质1.平移变形:把二次函数图像上的每一个点(x,y)移动到(x-h,y-k)的位置,得到二次函数y=a(x-h)²+k。
2.压缩与伸缩:y=a(x-h)²+k中,a的变化会导致图像纵向的压缩和伸缩。
a)a>1时,图像纵向压缩;b)0<a<1时,图像纵向伸缩;c)a<0时,图像纵向伸缩并翻转。
初中数学二次函数知识点梳理
初中数学二次函数知识点梳理二次函数是数学中非常重要的一个概念,在初中数学中也是一个重点内容。
在这篇文章中,我们将对初中数学二次函数的知识点进行梳理和总结。
一、基本定义二次函数是指形如y=ax^2+bx+c的函数,其中a、b、c为常数且a≠0。
其中,x 为自变量,y为因变量。
1.1 二次项与二次函数在二次函数中,二次项就是ax^2,其中a为常数且a≠0。
二次项是二次函数的重要组成部分,它决定了二次函数的开口方向和形状。
1.2 线性项与二次函数在二次函数中,线性项就是bx,其中b为常数。
线性项使得二次函数的图象发生平移。
1.3 常数项与二次函数在二次函数中,常数项就是c,其中c为常数。
常数项使得二次函数的图象在纵轴上发生上下平移。
二、二次函数的图象2.1 抛物线的开口方向二次函数的图象是一个抛物线,其开口方向由二次项的系数a决定。
- 当a>0时,抛物线开口向上;- 当a<0时,抛物线开口向下。
2.2 抛物线的顶点抛物线的顶点是抛物线的最低点(a>0)或最高点(a<0)。
顶点的坐标为(-b/2a,f(-b/2a))。
2.3 抛物线的对称轴在二次函数图象中,存在对称轴,对称轴垂直于x轴。
对称轴的方程为x=-b/2a。
2.4 抛物线与x轴或y轴的交点抛物线与x轴的交点称为零点,抛物线与y轴的交点称为截距。
求二次函数与x轴或y轴的交点,可以将y或x取值为0,解方程即可。
三、二次函数的性质3.1 二次函数的增减性当二次函数的二次项系数a>0时,函数增加;当二次项系数a<0时,函数减少。
3.2 二次函数的最值当二次函数的二次项系数a>0时,函数的最小值为顶点的纵坐标;当二次项系数a<0时,函数的最大值为顶点的纵坐标。
3.3 零点和截距零点和截距是二次函数的重要性质,求解二次函数的零点可以用因式分解、配方法、求根公式等方法,通过求解方程来获得。
3.4 二次函数的平移二次函数的横向平移和纵向平移可以通过改变二次函数的线性项和常数项来实现。
初中二次函数最全知识点总结
初中二次函数最全知识点总结二次函数是初中数学中的重要内容,以下是二次函数的最全知识点总结:一、基本概念1. 二次函数的定义:y=ax^2+bx+c(a≠0)。
2. 求解二次函数的根:当y=0时,求解二次方程ax^2+bx+c=0的解。
3.二次函数的图像:二次函数的图像为抛物线,开口方向由a的正负决定。
4.抛物线的顶点:二次函数的图像的顶点坐标为(-b/2a,f(-b/2a))。
5.抛物线的对称轴:二次函数图像的对称轴是直线x=-b/2a。
二、图像与相关性质1.拉平方法:将一般式的二次函数化为顶点形式的二次函数。
2.抛物线的开口方向:若二次函数的a>0,则抛物线开口向上;若二次函数的a<0,则抛物线开口向下。
3.抛物线的最值:若抛物线开口向上,则函数有最小值(最小值为f(-b/2a));若抛物线开口向下,则函数有最大值。
4.抛物线的轴对称性:抛物线关于对称轴对称。
5.零点存在性:若一元二次方程有实数根,则抛物线与x轴有交点;若一元二次方程无实数根,则抛物线与x轴无交点。
6.抛物线的轨迹:当抛物线的开口向上时,抛物线图像在x轴上方;当抛物线的开口向下时,抛物线图像在x轴下方。
三、解二次方程1. 提取公因式法:ax^2+bx+c=0,公因式为a,即a(x^2+(b/a)x+c/a)=0,再由零因积性质解得x的值。
2. 公式法:对于一元二次方程ax^2+bx+c=0,解的公式为x=[-b±(b^2-4ac)^(1/2)]/(2a)。
3. 完全平方式:对于一元二次方程ax^2+bx+c=0,通过变形将方程化为完全平方式(x﹦d)^2=0,再解出x的值。
