初中 28.1锐角三角形同步练习(二)
人教版九年级数学下册28.1 锐角三角函数同步练习(填空题) 含答案

第28章锐角三角函数 同步学习检测(一)一、填空题:注意:填空题的答案请写在下面的横线上, (每小题3分,共96分) 1、 ;2、 ;3、 ;4、 ;5、 ; 6、 ;7、 ;8、 ;9、 ;10、 ; 11、 ;12、 ;13、 ;14、 ;15、 ; 16、 ;17、 ;18、 ;19、 ;20、 、 ;21、 ; 22、 ;23、 ; 24、 ; 25、 ;26、 ;27、 ;28、 ;29、 ;30、 ;31、 ;32、 ;1.(2009年济南)如图,AOB ∠是放置在正方形网格中的一个角,则cos AOB ∠的值是 .2.(2009年济南)九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角60CBD =︒∠; (2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度 1.5AB =米.根据测量数据,计算出风筝的高度CE 约为 米.(精确到0.1米,3 1.73≈) 3. (2009仙桃)如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点.C 点的仰角分别为52°和35°,则广告牌的高度BC 为_____________米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)4.(2009年安徽)长为4m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了 m .5.(2009年桂林市.百色市)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电 线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).6.(2009湖北省荆门市)计算:104cos30sin 60(2)(20092008)-︒︒+---=______. 7.(2009年宁波市)如图,在坡屋顶的设计图中,AB AC =,屋顶的宽度l 为10米,坡角α为35°,则坡屋顶高度h 为 米.(结果精确到0.1米)8.(2009桂林百色)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).9.(2009丽水市)将一副三角板按如图1位置摆放,使得两块三角板的直角边AC 和MD 重合.已知AB =AC =8 cm,将△MED 绕点A (M )逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积约是 ▲ cm 2(结果 精确到0.1,73.13≈)10.(09湖南怀化)如图,小明从A 地沿北偏东ο30方向走1003m 到B 地,再从B 地向正南方向走200m 到C 地,此时小明离A 地 m .11.(2009年孝感)如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .12.(2009泰安)如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tanA 的值为 . 13.(2009年南宁市)如图,一艘海轮位于灯塔P 的东北方向,距离灯塔402A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则海轮行驶 的路程AB为 _____________海里(结果保留根号).14.(2009年衡阳市)某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为52米,则这个破面的坡度为_________.15.2009年鄂州)小明同学在东西方向的沿江大道A 处,测得江中灯塔P 在北偏东60°方向上,在A 处正东400米的B 处,测得江中灯塔P 在北偏东30°方向上,则灯塔P 到沿江大道的距离为____________米.16.(2009年广西梧州)在△ABC 中,∠C =90°, BC =6 cm ,53sin =A , 则AB 的长是 cm .17.(2009宁夏)10.在Rt ABC △中,903C AB BC ∠===°,,, 则cos A 的值是 .18.(2009年包头)如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π). 19.(2009年包头)如图,已知ACB △与DFE △是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B C F D 、、、在同一条直线上,且点C 与点F 重合,将图(1)中的ACB △绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点G ,则线段FG 的长为 cm (保留根号).20.(2009年山东青岛市)如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 cm ;如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要 cm .ANBM21.(2009年益阳市)如图,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC 平移得到△C B A ''',使点B '与C 重合,连结B A ',则C B A ''∠tan 的值为 . 22.(2009白银市)如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B .C ,那么线段AO = cm .23. (2009年金华市) “赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为4,大正方形的面积为100,直角三角形中较小的锐角为α,则tan α的值等于 .24.(2009年温州)如图,△ABC 中,∠C=90°,AB=8,cosA=43,则AC 的长是 25.(2009年深圳市)如图,小明利用升旗用的绳子测量学校旗杆BC 的高度,他发现 绳子刚好比旗杆长11米,若把绳子往外拉直,绳子接触地面A 点并与地面形成30º角时,绳子末端D 距A 点还有1米,那么旗杆BC 的高度为 .26.(2009年深圳市)如图,在Rt △ABC 中,∠C=90º,点D 是BC 上一点,AD=BD , 若AB=8,BD=5,则CD= .27.(2009年黄石市)计算:1132|20093tan 303-⎛⎫+--+ ⎪⎝⎭°= .28..(2009年中山)计算:19sin 30π+32-0°+()= .29.(2009年遂宁)计算:()3208160cot 33+--o -= .30.(2009年湖州)计算:()02cos602009π9--+°= . 31.(2009年泸州)︒+--+-30sin 29)2009()21(01= . 32.(2009年安徽)计算:|2-|o 2o 12sin30(3)(tan 45)-+--+= . 二、解答题(每小题4分,24分)1.(2009年河北)图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin∠DOE = 1213. (1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降,则经过多长时间才能将水排干?OEC D2.(2009年新疆乌鲁木齐市)九(1)班的数学课外小组,对公园人工湖中的湖心亭A 处到笔直的南岸的距离进行测量.他们采取了以下方案:如图7,站在湖心亭的A 处测得南岸的一尊石雕C 在其东南方向,再向正北方向前进10米到达B 处,又测得石雕C 在其南偏东30°方向.你认为此方案能够测得该公园的湖心亭A 处到南岸的距离吗?若可以,请计算此距离是多少米(结果保留到小数点后一位)?3.(2009年哈尔滨)如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A 处测得灯塔C 在北偏西30°方向,轮船航行2小时后到达B 处,在B 处测得灯塔C 在北偏西60°方向.当轮船到达灯塔C 的正东方向的D 处时,求此时轮船与灯塔C 的距离.