四、因式分解1. 根与系数关系:若x1和x2是一元二次方程ax^2+bx+c=0的两个解,则方程可以分解为a(x-x1)(x-x2)=0。
2. 判别式与因式分解:一元二次方程ax^2+bx+c=0,其中b^2-4ac 被称为判别式,当判别式大于0时,方程有两个不等实数根,即方程可因式分解为a(x-p)(x-q)=0,其中p和q是方程的两个根;当判别式等于0时,方程有两个相等实数根,即方程可因式分解为a(x-r)^2=0,其中r 是方程的根;当判别式小于0时,方程无实数根,即方程不可因式分解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数拓展知识定位本节主要内容有运用两点式求二次函数表达式,以及二次函数中一些技巧规律和方法,综合题函数与方程的转化思想,二次函数也一直都是高考和高中联赛一试的重要内容之一.本节我们通过一些实例的求解,旨在介绍数学竞赛中与二次函数相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。
知识梳理1、二次函数的定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.注意点:二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.2.抛物线的三要素:开口方向、对称轴、顶点①a 的符号决定抛物线的开口方向:当0>a 时,开口向上; 当0<a 时,开口向下;当a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .注意点:顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.3.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=, ∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.(2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 4.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故: ①0=b 时,对称轴为y 轴;②0>a b(即a 、b 同号)时,对称轴在y 轴左侧; ③0<ab(即a 、b 异号)时,对称轴在y 轴右侧. (3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点;②0>c ,与y 轴交于正半轴; ③0<c ,与y 轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则0<ab. 5.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)两点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 6.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点;②方程组只有一组解时⇔l 与G 只有一个交点; ③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故ac x x a b x x =⋅-=+2121,()()a a acb a ca b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=--=-=-=444222122122121例题精讲【试题来源】1996年全国高中数学联赛【题目】如果在区间[1,2]上,函数f (x )=x 2+px +q 与g (x )=x +1x 2在同一点取相同的最小值,求f (x )在该区间上的最大值 【答案】4-5232+34【解析】 解:由于g(x)= x +1x 2=12x +12x+1x 2≥3314=3232.当且仅当12x=1x 2,即x=32时等号成立. 由于32∈[1,2],故x=32时g(x)取得最小值.因为f (x )=x 2+px +q =22()24p p x q ++-,所以-p 2=32且 4q -p 24=3232, 解得p =-232,q =3232+34. 由于32-1<2-32.故在[1.2]上f(x)的最大值为f(2)=4-5232+34.【知识点】二次函数拓展 【适用场合】当堂例题 【难度系数】4【试题来源】1992年全国高中数学联赛【题目】求函数f (x )=x 4-3x 2-6x +13-x 4-x 2+1的最大值。
10【解析】 解:f (x )=x 4-3x 2-6x +13-x 4-x 2+1=x 4-4x 2+4+x 2-6x +9-x 4-2x 2+1+x 2=(x -3)2+(x 2-2)2-x 2+(x 2-1)2于是f (x )表示点P(x ,x 2)与点A(3,2)及B(0,1)距离差|PA|-|PB|。
由于点P(x ,x 2)在抛物线y =x 2上,即在抛物线上找到一点P ,使|PA|-|PB|取得最大值.由三角形的两边差小于第三边知,当且仅当点P 为抛物线与AB 的延长线的交点时,|PA|-|PB|取得最大值。
由于直线AB 的方程为113y x =+,由方程组2,11,3y x y x ⎧=⎪⎨=+⎪⎩ 解得1371937,18x y ⎧±=⎪⎪⎨⎪=⎪⎩, 1371937--,AB 的延长线上。
22(30)(21)10-+-=。
即函数f (x )=x 4-3x 2-6x +13-x 4-x 2+110【知识点】二次函数拓展 【适用场合】当堂练习 【难度系数】5【试题来源】1996年江苏省数学竞赛【题目】对于给定的常数(0,1)p q ∈、,1p q +>,221p q +≤,试求函数2222()(1)(1)f x x p x x q x =----1q x p -≤≤)的最大值。
【答案】22max 1()[()1][1()]2f x p q p q =+---【解析】 解:2222222()(1)()[(1)]f x x p x x q x =--+-- 222(1)(x x p x +-- 222222(1)()[(1)]x p x x q x ≤--+--2222(1)[()(1)]x x p x q x +--+--2222(1)x p q x p =--++222222211()()22p q p q x p -+-+=--+ 2222211()[()1][1()]24p q x p q p q -+=--+--- 221[()1][1()]4p q p q ≤+---, 其中等号成立当且仅当2222(1)p x q x -=--,即2212p q x -+=时,22max 1()[()1][1()]2f x p q p q =+---【知识点】二次函数拓展 【适用场合】当堂例题 【难度系数】5【试题来源】【题目】设βα、是方程0132=+-x x 的两根。
求满足βα=)(f ,αβ=)(f ,1)1(=f 的二次函数)(x f【答案】.44)(2+-=x x x f【解析】 解1 设二次函数c bx ax x f ++=2)(,由题意,⎪⎩⎪⎨⎧=++=++=++)3(1)2()1(22c b a c b a c b a αβββαα (1)+(2)02))(1()(22=++-++c b a βαβα,)4(3237,1,3=++∴==+c b a αββα(1)-(2))5(130))(1()(22-=+⇒=-++-b a b a βαβα由(3)、(4)、(5)解得.4,4,1=-==c b a因此,所求函数为.44)(2+-=x x x f解2 由1)1(=f ,可设二次函数1))(1()(+--=m x x a x f ,则⎩⎨⎧=+++-=+++-⇒⎩⎨⎧=+--=+--)2(1)1()1(1)1(1))(1(1))(1(22αβββαααβββααam m a a am m a a m a m a,1,3==+αββα(1)+(2)022)](1)1([)(22=+++++-+am m a a βαβα)3(014=--⇒am a(1)--(2)0)](1)1([)(22=--+--βαβαm a a)4(012=+-⇒am a由(3)、(4)解得.3,1==m a因此,所求函数为.44)(2+-=x x x f【知识点】二次函数拓展 【适用场合】当堂练习题 【难度系数】5【试题来源】1995年全国初中数学联赛试题 【题目】设x 为正实数,则函数y=x 2-x+1x的最小值是________. 