(结果保留根号)BADC北东西南4. (2009山西省太原市)如图,从热气球C 上测得两建筑物A .B 底部的俯角分别为30°和60°.如果这时气球的高度CD 为90米.且点A .D .B 在同一直线上,求建筑物A .B 间的距离.5.(2009年中山)如图所示,A .B 两城市相距100km ,现计划在这两座城市间修建一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏ABC EF60°30°CDBA 北60°30°西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:3≈1.732,2≈1.414)6.(2009河池)如图,为测量某塔AB 的高度,在离该塔底部20米处目测其顶A ,仰角为60o ,目高1.5米,试求该塔的高度(3 1.7)≈.1.5C 60oA1.51.22 2. 16.1 3. 3.5 4. 2(32)- 5. 43 6. 327. 3.5 8. 43 9. 20.3 10. 100 11. 45(或0.8); 12. 33 13.. ()40340+ 14.1:215. 3200 16. 10 17. 53 18. π33-19..532 20. 10,22916n +(或23664n +)21. 3122. 5 23。
28.1 锐角三角函数配套课时练习及答案.doc

28.1 锐角三角函数配套课时练习1、如下图,表示甲、乙两山坡的情况, _____坡更陡。
(填“甲”“乙”)αβ 1213 34甲乙2、在Rt △ABC 中,∠C =90°,若AC =3,AB =5,则cosB 的值为__________。
3、在Rt △ABC 中,∠C=90°.若sinA=22,则sinB= 。
4、计算:sin 245°-1= 。
5、在△ABC 中,AB=AC=10,BC=16,则cosB=_____。
6、△ABC 中,∠C=90°,斜边上的中线CD=6,sinA=31,则S △ABC=______。
7、菱形的两条对角线长分别为23和6,则菱形较小的内角为______度。
8、如图2是固定电线杆的示意图。
已知:CD ⊥AB ,CD 33=m ,∠CAD=∠CBD=60°,则拉线AC 的长是__________m 。
9、升国旗时,某同学站在离旗杆底部24米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若双眼离地面1.5米,则旗杆的高度为______米。
(用含根号的式子表示)10、如图3,我校为了筹备校园艺术节,要在通往舞台的台阶上铺上红色地毯.如果地毯的宽度恰好与台阶的宽度一致,台阶的侧面如图所示,台阶的坡角为30,90BCA ∠=,台阶的高BC 为2米,那么请你帮忙算一算需要米长的地毯恰好能铺好台阶.(结果精确到0.1m 1.414= 1.732=)11、如图4,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为____________.(不取近似值. 以下数据供解题使用:sin15°=,cos15°) 12、在ABC ∆中,︒=∠90C ,AB=15,sinA=13,则BC 等于( ) A 、45 B 、5 C 、15 D 、14513、李红同学遇到了这样一道题:2 cos(α+20°)=1,你猜想锐角α的度数应是( )A.40°B.30°C.20°D.10°14、身高相同的三个小朋友甲、乙、丙放风筝,他们放出的线长分别为300 m ,250 m ,200 m ;线与地面所成的角度分别为30°,45°,60°(假设风筝线是拉直的),则三人所放的风筝( )A.甲的最高B.乙的最低C.丙的最低D.乙的最高 15、在△ABC 中,若cosA=0,sinB=22,你认为最确切的判断是( ) A.△ABC 是等腰三角形 B.△ABC 是等腰直角三角形 C.△ABC 是直角三角形 D.△ABC 是一般锐角三角形16、如图5,某地夏季中午,当太阳移至房顶上方偏南时,光线与地面成80°角,房屋朝南的窗子高AB=1.8 m ,要在窗子外面上方安装水平挡光板AC ,使午间光线不能直接射入室内,那么挡光板的宽度AC 为( )A.1.8sin80°mB.1.8cos80°mC.80sin 8.1 mD.以上都不对17、如图6,四边形ABCD 中,∠A=135°,∠B=∠D=90°,BC=23,AD=2,则四边形ABCD 的面积是( )A.42B.43C.4D.618、计算:(1)3cos30°+2sin45° (2)6cos 2 30°-3sin 60°-2sin 45°19、根据下列条件,求出Rt △ABC(∠C=90°)中未知的边和锐角.(1)BC=8,∠B=60°.(2)AC=2,AB=2参考答案: 1.125,43 ,乙。
人教版九年级下册 第二十八章 锐角三角函数 28.1 锐角三角函数 同步练习(含答案)

锐角三角函数同步练习一.选择题(共12小题)1.2sin60°+等于()A.2B.2C.3D.32.在Rt△ABC中,△C=90°,AB=4,BC=3,则sin△B的值为()A.B.C.D.3.△ABC在网格中的位置如图所示(每个小正方形边长为1),AD△BC于D,下列四个选项中,错误的是()A.sinα=cosαB.tanC=2C.sinβ=cosβD.tanα=14.已知在Rt△ABC中,△C=90°,sinA=,则△A的正切值为()A.B.C.D.5.在Rt△ABC中,cosB=,△C=90°,若则tanA的值是()A.B.C.D.6.如图,BD△AC于D,CE△AB于E,BD与CE相交于O,则图中线段的比不能表示sinA 的式子为()A.B.C.D.7.已知△A与△B互余,若tan△A=,则cos△B的值为()A.B.C.D.8.Rt△ABC中,△C=90°,AC=,AB=4,则cosB的值是()A.B.C.D.9.在Rt△ABC中,△C=90°,AC=1,BC=3,则△A的正切值为()A.3B.C.D.10.如图,在Rt△ABC中,△BAC=90°,AD△BC于点D,则下列结论不正确的是()11.如图,已知在Rt△ABC中,△ABC=90°,点D沿BC自B向C运动(点D与点B、C 不重合),作BE△AD于E,CF△AD于F,则BE+CF的值()A.不变B.增大C.减小D.先变大再变小12.如图,点D(0,3),O(0,0),C(4,0)在△A上,BD是△A的一条弦,则sin△OBD=()A.B.C.D.二.填空题(共5小题)13.计算:2sin45°=14.在直角三角形ABC中,若2AB=AC,则cosC= .15.在△ABC中,△C=90°,若tanA=0.5,则sinB=16.如图,在半径为3的△O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tanD=17.一般地,当α、β为任意角时,sin(α+β)与sin(α-β)的值可以用下面的公式求得:sin (α+β)=sinα•cosβ+cosα•sinβ;sin(α-β)=sinα•cosβ-cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°=类似地,可以求得sin15°的值是三.解答题(共6小题)18.计算:sin30°+cos30°•tan60°.19.已知α是锐角,则值.20.已知α为锐角,的值.21.如图,△ABC是等腰三角形,AB=AC,以AC为直径的△O与BC交于点D,DE△AB,垂足为E,ED的延长线与AC的延长线交于点F.(1)求证:DE是△O的切线;(2)若△O的半径为2,BE=1,求cosA的值.22.小明在某次作业中得到如下结果:据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°-α)=1.(△)当α=30°时,验证sin2α+sin2(90°-α)=1是否成立;(△)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.23.如图,AB为△O的直径,且弦CD△AB于E,过点B的切线与AD的延长线交于点F.(1)若M是AD的中点,连接ME并延长ME交BC于N.求证:MN△BC.(2)若cos△C=,DF=3,求△O的半径.参考答案1-5:AACDD 6-10:CBDAC 11-12:CD13、14、15、16、217、18、219、20、21、(1)证明:连接AD、OD ∵AC是直径∴AD⊥BC∵AB=AC∴D是BC的中点又∵O是AC的中点∴OD∥AB∵DE⊥AB∴OD⊥DE∴DE是⊙O的切线(2)解:由(1)知OD∥AE,∴∠FOD=∠FAE,∠FDO=∠FEA,∴△FOD∽△FAE,22、(2)小明的猜想成立,证明如下:如图,在△ABC中,△C=90°23、(1)证明:连接AC.∵AB是⊙O的直径,且AB⊥CD于E,由垂径定理得,点E是CD的中点;又∵M是AD的中点,∴ME是△DAC的中位线,∴MN∥AC.∵AB是⊙O的直径,∴∠ACB=90°.∴∠MNB=90°,即MN⊥BC;知识像烛光,能照亮一个人,也能照亮无数的人。