【答案】1【解析】 解: y=x 2-x+1x=(x-1)2+(x+1x)-1 =(x-1)2+x x-)2+1 要求y 的最小值,最好有(x-1)2=0x x-)2=0,这时得到x=1. 于是,当x=1时,y=x 2-x+1x取最小值1 【知识点】二次函数拓展 【适用场合】当堂例题 【难度系数】3【试题来源】2003年天津市竞赛题【题目】已知函数y=(a+2)x 2-2(a 2-1)x+1,其中自变量x 为正整数,a 也是正整数,求x 何值时,函数值最小.【答案】1,1,1,14, 23,4,2,4.aa aaa a=⎧⎪-<<⎪⎨=⎪⎪->⎩当时当时或当时当时【解析】解:y=(a+2)(x-212aa-+)2+1-22(1)2aa-+,其对称轴为x=212aa-+=(a-2)+32a+.因为a为正整数,故0<32a+≤1,a-2<212aa-+≤a-1.因此,函数的最小值只可能在x取a-2,a-1,212aa-+时达到.(1)当212aa-+=a-1时,a=1,此时,x=1使函数取得最小值.(2)当a-2<212aa-+<a-1,即a>1时,由于x是正整数,而212aa-+为小数,故x=212aa-+不能达到最小值.当x=a-2时,y=(a+2)(a-2)2-2(a2-1)(a-2)+1,当x=a-1时,y=(a+2)(a-1)2-2(a2-1)(a-1)+1.又y1-y2=4-a.(i)当4-a>0,即1<a<4且a为整数时,x取a-1,使y2为最小值;(ii)当4-a=0时,即a=4时,有y1=y2,此时x取2或3;(iii)当4-a<0,即a>4且为整数时,x取a-2,使y1为最小值.综上,x=1,1,1,14,23,4,2,4.aa aaa a=⎧⎪-<<⎪⎨=⎪⎪->⎩当时当时或当时当时(其中a为整数)评注:求二次函数y=a x2+bx+c在给定范围的最值,•关键是看对称轴方程是否在给定范围内,并与端点一并比较.【知识点】二次函数拓展 【适用场合】当堂练习题 【难度系数】5【试题来源】1997年湖北省荆州市初中数学联赛试题 【题目】已知二次函数y=(a 2-a+1)x 2+bx+16a 的图象与x 轴交点为A (x 1,0),B (x 2,0),其顶点横坐标为12,设t=x 13+x 23. (1)试用a 把t 表示出来;(2)问实数a 取何值时,t 取最小值,最小值是多少? 【答案】如下解析【解析】 解:根据题意得21221221,22(1),16.1b a a b x x a a a x x a a ⎧⎪=-⎪-+⎪⎪+=-⎨-+⎪⎪⎪=⎪-+⎩∴b=-(a 2-a+1),x 1+x 2=1. 此时,△=b 2-4(a 2-a+1)·6a=(a 2-a+1)2-23a (a 2-a+1) =(a 2-a+1)(a 2-53a+1) =[(a-12)2+34][(a-56)2+1136]>0,∴a 可取任意实数值. (1)t=(x 1+x 2)3-3x 1x 2(x 1+x 2)=1-3x 1x 2=1-12·2222321222a a a a a a a -+=-+-+.(2)将t=22232222a a a a -+-+变形,得2(t-1)2a 2+(3-2t )a+2(t-1)=0, 显然,当a=0时,t=1.当t ≠1时,△a =(3-2t )2-4×2(t-1)×2(t-1)≥0,即12t 2-20t+7≤0,∴12≤t ≤76. 综上所述,t min =12,仅当a=1时取得.评注:在求二次函数的最值时,若二次函数有字母系数,则应考虑△≥0与二次项系数不为0的条件. 