(2021年整理)最新人教版九年级数学下册同步练习题:28.1锐角三角函数第2课时

编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)最新人教版九年级数学下册同步练习题:28.1锐角三角函数第2课时)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)最新人教版九年级数学下册同步练习题:28.1锐角三角函数第2课时的全部内容。
数第2课时编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)最新人教版九年级数学下册同步练习题:28。
1锐角三角函数第2课时这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力.本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈(完整版)最新人教版九年级数学下册同步练习题:28.1锐角三角函数第2课时〉这篇文档的全部内容。
8.1锐角三角函数第2课时一、基础训练1.如图所示,某斜坡AB 上有一点B ′,B ′C ′、BC 是边AC 上的高,则图中相似的三角形是______________,则B ′C ′∶AB ′=______________,B ′C ′∶AC ′=______________。
2.在Rt △ABC 中,如果边长都扩大5倍,则锐角A 的正弦值、余弦值和正切值 ( )A.没有变化 B 。
都扩大5倍 C 。
都缩小5倍 D 。
不能确定3。
在△ABC 中,∠C =90°,sinA=53,则sinB 等于( )A.52 B 。
2022--2023学年人教版九年级数学下册《28-1锐角三角函数》同步练习题(附答案)

2022--2023学年人教版九年级数学下册《28.1锐角三角函数》同步练习题(附答案)一.选择题1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=2.三角函数sin30°、cos16°、cos43°之间的大小关系是()A.sin30°<cos16°<cos43°B.cos43°<sin30°<cos16°C.sin30°<cos43°<cos16°D.sin16°<cos30°<cos43°3.如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,则下列比值中不等于sin A 的是()A.B.C.D.4.如果锐角A的度数是25°,那么下列结论中正确的是()A.0<sin A<B.0<cos A<C.<tan A<1D.1<cot A<5.在Rt△ABC中,如果各边长度都扩大为原来的3倍,则锐角∠A的余弦值()A.扩大为原来的3倍B.没有变化C.缩小为原来的D.不能确定6.在Rt△ABC中,∠C=90°,AB=4,AC=2,则sin A的值为()A.B.C.D.7.若锐角α满足cosα<且tanα<,则α的范围是()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°8.在Rt△ABC中,∠B=90°,cos A=,则sin A=()A.B.C.D.9.若tan B=,则∠B的度数为()A.30°B.60°C.45°D.15°10.在Rt△ABC中,∠C=90°,AB=5,AC=4.下列四个选项,正确的是()A.tan B=0.75B.sin B=0.6C.sin B=0.8D.cos B=0.8 11.如图,△ABC的顶点是正方形网格的格点,则sin∠ABC的值为()A.B.C.D.二.填空题12.在Rt△ABC中,∠C=90°,若c=5,sin B=,则AC=.13.在△ABC中,∠C=90°,如果tan∠A=2,AC=3,那么BC=.14.如图,在Rt△ABC中,∠ACB=90°,D为AB上异于A,B的一点,AC≠BC.(1)若D为AB中点,且CD=2,则AB=.(2)当CD=AB时,∠A=α,要使点D必为AB的中点,则α的取值范围是.15.若∠A为锐角,且cos A=,则∠A的取值范围是.16.如图,已知两点A(2,0),B(0,4),且∠1=∠2,则tan∠OCA=.三.解答题17.如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3.求AC的长和sin A的值.18.如图,在Rt△ABC中,∠C=90°,AC=12,BC=5.求sin A,cos A和tan A.19.(1)如图锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律.(2)根据你探索到的规律试比较18°,34°,50°,62°,88°,这些锐角的正弦值的大小和余弦值的大小.(3)比较大小(在空格处填写“>”“=”“<”号),若α=45°,则sinαcosα;若0°<α<45°,则sinαcosα;若45°<α<90°,sinαcosα.20.在Rt△ABC中,∠C=90°,斜边c=5,两直角边的长a,b是关于x的一元二次方程x2﹣mx+2m﹣2=0的两个根,求Rt△ABC中较小锐角的正弦值.21.已知如图,A,B,C,D四点的坐标分别是(3,0),(0,4),(12,0),(0,9),探索∠OBA和∠OCD的大小关系,并说明理由.22.在△ABC中,BC=2AB=12,∠ABC=α,BD是∠ABC的角平分线,以BC为斜边在△ABC外作等腰直角△BEC,连接DE.(1)求证:CD=2AD;(2)当α=90°时,求DE的长;(3)当0°<α<180°时,求DE的最大值.参考答案一.选择题1.解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sin A=,故A错误;cos A=,故B正确;tan A=;故C错误;cos A=,故D错误;故选:B.2.解:∵sin30°=cos60°,又16°<43°<60°,余弦值随着角度的增大而减小,∴cos16°>cos43°>sin30°.故选:C.3.解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin∠BCD=sin A=,故选:D.4.解:A.∵sin30°=,∴0<sin25°<,故A符合题意;B.∵cos30°=,∴cos25°>,故B不符合题意;C.∵tan30°=,∴tan25°<,故C不符合题意;D.∵cot30°=,∴cot25°>,故D不符合题意;故选:A.5.解:设原来三角形的各边分别为a,b,c,则cos A=,若把各边扩大为原来的3倍,则各边为3a,3b,3c,那么cos A==,所以余弦值不变.故选:B.6.解:在Rt△ABC中,∠C=90°,AB=4,AC=2,∴BC===2,∴sin A===,故选:D.7.解:∵α是锐角,∴cosα>0,∵cosα<,∴0<cosα<,又∵cos90°=0,cos45°=,∴45°<α<90°;∵α是锐角,∴tanα>0,∵tanα<,∴0<tanα<,又∵tan0°=0,tan60°=,0<α<60°;故45°<α<60°.故选:B.8.解:在Rt△ABC中,∠B=90°,cos A=,∴设AB=12k,AC=13k,∴BC===5k,∴sin A===,故选:A.10.解:∵tan B=,∴∠B=60°.故选:B.11.解:如图,∵∠C=90°,AB=5,AC=4,∴BC===3,A选项,原式==,故该选项不符合题意;B选项,原式===0.8,故该选项不符合题意;C选项,原式===0.8,故该选项符合题意;D选项,原式===0.6,故该选项不符合题意;故选:C.二.填空题12.解:在Rt△ABC中,∠C=90°,若c=5,sin B=,所以sin B===,所以AC=4,故答案为:4.13.