【知识点】二次函数拓展 【适用场合】当堂例题 【难度系数】5【试题来源】【题目】点A 为y 轴正半轴上一点,A B ,两点关于x 轴对称,过点A 任作直线交抛物线223y x =于P ,Q 两点. (1)求证:∠ABP =∠ABQ ;(2)若点A 的坐标为(0,1),且∠PBQ =60º,试求所有满足条件的直线PQ 的函数解析式.【答案】31y x =-+ 如图,分别过点P Q , 作y 轴的垂【解析】 解:(1)线,垂足分别为C D , .设点A 的坐标为(0,t ),则点B 的坐标为(0,-t ).设直线PQ 的函数解析式为y kx t =+,并设P Q ,的坐标分别为P P x y (,),Q Q x y (,).由223y kx t y x =+⎧⎪⎨=⎪⎩,, 得 2203x kx t --=, 于是 32P Q x x t =-,即 23P Q t x x =-.于是 222323P P Q Qx t y t BC BD y t x t ++==++22222()333.222()333P P Q P P Q P Q Q P Q Q Q P x x x x x x x x x x x x x x --===---又因为P Q x PCQD x =-,所以BC PC BD QD=.因为∠BCP =∠90BDQ =︒,所以△BCP ∽△BDQ , 故∠ABP =∠ABQ .(2) 设PC a =,DQ b =,不妨设a ≥b >0,由(1)可知∠ABP =∠30ABQ =︒,BC =3a ,BD 3b ,所以 AC 32a -,AD =23b .因为PC ∥DQ ,所以△ACP ∽△ADQ . 于是PC AC DQ AD=,即3223a a b b -=-,所以3a b ab +=.由(1)中32P Q x x t =-,即32ab -=-,所以33322ab a b =+=,于是可求得2 3.a b == 将32b =代入223y x =,得到点Q 的坐标(32,12).再将点Q的坐标代入1y kx=+,求得3.3 k=-所以直线PQ的函数解析式为31y x=-+.【知识点】二次函数拓展【适用场合】当堂练习题【难度系数】4【试题来源】【题目】如图,在平面直角坐标系中,顶点为A(1,﹣1)的抛物线经过点B(5,3),且与x 轴交于C,D两点(点C在点D的左侧).(1)求抛物线的解析式;(2)求点O到直线AB的距离;(3)点M在第二象限内的抛物线上,点N在x轴上,且∠MND=∠OAB,当△DMN与△OAB相似时,请你直接写出点M的坐标.【答案】如下解析【解析】解:(1)设抛物线的解析式为y=a(x﹣1)2﹣1,将B点坐标代入函数解析式,得(5﹣1)2a﹣1=3,解得a=.故抛物线的解析式为y=(x﹣1)2﹣1;(2)由勾股定理,得OA2=11+12=2,OB2=52+32=34,AB2=(5﹣1)2+(3+1)2=32,OA2+AB2=OB2,∴∠OAB=90°,O到直线AB的距离是OA=;(3)设M(a,b),N(a,0)当y=0时,(x﹣1)2﹣1=0,解得x1=3,x2=﹣1,D(3,0),DN=3﹣a.①当△MND∽△OAB时,=,即=,化简,得4b=a﹣3 ①M在抛物线上,得b=(a﹣1)2﹣1 ②联立①②,得,解得a1=3(不符合题意,舍),a2=﹣2,b=,M1(﹣2,),当△MND∽△BAO时,=,即=,化简,得b=12﹣4a ③,联立②③,得,解得a1=3(不符合题意,舍),a2=﹣17,b=12﹣4×(﹣17)=80,M2(﹣17,80).综上所述:当△DMN与△OAB相似时,点M的坐标(﹣2,),(﹣17,80)【知识点】二次函数拓展【适用场合】当堂例题【难度系数】5【试题来源】【题目】如图,折叠矩形OABC的一边BC,使点C落在OA边的点D处,已知折痕BE=5,且=,以O为原点,OA所在的直线为x轴建立如图所示的平面直角坐标系,抛物线l:y=﹣x2+x+c经过点E,且与AB边相交于点F.(1)求证:△ABD∽△ODE;(2)若M是BE的中点,连接MF,求证:MF⊥BD;(3)P是线段BC上一点,点Q在抛物线l上,且始终满足PD⊥DQ,在点P运动过程中,能否使得PD=DQ?若能,求出所有符合条件的Q点坐标;若不能,请说明理由.【答案】如下解析【解析】解:(1)∵四边形ABCO为矩形,且由折叠的性质可知△BCE≌△BDE,∴∠BDE=∠BCE=90°,∵∠BAD=90°,∴∠EDO+∠BDA=∠BDA+∠DAB=90°,∴∠EDO=∠DBA,且∠EOD=∠BAD=90°,∴△ABD∽△ODE;(2)∵=,∴设OD=4x,OE=3x,则DE=5x,∴CE=DE=5x,∴AB=OC=CE+OE=8x,又∵△ABD∽△ODE,∴==,∴DA=6x,∴BC=OA=10x,在Rt△BCE中,由勾股定理可得BE2=BC2+CE2,即(5)2=(10x)2+(5x)2,解得x=1,∴OE=3,OD=4,DA=6,AB=8,OA=10,∴抛物线解析式为y=﹣x2+x+3,当x=10时,代入可得y=,∴AF=,BF=AB﹣AF=8﹣=,在Rt△AFD中,由勾股定理可得DF===,∴BF=DF,又M为Rt△BDE斜边上的中点,∴MD=MB,∴MF为线段BD的垂直平分线,∴MF⊥BD;(3)由(2)可知抛物线解析式为y=﹣x2+x+3,设抛物线与x轴的两个交点为M、N,令y=0,可得0=﹣x2+x+3,解得x=﹣4或x=12,∴M(﹣4,0),N(12,0),过D作DG⊥BC于点G,如图所示,则DG=DM=DN=8,∴点M、N即为满足条件的Q点,∴存在满足条件的Q点,其坐标为(﹣4,0)或(12,0).【知识点】二次函数拓展【适用场合】当堂练习题【难度系数】5【试题来源】【题目】如图,在平面直角坐标系中,平行四边形ABOC如图放置,将此平行四边形绕点O顺时针旋转90°得到平行四边形A′B′OC′.抛物线y=﹣x2+2x+3经过点A、C、A′三点.(1)求A、A′、C三点的坐标;(2)求平行四边形ABOC和平行四边形A′B′OC′重叠部分△C′OD的面积;(3)点M是第一象限内抛物线上的一动点,问点M在何处时,△AMA′的面积最大?最大面积是多少?并写出此时M的坐标.【答案】如下解析【解析】解:(1)当y=0时,﹣x2+2x+3=0,解得x1=3,x2=﹣1,则C(﹣1,0),A′(3,0);当x=0时,y=3,则A(0,3);(2)∵四边形ABOC为平行四边形,∴AB∥OC,AB=OC,而C(﹣1,0),A(0,3),∴B(1,3)∴OB==,S△AOB=×3×1=,又∵平行四边形ABOC旋转90°得平行四边形A′B′OC′,∴∠ACO=∠OC′D,OC′=OC=1,又∵∠ACO=∠ABO,∴∠ABO=∠OC′D.又∵∠C′OD=∠AOB,∴△C′OD∽△BOA,∴=()2=()2=,∴S△C′OD=×=;(3)设M点的坐标为(m,﹣m2+2m+3),0<m<3,作MN∥y轴交直线AA′于N,易得直线AA′的解析式为y=﹣x+3,则N(m,﹣m+3),∵MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,∴S△AMA′=S△ANM+S△MNA′=MN•3=(﹣m2+3m)=﹣m2+m=﹣(m﹣)2+,∴当m=时,S△AMA'的值最大,最大值为,此时M点坐标为().【知识点】二次函数拓展【适用场合】当堂例题【难度系数】4【试题来源】【题目】已知,△ABC在平面直角坐标系中的位置如图①所示,A点坐标为(﹣6,0),B点坐标为(4,0),点D为BC的中点,点E为线段AB上一动点,连接DE经过点A、B、C三点的抛物线的解析式为y=ax2+bx+8.(1)求抛物线的解析式;(2)如图①,将△BDE以DE为轴翻折,点B的对称点为点G,当点G恰好落在抛物线的对称轴上时,求G点的坐标;(3)如图②,当点E在线段AB上运动时,抛物线y=ax2+bx+8的对称轴上是否存在点F,使得以C、D、E、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.【答案】如下解析【解析】解:解:(1)∵抛物线y=ax2+bx+8经过点A(﹣6,0),B(4,0),∴解得∴抛物线的解析式是:y=﹣x2﹣x+8.