解:在△ABC中,∠C=90°,tan∠A=2,AC=3,∴BC=AC tan∠A=3×2=6,故答案为:6.14.解:(1)∵∠ACB=90°,D为AB中点,∴AB=2CD=2×2=4;故答案为:4;(2)当以C点为圆心,CD为半径画弧与线段AB只有一个交点(点A、B除外),则点D必为AB的中点,∴CB≤CD或CA≤CD,∵CD=AB,∴CB≤AB或CA≤AB∵sin A=≤或sin B=≤,即sinα≤sin30°或sin B≤sin30°,∴α≤30或∠B≤30°,∴α≤30°或α≥60°,∴α的取值范围为0°<α≤30°或60°≤α<90°.故答案为:0°<α≤30°或45°或60°≤α<90°.15.解:∵0<<,又cos60°=,cos90°=0,锐角余弦函数值随角度的增大而减小,∴当cos A=时,60°<∠A<90°.故答案为:60°<∠A<90°.16.解:∵∠1=∠2,∴∠BAO=∠ACO,∵A(2,0),B(0,4),∴tan∠OCA=tan∠BAO==2.故答案为:2.三.解答题17.解:∵∠C=90°,AB=5,BC=3,∴AC===4,sin A==.答:AC的长为4,sin A的值为.18.解:在Rt△ABC中,∠C=90°,AC=12,BC=5.∴AB===13,∴sin A==,cos A==,tan A==.19.解:(1)在图中,令AB1=AB2=AB3,B1C1⊥AC于点C1,B2C2⊥AC于点C2,B3C3⊥AC 于点C3,显然有:B1C1>B2C2>B3C3,∠B1AC>∠B2AC>∠B3AC.∵sin∠B1AC=,sin∠B2AC=,sin∠B3AC=,而>>,∴sin∠B1AC>sin∠B2AC>sin∠B3AC.在图中,Rt△ACB3中,∠C=90°,cos∠B1AC=,cos∠B2AC=,cos∠B3AC=,∵AB3>AB2>AB1,∴>>.即cos∠B3AC<cos∠B2AC<cos∠B1AC;结论:锐角的正弦值随角度的增大而增大,锐角的余弦值随角度的增大而减小.(2)由(1)可知:sin88°>sin62°>sin50°>sin34°>sin18°;cos88°<cos62°<cos50°<cos34°<cos18°.(3)若α=45°,则sinα=cosα;若0°<α<45°,则sinα<cosα;若45°<α<90°,则sinα>cosα.故答案为:=,<,>.20.解:∵a,b是方程x2﹣mx+2m﹣2=0的解,∴a+b=m,ab=2m﹣2,在Rt△ABC中,由勾股定理得,a2+b2=c2,而a2+b2=(a+b)2﹣2ab,c=5,∴a2+b2=(a+b)2﹣2ab=25,即:m2﹣2(2m﹣2)=25解得,m1=7,m2=﹣3,∵a,b是Rt△ABC的两条直角边的长.∴a+b=m>0,m=﹣3不合题意,舍去.∴m=7,当m=7时,原方程为x2﹣7x+12=0,解得,x1=3,x2=4,不妨设a=3,则sin A==,∴Rt△ABC中较小锐角的正弦值为21.解:∠OBA=∠OCD,理由如下:由勾股定理,得AB===5,CD===15,sin∠OBA==,sin∠OCD===,∠OBA=∠OCD.22.(1)证明:如图,过点D作DO∥BC交AB于点O,∴∠ODB=∠CBD,∵BD是角平分线,∴∠OBD=∠CBD,∴∠OBD=∠ODB,∴OB=OD,∵OD∥BC,∴=,△AOD∽△ABC,∴=,∴===,∴=,∴CD=2AD;解:(2)如图,过点D作DO∥BC交AB于点O,当α=90°时,BD平分∠ABC,∴∠DBC=∠OBD=45°,∠DOB=90°,∵△BEC为等腰直角三角形,BC=12,∴∠EBC=45°,BE=6,∴∠DBE=90°,由(1)可得AB=6,==,∴OB=4,∴BD=4,∴DE==2;(3)如图,过点D作DO∥BC交AB于点O,DE交BC于点F,设BC中点为点G,连接EG,∴BG=6,当α变化时,OB的长度不变,∴点O在以点B为圆心,半径为4的圆弧上,令圆弧与BC交于点F,∴BF=4,此时,点D在以点F为圆心,半径为4的圆弧上,当点D,E,F三点共线时,DE最大,∴GF=BG﹣BF=2,∴EF==2,∴DE的最大值=DF+FE=2+4.。
人教版九年级数学下册28.1:锐角三角函数 同步练习

初中数学人教版九年级下册28.1锐角三角函数一、选择题1.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,如果a 2+b 2=c 2,那么下列结论正确的是( ) A.csinA=a B.bcosB=c C.atanA=b D.ctanB=b2.如图,长4m 的楼梯AB 的倾斜角∠ABD 为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°,则调整后的楼梯AC 的长为( )A.23mB.26mC.(23-2)mD.(26-2)m3.Rt △ABC 中,∠C=90°,如果sinA=32,那么cosB 的值为( ) A.32 B.35C.25D.不能确定4.式子2cos30°-tan45°-2tan60-(1)的值是( ) A.23-2 B.0C.23D.25.2sin60°的值等于( ) A.1B.22C.33D.26.为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C到山脚点A 的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD 的高度约为()(参考数据:sin 48°≈0.73,cos8°≈0.67,tan48°≈1.11)A.17.0米B.21.9米C.23.3米D.33.3米7.如图所示,在四边形ABCD中,E,F分别是AB,AD的中点,若EF=2,BC=5,CD=3,则tanC等于()3A.4B.34 C.53 D.54 8.在△ABC 中,∠C=90°,AB=3AC ,则tanA=( ) A.31B.3C.22D.22 9.如图,CD 是平面镜,光线从点A 出发经CD 上点E 反射后照射到点B ,若入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C ,D ,且AC=3,BD=6,CD=11,则tanα等于( )A.311 B.113 C.119 D.911 10.如图,在半径为6cm 的⊙O 中,点A 是劣弧BC 的中点,点D 是优弧BC 上一点,且∠D=30°.下列四个结论:①OA ⊥BC ;②BC=63cm ;③sin ∠AOB=23;④四边形ABOC 是菱形.其中正确结论的序号是( ) A.①③ B.①②③④ C.②③④ D.①③④二、填空题 11.计算:(π-3.14)0+2cos60°= 。
人教版 九年级数学下册 第28章 锐角三角函数 同步训练(含答案)
人教版 九年级数学 第28章 锐角三角函数同步训练一、选择题1. (2019•山东威海)如图,一个人从山脚下的A 点出发,沿山坡小路AB 走到山顶B 点.已知坡角为20°,山高BC=2千米.用科学计算器计算小路AB 的长度,下列按键顺序正确的是A .B .C .D .2. (2019•江苏苏州)如图,小亮为了测量校园里教学楼AB 的高度,将测角仪CD 竖直放置在与教学楼水平距离为183m 的地面上,若测角仪的高度为1.5m ,测得教学楼的顶部A 处的仰角为30,则教学楼的高度是30°CDA .55.5mB .54mC .19.5mD .18m3. 如图,点A,B,C 在正方形网格的格点上,则sin ∠BAC=( )A.62B.2626C.1326D.13134. (2020•湘西州)如图,在平面直角坐标系xOy 中,矩形ABCD 的顶点A 在x轴的正半轴上,矩形的另一个顶点D 在y 轴的正半轴上,矩形的边AB =a ,BC =b ,∠DAO =x ,则点C 到x 轴的距离等于( )A .a cos x +b sin xB .a cos x +b cos xC .a sin x +b cos xD .a sin x +b sin x5. (2019·浙江金华)如图,矩形ABCD 的对角线交于点O .已知AB=m ,∠BAC=∠α,则下列结论错误的是A .∠BDC=∠αB .BC=m •tan αC .AO 2sin mα=D .BD cos mα=6. 