(2)如图①,作DM⊥抛物线的对称轴于点M,,设G点的坐标为(﹣1,n),由翻折的性质,可得BD=DG,∵B(4,0),C(0,8),点D为BC的中点,∴点D的坐标是(2,4),∴点M的坐标是(﹣1,4),DM=2﹣(﹣1)=3,∵B(4,0),C(0,8),∴BC==4,∴,在Rt△GDM中,32+(4﹣n)2=20,解得n=4±,∴G点的坐标为(﹣1,4+)或(﹣1,4﹣).(3)抛物线y=ax2+bx+8的对称轴上存在点F,使得以C、D、E、F为顶点的四边形为平行四边形.①当CD∥EF,且点E在x轴的正半轴时,如图②,,由(2),可得点D的坐标是(2,4),设点E的坐标是(c,0),点F的坐标是(﹣1,d),则解得∴点F的坐标是(﹣1,4),点C的坐标是(1,0).②当CD∥EF,且点E在x轴的负半轴时,如图③,,由(2),可得点D的坐标是(2,4),设点E的坐标是(c,0),点F的坐标是(﹣1,d),则解得∴点F的坐标是(﹣1,﹣4),点C的坐标是(﹣3,0).③当CE∥DF时,如图④,,由(2),可得点D的坐标是(2,4),设点E的坐标是(c,0),点F的坐标是(﹣1,d),则解得∴点F的坐标是(﹣1,12),点C的坐标是(3,0).综上,可得抛物线y=ax2+bx+8的对称轴上存在点F,使得以C、D、E、F为顶点的四边形为平行四边形,点F的坐标是(﹣1,4)、(﹣1,﹣4)或(﹣1,12)【知识点】二次函数拓展【适用场合】当堂例题【难度系数】5习题演练【试题来源】x+【题目】求函数y=(4-x)29【答案】3x+,则u>0,且y=4+u.【解析】解:设29于是(u+x)2=4(x2+9),即3x2-2u·x+36-u2=0.∵x∈R,∴上式的判别式△=(2u)2-4×3×(36-u2)≥0,即u2≥27,故u≥33.∴y=4-x+229x 的最小值为4+33(当x=3时取到).评注:通过换元,把原函数转变成关于x的一元二次方程,考虑到一元二次方程有解,由△≥0即可求得u的范围,从而求得y的最值.这是一种常用的方法,应掌握【知识点】二次函数拓展【适用场合】随堂课后练习【难度系数】3【试题来源】2002年太原市竞赛题【题目】已知二次函数y=x2-x-2及实数a>-2,求(1)函数在-2<x≤a的最小值;(2)函数在a≤x≤a+2的最小值.【答案】-9 4【解析】解:函数y=x2-x-2的图象如图.(1)当-2<a<12时,y min =y │x=a =a 2-a-2;当a ≥12时,y min = 12|x y ==-94. (2)当-2<a 且a+2<12,即-2<a<-32时,y min =y│x=a+2=(a+2)2-(a+2)-2=a 2+3a ;当a<12≤a+2,即-32≤a<12时, y min = 12|x y ==-94. 评注:将a 相对于抛物线对称轴的位置进行分类讨论是解题关键,•而数形结合的方法可以直观地帮助求解.【知识点】二次函数拓展【适用场合】随堂课后练习【难度系数】4【试题来源】【题目】如图,在平面直角坐标系中,抛物线y=ax 2+bx+与x 轴交于A (﹣3,0),B (1,0)两点.与y 轴交于点C ,点D 与点C 关于抛物线的对称轴对称.(1)求抛物线的解析式,并直接写出点D 的坐标;(2)如图1,点P 从点A 出发,以每秒1个单位长度的速度沿A →B 匀速运动,到达点B 时停止运动.以AP 为边作等边△APQ (点Q 在x 轴上方),设点P 在运动过程中,△APQ 与四边形AOCD 重叠部分的面积为S ,点P 的运动时间为t 秒,求S 与t 之间的函数关系式;(3)如图2,连接AC ,在第二象限内存在点M ,使得以M 、O 、A 为顶点的三角形与△AOC 相似.请直接写出所有符合条件的点M 坐标.【答案】如下解析【解析】解:解:(1)∵抛物线y=ax2+bx+经过A(﹣3,0),B(1,0)两点,∴,解得,∴抛物线解析式为y=﹣x2﹣x+;则D点坐标为(﹣2,).(2)∵点D与A横坐标相差1,纵坐标之差为,则tan∠DAP=,∴∠DAP=60°,又∵△APQ为等边三角形,∴点Q始终在直线AD上运动,当点Q与D重合时,由等边三角形的性质可知:AP=AD==2.①当0≤t≤2时,P在线段AO上,此时△APQ的面积即是△APQ与四边形AOCD的重叠面积.AP=t,∵∠QAP=60°,∴点Q的纵坐标为t•sin60°=t,∴S=×t×t=t2.②当2<t≤3时,如图:此时点Q在AD的延长线上,点P在OA上,设QP与DC交于点H,∵DC∥AP,∴∠QDH=∠QAP=∠QHD=∠QPA=60°,∴△QDH是等边三角形,∴S=S△QAP﹣S△QDH,∵QA=t,∴S△QAP=t2.∵QD=t﹣2,∴S△QDH=(t﹣2)2,∴S=t2﹣(t﹣2)2=t﹣.③当3<t≤4时,如图:此时点Q在AD的延长线上,点P在线段OB上,设QP与DC交于点E,与OC交于点F,过点Q作AP的垂涎,垂足为G,∵OP=t﹣3,∠FPO=60°,∴OF=OP•tan60°=(t﹣3),∴S△FOP=×(t﹣3)(t﹣3)=(t﹣3)2,∵S=S△QAP﹣S△QDE﹣S△FOP,S△QAP﹣S△QDE=t﹣.∴S=t﹣﹣(t﹣3)2=t2+4t﹣.综上所述,S与t之间的函数关系式为S=.(3)∵OC=,OA=3,OA⊥OC,则△OAC是含30°的直角三角形.①当△AMO以∠AMO为直角的直角三角形时;如图:过点M2作AO的垂线,垂足为N,∵∠M2AO=30°,AO=3,∴M2O=,又∵∠OM2N=M2AO=30°,∴ON=OM2=,M2N=ON=,∴M2的坐标为(﹣,).同理可得M1的坐标为(﹣,).②当△AMO以∠OAM为直角的直角三角形时;如图:∵以M、O、A为顶点的三角形与△OAC相似,∴=,或=,∵OA=3,∴AM=或AM=3,∵AM⊥OA,且点M在第二象限,∴点M的坐标为(﹣3,)或(﹣3,3).综上所述,符合条件的点M的所有可能的坐标为(﹣3,),(﹣3,3),(﹣,),(﹣,).【知识点】二次函数拓展【适用场合】随堂课后练习【难度系数】5【试题来源】【题目】如图,抛物线2y ax bx =+(a >0)与双曲线k y x=相交于点A ,B . 已知点A 的坐标为(1,4),点B 在第三象限内,且△AOB 的面积为3(O 为坐标原点).(1)求实数a ,b ,k 的值;(2)过抛物线上点A 作直线AC ∥x 轴,交抛物线于另一点C ,求所有满足△EOC ∽△AOB 的点E 的坐标【答案】如下解析【解析】 解:(1)因为点A (1,4)在双曲线k y x=上, 所以k=4. 故双曲线的函数表达式为xy 4=. 设点B (t ,4t),0t <,AB 所在直线的函数表达式为y mx n =+,则有 44m n mt n t=+⎧⎪⎨=+⎪⎩,, 解得4m t=-,4(1)t n t +=. 于是,直线AB 与y 轴的交点坐标为4(1)0,t t +⎛⎫ ⎪⎝⎭,故 ()141132AOB t S t t∆+=⨯-=(),整理得22320t t +-=, 解得2t =-,或t =21(舍去). 所以点B 的坐标为(2-,2-).因为点A ,B 都在抛物线2y ax bx =+(a >0)上, 所以4422a b a b +=⎧⎨-=-⎩,, 解得13.a b =⎧⎨=⎩, (2)如图,因为AC ∥x 轴,所以C (4-,4),于是CO =42. 又BO =22,所以2=BO CO . 设抛物线2y ax bx =+(a >0)与x 轴负半轴相交于点D ,则点D 的坐标为(3-,0).因为∠COD =∠BOD =45︒,所以∠COB =90︒. (i )将△BOA 绕点O 顺时针旋转90︒,得到△1B OA '.这时,点B '(2-,2)是CO 的中点,点1A 的坐标为(4,1-).延长1OA 到点1E ,使得1OE =12OA ,这时点1E (8,2-)是符合条件的点. (ii )作△BOA 关于x 轴的对称图形△2B OA ',得到点2A (1,4-);延长2OA 到点2E ,使得2OE =22OA ,这时点E 2(2,8-)是符合条件的点. 所以,点E 的坐标是(8,2-),或(2,8-)【知识点】二次函数拓展【适用场合】随堂课后练习【难度系数】5。