如图,以O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是AB ︵上一点(不与A ,B 重合),连接OP ,设∠POB =α,则点P 的坐标是( ) A . (sin α,sin α) B . (cos α,cos α) C . (cos α,sin α) D . (sin α,cos α)7. (2019·浙江温州)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB 的长为A .95sin α米 B .95cos α米C .59sin α米D .59cos α米二、填空题 8. 【题目】(2020·黔东南州)cos60°= . 9. 如图①是小志同学书桌上的一个电子相框,将其侧面抽象为如图②所示的几何图形,已知BC =BD =15 cm ,∠CBD =40°,则点B 到CD 的距离为________cm (参考数据:sin 20°≈0.342,cos 20°≈0.940,sin 40°≈0.643,cos 40°≈0.766.结果精确到0.1 cm ,可用科学计算器).10. (2019•湖北随州)计算:(π–2019)0–2cos60°=__________.11. 如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC =2,则tan D =________.12. 齐河路路通电动车厂新开发的一种电动车如图,它的大灯A 射出的边缘光线AB ,AC 与地面MN 所夹的锐角分别为8°和10°,大灯A 与地面的距离为1 m ,则该车大灯照亮的宽度BC 是________m .(不考虑其他因素,参考数据:sin 8°=425,tan 8°=17,sin 10°=910,tan 10°=528)13. (2020·苏州)如图,已知MON∠是一个锐角,以点O 为圆心,任意长为半径画弧,分别交OM 、ON 于点A 、B ,再分别以点A 、B 为圆心,大于12AB 长为半径画弧,两弧交于点C ,画射线OC .过点A 作AD ON ,交射线OC 于点D ,过点D 作DE OC ⊥,交ON 于点E .设10OA =,12DE =,则sin MON ∠=________.14. 如图,AB=6,O是AB的中点,直线l经过点O,∠1=120°,P是直线l 上一点.当△APB为直角三角形时,AP=________.三、解答题15. 如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B、C、E在同一水平直线上),已知AB=80 m,DE=10 m,求障碍物B、C两点间的距离.(结果精确到0.1 m,参考数据:2≈1.414,3≈1.732)16. (2019•江苏宿迁)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB、CD 都与地面l平行,车轮半径为32cm,∠BCD=64°,BC=60cm,坐垫E与点B 的距离BE为15cm.(1)求坐垫E到地面的距离;(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm,现将坐垫E调整至坐骑舒适高度位置E',求EE′的长.(结果精确到0.1cm,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)17. (2019·湖南常德)图1是一种淋浴喷头,图2是图1的示意图,若用支架把喷头固定在点A处,手柄长AB=25cm,AB与墙壁DD′的夹角∠D′AB=37°,喷出的水流BC与AB形成的夹角∠ABC=72°,现在住户要求:当人站在E处淋浴时,水流正好喷洒在人体的C处,且使DE=50cm,CE=130cm.问:安装师傅应将支架固定在离地面多高的位置?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).人教版九年级数学第28章锐角三角函数同步训练-答案一、选择题1. 【答案】A【解析】在△ABC中,sinA=sin20°=BCAB,∴AB=sin20BC︒=2sin20︒,∴按键顺序为:2÷sin20=,故选A.2.【答案】C【解析】过D作DE AB⊥交AB于E,183DE BC==,在Rt ADE△中,tan30AEDE=,318318(m)3AE∴=⨯=,18 1.519.5(m)AB∴=+=,故选C.30°CDAE3. 【答案】B【解析】过点B作BD⊥AC于D点D,则∠ADB=90°,设小正方形方格的边长为1,根据勾股定理得AB=222313+=,BD=122,∴在Rt△ABD中,sin ∠BAC=226213BDAB==,故选B.4. 【答案】A【解析】本题考查了矩形的性质、坐标与图形性质、三角函数定义等知识;熟练掌握矩形的性质和三角函数定义是解题的关键.作CE⊥y轴于E,如图:∵四边形ABCD是矩形,∴CD=AB=a,AD=BC=b,∠ADC=90°,∴∠CDE+∠ADO=90°,∵∠AOD =90°,∴∠DAO +∠ADO =90°,∴∠CDE =∠DAO =x ,∵sin ∠DAO OD AD =,cos ∠CDE DECD=,∴OD =AD ×sin ∠DAO =b sin x ,DE =D ×cos ∠CDE =a cos x ,∴OE =DE +OD =a cos x +b sin x ,∴点C 到x 轴的距离等于a cos x +b sin x ;因此本题选 A .5. 【答案】C【解析】A 、∵四边形ABCD 是矩形,∴∠ABC=∠DCB=90°,AC=BD ,AO=CO ,BO=DO ,∴AO=OB=CO=DO ,∴∠DBC=∠ACB ,∴由三角形内角和定理得:∠BAC=∠BDC=∠α,故本选项不符合题意; B 、在Rt △ABC 中,tan αBCm=,即BC=m •tan α,故本选项不符合题意; C 、在Rt △ABC 中,AC cos m α=,即AO 2cos mα=,故本选项符合题意; D 、∵四边形ABCD 是矩形,∴DC=AB=m ,∵∠BAC=∠BDC=α,∴在Rt △DCB 中,BD cos mα=,故本选项不符合题意; 故选C .6. 【答案】C【解析】如解图,过点P 作PC ⊥OB 于点C ,则在Rt △OPC 中,OC =OP ·cos ∠POB =1×cos α=cos α,PC =OP ·sin ∠POB =1×sin α=sin α,即点P 的坐标为(cos α,sin α).7. 【答案】B【解析】如图,作AD ⊥BC 于点D ,则BD 32=+0.395=, ∵cos αBD AB =,∴cos α95AB =,解得AB 95cos α=米,故选B .二、填空题8. 【答案】【答案】9. 【答案】14.1【解析】如解图,过点B作BE⊥CD于点E,∵BC=BD=15 cm,∠CBD=40°,∴∠CBE=20°,在Rt△CBE中,BE=BC·cos∠CBE≈15×0.940=14.1(cm).10. 【答案】0【解析】原式=1–2×=1–1=0,故答案为:0.11. 【答案】22【解析】如解图,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴BC=AB2-AC2=62-22=42,∵∠D=∠A,∴tan D=tan A=BCAC=422=2 2.12. 【答案】1.4【解析】如解图,作AD⊥MN于点D,由题意得,AD=1 m,∠ABD=8°,∠ACD=10°,∠ADC=∠ADB=90°,∴BD=ADtan8°=117=7 m,CD=ADtan10°=1528=285=5.6 m,∴BC=BD-CD=7-5.6=1.4 m.13. 【答案】【答案】24 2514. 【答案】3或3 3 或37【解析】如解图,∵点O是AB的中点,AB=6,∴AO=BO=3.①当点P为直角顶点,且P在AB上方时,∵∠1=120°,∴∠AOP1=60°,∴△AOP1是等边三角形,∴AP1=OA=3;②当点P为直角顶点,且P在AB下方时,AP2=BP1=62-32=33;③当点A为直角顶点时,AP3=AO·tan∠AOP3=3×3=33;④当点B为直角顶点时,AP4=BP3=62+(33)2=37.综上,当△APB为直角三角形时,AP的值为3或3 3 或37.三、解答题15. 【答案】解:如解图,过点D作DF⊥AB,垂足为点F,则四边形FBED为矩形,(1分)∴FD=BE,BF=DE=10,FD∥BE,(2分)第12题解图由题意得:∠FDC=30°,∠ADF=45°,∵FD∥BE,∴∠DCE=∠FDC=30°,(3分)在Rt△DEC中,∠DEC=90°,DE=10,∠DCE=30°,∵tan∠DCE=DECE,(4分)∴CE=10tan30°=103,(5分)在Rt△AFD中,∠AFD=90°,∠ADF=∠FAD=45°,∴FD=AF,又∵AB=80,BF=10,∴FD=AF=AB-BF=80-10=70,(6分)∴BC=BE-CE=FD-CE=70-103≈52.7(m).(7分) 答:障碍物B、C两点间的距离约为52.7 m.(8分) 16. 【答案】(1)如图1,过点E作EM⊥CD于点M,由题意知∠BCM=64°、EC=BC+BE=60+15=75cm,∴EM=ECsin∠BCM=75sin64°≈67.5(cm),则单车车座E到地面的高度为67.5+32≈99.5(cm);(2)如图2所示,过点E′作E′H⊥CD于点H,由题意知E′H=80×0.8=64,则E′C=sin E HECH'∠=64sin64︒≈71,1,∴EE′=CE﹣CE′=75﹣71.1=3.9(cm).17. 【答案】过点B作BG⊥D′D于点G,延长EC、GB交于点F,∵AB=25,DE=50,∴sin37°=GBAB,cos37°=GAAB,∴GB≈25×0.60=15,GA≈25×0.80=20,∴BF=50﹣15=35,∵∠ABC=72°,∠D′AB=37°,∴∠GBA=53°,∴∠CBF=55°,∴∠BCF=35°,∵tan35°=BFCF,∴CF≈350.70=50,∴FE=50+130=180,∴GD=FE=180,∴AD=180﹣20=160,∴安装师傅应将支架固定在离地面160cm的位置.。
人教版数学九年级下册第28章锐角三角函数锐角三角函数同步训练题含答案
人教版数学九年级下册第28章锐角三角函数锐角三角函数同步训练题含答案1. 把Rt △ABC 各边的长度都扩展3倍失掉Rt △A′B′C′,那么锐角∠A 、∠A′的余弦值的关系是( )A .cosA =cosA′B .cosA =3cosA′C .3cosA =cosA′D .不能确定2. 以下式子错误的选项是( )A .cos40°=sin50°B .tan15°·tan75°=1C.sin 225°+cos 225°=1 D .sin60°=2s in30°3. 在Rt △ABC ,∠ACB =90°,BC =1,AB =2,那么以下结论正确的选项是( )A .sinA =32B .tanA =12 C.cosA =32D .以上都不对 4. 在Rt △ABC 中,∠C =90°,AB =13,AC =5,那么sinA 的值为( ) A.513 B .1213 C.512 D .1255. 在Rt △ABC 中,∠C =90°,AB =5,BC =3,那么tanA 的值是( ) A.34 B .43 C.35 D .456. 在Rt △ABC 中,∠C =90°,假定sinA =513,那么cosA 的值为( ) A.512 B .813 C.23 D .12137. 在Rt △ABC 中,∠C =90°,AB =4,AC =1,那么cosB 的值为( ) A.154 B .14 C.1515 D .417178. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,假定AC =2,BC =1,那么sin ∠ACD 的值为( )A.53 B .23 C.255 D .559.△ABC 中, ∠C =90°,AB =8,cosA =34,那么BC 的长______. 10. 如图,在Rt △ABC 中,∠C =90°.那么sinA =______,cosA =_______,tanA =_______.11. 假定0<∠A <90°,那么0____sinA_____1,0_____cosA_____1.12. 如图,在Rt △ABC 中,∠C =90°,BC =3cm ,AB =5cm ,那么,cosB =________.13. sin 2α+cos 2α=_____;tanα=____________.14. 如图,Rt △ABC 中,∠C =90°,BC =15,tanA =158,那么AB =______. 15.假定α为锐角,且cosα=1-3m 2,那么m 的取值范围是_______________. 16. 在如图的正方形方格纸中,每个小的四边形都是相反的正方形,ABCD 都在格点处,AB 与CD 相交于点O ,那么tan ∠BOD 的值等于____.17. α是锐角,化简:cos 2α-4cosα+4-|1-cosα|.18. :sinα+cosα=m ,sinα·cosα=n.试确定m 、n 之间的关系.19. 如图,在平面直角坐标系xOy 中,点A(2,1)和点B(3,0).求sin ∠AOB ,cos ∠ABO 的值.20. 如下图,在Rt △ABC 中,∠C =90°,D 是BC 边上的一点,AC =2,CD =1,记∠CAD =α.(1)试写出α的三个三角函数值;(2)假定∠B =α,求BD 的长.21. 小明在某次作业中失掉如下结果:sin 27°+sin 283°≈0.122+0.992=0.9945,sin 222°+sin 268°≈0.372+0.932=1.0018,sin 229°+sin 261°≈0.482+0.872=0.9873,sin 237°+sin 253°≈0.602+0.802=1.0000,sin 245°+sin 245°≈(22)2+(22)2=1. 据此,小明猜想:关于恣意锐角α,均有sin 2α+sin 2(90°-α)=1.(1)当α=30°时,验证:sin 2α+sin 2(90°-α)=1能否成立?(2)小明的猜想能否成立?假定成立,请给予证明;假定不成立,请举一个反例. 参考答案;1---8 BDCBB DBC9. 2710. BC AB BC AC BC AC11. < < < <12. 3513. 1 sinαcosα14. 1715. -13<m <1316. 317. 解:原式=cosα-22-|1-cosα|=|cosα-2|-|1-cosα|=-cosα+2-1+cosα=1.18. 解:∵sin 2α+cos 2α=1,∴(sinα+cosα)2-2sinα·cosα=1.∵sinα+cosα=m ,sinα·cosα=n ,∴m 2-2n =1.19. 解:过点A 作AC ⊥x 轴于C ,∵点A 的坐标为(2,1),点B 的坐标为(3,0),∴OC =2,AC =1,BC =1.∴OA =OC 2+AC 2=5,AB =AC 2+BC 2= 2.∴sin ∠AOB =AC OA =15=55,∴cos ∠ABO =BC AB =12=22.20. 解:(1)sinα=55,cosα=255,tanα=12; (2)BC =AC tanα=212=4,∴BD =BC -CD =4-1=3. 21. 解:(1)当α=30°时,sin 2α+sin 2(90°-α)=sin 230°+sin 260°=(12)2+(32)2=14+34=1; (2)小明的猜想成立,证明如下:如图在Rt △ABC 中,∠C =90°,设∠A =α,那么∠B =90°-α,∴sin 2α+sin 2(90°-α)=(BC AB )2+(AC AB )2=BC 2+AC 2AB 2=AB 2AB 2=1.。
人教版九年级数学下28.1锐角三角函数(二)同步练习附答案解析
故正确答案为: .
6、点 关于 轴对称的点的坐标是( )
A.
B.
C.
D.
【答案】C
【解析】解: 点 ,
点关于 轴对称的点的坐标是 .
7、在 中, ,则 等于( )
A.
B.
C.
D.
【答案】C
【解析】解:
, ,
,得 ,
.
8、下列等式中成立的有( )
① ;②若 ,则 ;③若 ,则锐角 ;④ .
A. 个
B. 个
,
如图所示,由 可得 ,
,
,
即 ,
,
.
故正确答案应选: .
3、一个直角三角形有两条边长为 和 ,则较小锐角的正切值是( ).
A. 或
B.
C.
D.
【答案】A
【解析】解:设这个直角三角形的两条直角边长分别为 和 .
,
较小角的正切值是 ;
设这个三角形的斜边长为 ,一条直角边长为 ,
那么另一条直角边长为 ,
于 ,
在 中, , ,又 ,
,
解得: ,即 .
, ,
当 时, 取得最小值,过 点作 .
故由三角形面积公式有: ,
求得 的最小值为 .
故正确答案为: .
17、已知 、 是两个锐角,且满足 , ,则实数 的所有可能值的和为.
【答案】1
【解析】解:由已知条件可得:
,
即 ,
整理得:
,
,
或 ,
又知 ,
,
,
即 所有可能值的和为 .
C. 个
D. 个
【答案】B
【解析】解:
①、锐角三角函数值的加减计算不能单纯地对角相加减,故错误;
初中数学人教版九年级下册 28.1 锐角三角函数同步练习(共3课时,无答案)
28.1 锐角三角函数第一课时一、填空题1. 如图所示, B、B'是∠MAN的AN 边上的任意两点, BC⊥AM于 C 点, B'C'⊥AM于 C'点,则△B'AC'∽ , 从而B ′C′BC =AB′()=()AC,又可得①B ′C′AB′=¯,即在Rt△ABC中(∠C=90°), 当∠A 确定时, 它的与的比是一个值;②AC ′AB′=¯,即在Rt△ABC中(∠C=90°), 当∠A确定时, 它的与的比也是一个值;③B ′C′AC′=¯,即在Rt△ABC中(∠C=90°), 当∠A确定时, 它的与的比还是一个值.2. 如图所示, 在Rt△ABC中, ∠C=90°.①sinA=¯,sinB=¯;②cosA=¯,cosB=¯;③tanA=¯,tanB=¯.3. AE、CF是锐角△ABC的两条高, 如果 AE: CF=3: 2, 则 sinA: sinC 等于 .4. 在Rt△ABC中, ∠C=90°, 若a=3, b=4, 则c= ,sinA=____________,cosA=_______________,tanA=______________.sinB= , cosB= , tanB= .5. 在Rt△ABC中, ∠C=90°, 若∠B=30°, 则∠A= ,sinA= , tanA= , cosA= ,sinB= , cosB= , tanB= .6. 在Rt△ABC中, ∠C=90°, 若a=1, b=2, 则c= ,sinA= , cosA= , tanA= ,sinB= , cosB= , tanB= .二、选择题7.把Rt△ABC各边的长度都扩大3倍得Rt△A'B'C',那么锐角A,A'的余弦值的关系为( ).A. cosA=cosA'B. cosA=3cosA'C. 3cosA=cosA'D. 不能确定8. 如图3, 点A为∠B边上的任意一点, 作AC⊥BC于点C, CD⊥AB于点D, 下列用线段比表示cosα的值,错误的是 ( )A.BDBC B.BCABC.CDACD.ADAC9. 在△ABC中, ∠C=90°, ∠A, ∠B, ∠C的对边分别是a, b, c,则下列各项中正确的是 ( ).A. a=c·sinBB. a=c·cosBC. a=c·tanBD. 以上均不正确10. 在Rt△ABC中,∠C=90°, cosA=23,则 tanB 等于 ( ).A 35B.√53C.25√5D.√5211. ⊙O的半径为R, 若∠AOB=α, 则弦AB的长为 ( ).A.2Rsinα2 B. 2RsinαC.2Rcosα2D. Rsinα12. 如图,△ABC的顶点都是正方形网格中的格点, 则cos∠ABC等于 ( ).A.√5B.√55C.2√55D.3√510三、解答题13. 已知: 如图, Rt△ABC 中, ∠ACB=90°, CD⊥AB 于 D 点,AB=4, BC=3. 求: sin∠ACD、cos∠ACD、tan∠ACD.14. 已知: 如图, Rt△ABC中, ∠C=90°. D是AC边上一点, DE⊥AB 于E点. BC:AC=1:2.求: sin∠ADE、cos∠ADE、tan∠ADE .15. 如图, 在矩形纸片 ABCD 中, AB=6, BC=8. 把△BCD 沿对角线 BD折叠, 使点C 落在 C'处, BC'交 AD 于点 G; E、F 分别是 C'D和BD上的点, 线段EF交AD 于点H, 把△FDE沿E F折叠, 使点D落在 D'处, 点D'恰好与点 A 重合.(1) 求证: △ABG≌△C' DG; (2) 求 tan∠ABG的值;(3) 求EF的长.第二课时一、填空题1. sin30°= , sin60°= , sin60°= ;cos30°= , cos45°= , cos60°= ;tan30°= , tan45°= , tan60°= .2. 已知: α是锐角, cosα=12√2,tanα=¯.3. 已知∠A 是锐角, 且tanA=√3,则sin A2=¯.4. 已知: ∠α是锐角, sinα=cos36°, 则α的度数是 .5. 小明同学遇到了这样一道题:√3tan(a+20∘)=1,则锐角.α的度数应是 .6. 已知∠α为锐角, 若sinα=cos30°, tanα= ; 若tan70°·tanα=1, 则∠α= .二、选择题7. 当锐角A 的cosA>√22时, ∠A的值为( ).A 小于45°B 小于30°C 大于45°D 大于60°8.在△ABC中,∠A,∠B都是锐角,且sinA=12,cosB=√32,则此三角形形状是( )A.锐角三角形B.直角三角形C.钝角三角形D.形状不能确定9. 在△ABC中, ∠C=90∘,sinA=√32,则cosB等于 ( ).A. 1B.√32C.√22D 1210. 在平面直角坐标系内 P 点的坐标(cos30°, tan45°), 则 P 点关于x轴对称点 P'的坐标为 ( ).A.(√32,1)B.(−1,√32)C.(√32,−1)D.(−√32,−1)11. 下列不等式成立的是 ( ).A.tan45°<sin60°<cos45°B. cos45° <sin45° <tan45°C. cos45° <tan60° <tan45°D.cos45°<sin60°<tan60°12. 若√3tan(α+10∘)=1,则锐角α的度数为( ).A. 20°B. 30°C. 40°D. 50°三、解答题13. 计算:(1)(−2)−1−|−√8|+(√2−1)0+4cos45∘(2)(√2+1)0−2−1−√2tan45∘+|1−√2|14. 我们定义:等腰三角形中底边与腰之比叫做顶角的正对( sad),在△ABC中,AB=AC ,顶角 A 的正对记作 sadA, 这时已知sinα=35(α为锐角) , 计算sadα的值.15. 如图,根据图中数据完成填空,再按要求答题:sin²A₁+sin²B₁=;sin²A₂+sin²B₂=;sin²A₃+sin²B₃=________.(1) 观察上述等式,猜想:在Rt△ABC中,∠C=90°,都有sin²A+sin²B=.(2) 如图④, 在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c,利用三角函数的定义和勾股定理,证明你的猜想.第三课时一、填空题1. 化简: √(tan30∘−1)2=¯.2. 计算: sin²30°+cos²30°=,sin²45°+cos²45°=sin²60°+cos²60°=.3. 化简: √1−2sinα⋅cosα(其中( 0°<α<90°)=.4. 已知: 如图, Rt△ABC中, ∠C=90°, 按要求填空:(1)∵sinA=ac,∴a=c·sinA,c= ;(2)∵cosA=bc,∴b= , c= ;(3)∵tanA=ab,∴a= , b= ;(4)∵sinB=√32,∴cosB=¯,tanB=¯;(5)∵cosB =35,∴sinB =¯,tanA =¯;(6) ∵tanB=3, ∴sin B = , sinA= .5. 如图, ⊙O 的半径OA=16cm, OC ⊥AB 于C 点, sin ∠AOC =34.则AB= . 6. 已知: 如图, △ABC 中, AB=9, BC=6, △ABC 的面积等于9, 则 sinB =.二、选择题7. 如图,梯子(长度不变) 跟地面所成的锐角为A ,关于∠A 的三角函数值与梯子的倾斜程度之间,叙述正确的是 ( ) A. sinA 的值越大, 梯子越陡 B. cosA 的值越大, 梯子越陡 C. tanA 的值越小, 梯子越陡 D. 陡缓程度与∠A 的函数值无关8. 如图,在等边△ABC 中, D 为BC 边上一点, E 为AC 边上一点, 且∠ADE=60°, BD=4, CE =43,则△ABC 的面积为( ) .A.8√3B. 15C.9√3D.12√39.如图,直径为10的⊙A 经过点 C(0,5)和点O(0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( ).A 12 B 34 C.√32 D 4510. 如图, △ABC 和△CDE 均为等腰直角三角形, 点B, C, D 在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC =BCCD ;②S △ABC+S △CDE ≧S △ACE;③BM ⊥DM; ④BM=DM, 正确结论的个数是 ( )A 、1个B 、2个C 、3个D 、4个11. 如图, △ABC中,BC=7,cosB=√22,sinC=35,则△ABC的面积是 ( )A. 12B. 12C. 14D. 2112. 已知: 如图, AB是⊙O的直径, 弦AD、BC相交于P点, 那么DCAB的值为( )A. sin∠APCB. cos∠APCC. tan∠APCD.1tan∠APC三、解答题13. 阅读下面材料:小天在学习锐角三角函数中遇到这样一个问题: 在 Rt△ABC中,∠C=90°, ∠B=22.5°, 则t an22.5° =小天根据学习几何的经验,先画出了几何图形(如图1),他发现22.5°不是特殊角,但它是特殊角 45°的一半,若构造有特殊角的直角三角形,则可能解决这个问题. 于是小天尝试着在 CB 边上截取 CD=CA, 连接AD(如图2), 通过构造有特殊角(45°) 的直角三角形,经过推理和计算使问题得到解决.请回答:tan22.5°=.参考小天思考问题的方法,解决问题:如图3, 在等腰△ABC 中, AB=AC, ∠A=30°, 请借助△ABC, 构造出15°的角, 并求出该角的正切值.̂上的两点,∠AOD>∠AOC,求证:14. 已知: 如图, ∠AOB=90°, AO=OB, C、D是AB(1) 0<sin∠AOC<sin∠AOD<1;(2)1>cos∠AOC>cos∠AOD>0;(3) 锐角的正弦函数值随角度的增大而;(4) 锐角的余弦函数值随角度的增大而 .15.已知:如图,在△ABC中,. AB=AC,AD⊥BC于D, BE⊥AC于E,交AD于H点.在底边BCS HBC的值是保持不变的情况下,当高AD变长或变短时,△ABC和△HBC的面积的积SABC′否随着变化?请说明你的理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中 28.1锐角三角形同步练习(二)
班级姓名成绩 .
一、单项选择题(本大题共有15小题,每小题3分,共45分)
1、是锐角,若,则()
A. B. C. D.
2、在中,,于点,
,则().
A. B. C. D.
3、一个直角三角形有两条边长为和,则较小锐角的正切值是().
A. 或
B.
C.
D.
4、如图:的直径垂直于弦,垂足是,
,,的长为().
A. B. C. D.
5、的值等于( ).
A. B. C. D.
6、点关于轴对称的点的坐标是()
A. B. C. D.
7、在中,,则等于()
A. B. C. D.
8、下列等式中成立的有()
①;②若,则;③若
,则锐角;
④.
A. 个
B. 个
C. 个
D. 个
9、如图,在网格中,小正方形的边长均为,点都在格点上,则
的正切值是()
A. B. C. D.
10、若计算器的四个键的序号如图所示,在角的度量单位为“度的状态下”用计算器求,正确的按键顺序是()
A. (2)(1)(4)(3)
B. (1)(4)(2)(3)
C. (2)(4)(1)(3)
D. (1)(2)(3)(4)
11、计算:.
A. B. C. D.
12、在中,若,则这个三角形一定是
()
A. 直角三角形
B. 锐角三角形
C. 等腰三角形
D. 钝角三角形
13、计算:()
A. B. C. D.
14、在中,若角满足,则的大小是()
A. B. C. D.
15、下列命题中,真命题的个数是()
①若,则;②若,则;
③凸多边形的外角和为;
④三角形中,若,则.
A. B. C. D.
二、填空题(本大题共有5小题,每小题5分,共25分)
16、如图:在菱形中,,为垂足.若,,是边上的一个动点,则线段的长度的
最小值是 .
17、已知、是两个锐角,且满足,
,则实数的所有可能值的和为 .
18、如图,已知等边和等边,,且的面积为
,将绕点逆时针旋转后,则的面积为______.
19、用科学计算器比较大小:______.
20、已知为一锐角,且,则度.
三、解答题(本大题共有3小题,每小题10分,共30分)
21、如图,点分别是等边三角形的边上的点,已知
,求的值.
22、已知,且,求锐角.
23、如图,在中,,,,点为延长线上的一点,且,为的外接圆.
求的长.
28.1锐角三角形同步练习(二) 答案部分
一、单项选择题(本大题共有15小题,每小题3分,共45分)
1、
是锐角,若,则()
A.
B.
C.
D.
【答案】B
【解析】
解:是锐角,
若,则,
故答案为:
2、在中,,于点,
,则().
A.
B.
C.
D.
【答案】D
【解析】解:
由题意可得:
,
由可得:
,,
,
即,
,
,,
是以为直角的直角三角形,且,
,
如图所示,由可得,
,
,
即,
,
.
故正确答案应选:.
3、一个直角三角形有两条边长为和,则较小锐角的正切值是().
A. 或
B.
D.
【答案】A
【解析】解:设这个直角三角形的两条直角边长分别为和.
,
较小角的正切值是;
设这个三角形的斜边长为,一条直角边长为,
那么另一条直角边长为,
,
较小角的正切值为,
综上所知,较小角的正切值为或.
故正确答案应选:或.
4、如图:的直径垂直于弦,垂足是,,,的长为().
A.
B.
D.
【答案】B
【解析】解:由题知
,
,
垂直于弦,
,
在中,
,
,
故答案为:.
5、的值等于( ).
A.
B.
C.
D.
【答案】C
【解析】解:因为,
,
故正确答案为:.
6、点关于轴对称的点的坐标是()
A.
B.
C.
D.
【答案】C
【解析】解:点,
点关于轴对称的点的坐标是.
7、在中,,则等于()
A.
B.
C.
D.
【答案】C
【解析】解:
,,
,得,
.
8、下列等式中成立的有()
①;②若,则;③若
,则锐角;
④.
A. 个
B. 个
C. 个
D. 个
【答案】B
【解析】解:
①、锐角三角函数值的加减计算不能单纯地对角相加减,故错误;
②、因为没有锐角这一条件的限制,故错误;
③、根据一个角的正弦值等于它的余角的余弦值,正确;
④、锐角三角函数值的加减计算不能单纯地对角相加减,故错误.
故只有个成立.
9、如图,在网格中,小正方形的边长均为,点都在格点上,则的正切值是()
A.
B.
C.
D.
【答案】D
【解析】解:
如图:
由勾股定理,得,,,
为直角三角形,
.
10、若计算器的四个键的序号如图所示,在角的度量单位为“度的状态下”用计算器求,正确的按键顺序是()
A. (2)(1)(4)(3)
B. (1)(4)(2)(3)
C. (2)(4)(1)(3)
D. (1)(2)(3)(4)
【答案】C
【解析】解:
计算器的正确使用方法:.
11、计算:.
A.
B.
C.
D.
【答案】D
12、在中,若,则这个三角形一定是()
A. 直角三角形
B. 锐角三角形
C. 等腰三角形
D. 钝角三角形
【答案】A
【解析】解:
,
,
,
则这个三角形一定是直角三角形.
13、计算:()
A.
B.
C.
D.
【答案】A
,
14、在中,若角满足,则的大小是()
A.
B.
C.
D.
【答案】A
【解析】解:
由题意得,,
则,
则.
15、下列命题中,真命题的个数是()
①若,则;
②若,则;
③凸多边形的外角和为;
④三角形中,若,则.
A.
B.
C.
D.
【答案】C
【解析】若,,所以①正确;
若,则,所以②错误;
凸多边形的外角和为,所以③正确;
三角形中,若,则,所以④正确.
二、填空题(本大题共有5小题,每小题5分,共25分)
16、如图:在菱形中,,为垂足.若,,是边上的一个动点,则线段的长度的最小值是 .
【答案】4.8
【解析】解:
设菱形的边长为,则,又,所以
,
于,
在中,,,又,,
解得:,即 .
,,
当时,取得最小值,过点作.
故由三角形面积公式有:,
求得的最小值为.
故正确答案为:.
17、已知、是两个锐角,且满足,
,则实数的所有可能值的和为 .
【答案】1
【解析】解:由已知条件可得:
,
即,
整理得:
,
,
或,
又知,
,
,
即所有可能值的和为.
正确答案是:.
18、如图,已知等边和等边,,且的面积为
,将绕点逆时针旋转后,则的面积为______.
【答案】
【解析】解:
如图,在中,过点作垂直于交于,
则,,
,
设,则,
作垂直于交于,
,
所以,
,
.
19、用科学计算器比较大小:______.【答案】
【解析】解:
,
,
,
.
20、已知为一锐角,且,则度.【答案】30
【解析】解:
,
,
即锐角.
三、解答题(本大题共有3小题,每小题10分,共30分)
21、如图,点分别是等边三角形的边上的点,已知
,求的值.
【解析】解:作过点作于点,
则.
,
.
,
,
,
,
.
,
设,
,
解得,
,
.
答:的值是.
22、已知,且,求锐角.
【解析】解:
由,得,
,
,
.
23、如图,在中,,,,点为延长线上的一点,且,为的外接圆.
求的长.
【解析】解:过点作,垂足为,
,
在中,,
,
,
,
,
在中,
,
,
.。