初中数学解题模型专题讲解17---全等三角形问题中常见的8种辅助线的作法

初中数学解题模型专题讲解17---全等三角形问题中常见的8种辅助线的作法
初中数学解题模型专题讲解17---全等三角形问题中常见的8种辅助线的作法

专题:全等三角形常见辅助线做法及典型例题

《全等三角形》辅助线做法总结 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 一、截长补短法(和,差,倍,分) 截长法:在长线段上截取与两条线段中的一条相等的一段,证明剩余的线段与另一段相等(截取----全等----等量代换) 补短法:延长其中一短线段使之与长线段相等,再证明延长段与另一短线段相等(延长----全等----等量代换) 例如:1,已知,如图,在△ABC中,∠C=2∠B,∠1=∠2。求证:AB=AC+CD。 2,已知:如图,AC∥BD,AE和BE分别平分∠CAB和∠DBA,CD过点E.求证:(1)AE⊥BE;(2)AB=AC+BD. 二、图中含有已知线段的两个图形显然不全等(或图形不完整)时,添加公共边(或一其中 一个图形为基础,添加线段)构建图形。(公共边,公共角,对顶角,延长,平行)例如:已知:如图,AC、BD相交于O点,且AB=DC,AC=BD,求证:∠A=∠D。 三、延长已知边构造三角形 例如:如图6:已知AC=BD,AD⊥AC于A ,BC⊥BD于B,求证:AD=BC D C B A 1 10 图 O A B C D E O

四、遇到角平分线,可自角平分线上的某个点向角的两边作垂线(“对折”全等) 例如:已知,如图,AC 平分∠BAD ,CD=CB ,AB>AD 。求证:∠B+∠ADC=180。 五、遇到中线,延长中线,使延长段与原中线等长(“旋转”全等) 例如:1如图,AD 为 △ABC 的中线,求证:AB +AC >2AD 。(三角形一边上的中线小 于其他两边之和的一半) 2,已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 。 3,如图,已知:AD 是△ABC 的中线,且CD=AB ,AE 是△ABD 的中线,求证:AC=2AE. E C B D A 六、遇到垂直平分线,常作垂直平分线上一点到线段两端的连线(可逆 :遇到两组线段相等, 可试着连接垂直平分线上的点) 例如:在△ABC 中,∠ACB=90,AC=BC,D 为△ABC 外一点,且AD=BD,DE ⊥AC 交AC 的延长 线于E,求证:DE=AE+BC 。 七、遇到等腰三角形,可作底边上的高,或延长加倍法(“三线合一”“对折”) A D B C C A E B D

2017中学考试全等三角形专题(8种辅助线地作法)

全等三角形问题中常见的辅助线的作法【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题 2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3.角平分线在三种添辅助线 4.垂直平分线联结线段两端 5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长, 6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形 7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三角形创造边、角之间的相等条件。 8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。 常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。 1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变 换中的“对折”法构造全等三角形. 2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的 思维模式是全等变换中的“旋转”法构造全等三角形. 3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂

2017中考全等三角形专题(8种辅助线的作法)

全等三角形问题中常见得辅助线得作法【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折瞧,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试瞧。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 1、等腰三角形“三线合一”法:遇到等腰三角形,可作底边上得高,利用“三线合一”得性质解题 2、倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3、角平分线在三种添辅助线 4、垂直平分线联结线段两端 5、用“截长法”或“补短法”: 遇到有二条线段长之与等于第三条线段得长, 6、图形补全法:有一个角为60度或120度得把该角添线后构成等边三角形 7、角度数为30、60度得作垂线法:遇到三角形中得一个角为30度或60度,可以从角一边上一点向角得另一边作垂线,目得就是构成30-60-90得特殊直角三角形,然后计算边得长度与角得度数,这样可以得到在数值上相等得二条边或二个角。从而为证明全等三角形创造边、角之间得相等条件。 8、计算数值法:遇到等腰直角三角形,正方形时,或30-60-90得特殊直角三角形,或40-60-80得特殊直角三角形,常计算边得长度与角得度数,这样可以得到在数值上相等得二条边或二个角,从而为证明全等三角形创造边、角之间得相等条件。 常见辅助线得作法有以下几种:最主要得就是构造全等三角形,构造二条边之间得相等,二个角之间得相等。 1)遇到等腰三角形,可作底边上得高,利用“三线合一”得性质解题,思维模式就是全等变 换中得“对折”法构造全等三角形. 2)遇到三角形得中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用得思 维模式就是全等变换中得“旋转”法构造全等三角形. 3)遇到角平分线在三种添辅助线得方法,(1)可以自角平分线上得某一点向角得两边作垂

全等三角形中常见辅助线的添加方法

全等三角形中常见辅助线的添加方法举例 一. 有角平分线时,通常在角的两边截取相等的线段,构造全等三角形。 例:如图1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 。 二、有以线段中点为端点的线段时,常延长加倍 此线段,构造全等三角形。 例::如图2:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 三、有三角形中线时,常延长加倍中线,构造 全等三角形。 例:如图3:AD 为 △ABC 的中线,求证:AB +AC >2AD 。 图3 练习:已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图4, 求证EF =2AD 。 A B C D E F N 1 图1234 2 图A B C D E F M 123 4A B C D E A B C D E F 4 图

四、截长补短法作辅助线。 例如:已知如图5:在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任一点。 求证:AB -AC >PB -PC 。 五、延长已知边构造三角形: 例如:如图6:已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B , 求证:AD =BC 六、有和角平分线垂直的线段时,通常把这条线段延长。 例如:如图8:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证:BD =2CE 7 七、连接已知点,构造全等三角形。 例如:已知:如图9;AC 、BD 相交于O 点,且AB =DC ,AC =BD ,求证:∠A =∠D 。 八、取线段中点构造全等三有形。 例如:如图10:AB =DC ,∠A =∠D 求证:∠ABC =∠DCB 。 A B C D N M P 5图12A B C D E 6 图O D B A 110 图O 10图D C B A M N

全等三角形辅助线经典做法习题

全等三角形证明方法中辅助线做法 一、截长补短 通过添加辅助线利用截长补短,从而达到改变线段之间的长短,达到构造全等三角形的条件 1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD. 分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD. 证明:在AC上截取AF=AE,连接OF. ∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60° ∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°. 显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60° 在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC ∴△DOC≌△FOC,CF=CD ∴AC=AF+CF=AE+CD. 2.如图,在△ABC中,AD平分∠BAC,∠C=2∠B,试判断AB,AC,CD三者之间的数量关系,并说明理由.

3.如图,在△ABC 中,∠A=60°,BD ,CE 分别平分∠ABC 和∠ACB,BD ,CE 交于点O,试判断BE,CD,BC 的数量关系,并加以证明. 4.如图,AD ∥BC,DC ⊥AD,AE 平分∠BAD,E 是DC 的中点.问:AD,BC,AB 之间有何关系?并说明理由. 5.(德州中考)问题背景: 如图1:在四边形ABCD 中,AB=AD ,∠BAD=120°,∠B=∠ADC=90°.E ,F 分别是BC ,CD 上的点.且∠EAF=60°.探究图中线段BE ,EF ,FD 之间的数量关系. (1)小王同学探究此问题的方法是,延长FD 到点G.使DG=BE.连接AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是; (2)如图2,若在四边形ABCD 中,AB=AD ,∠B+∠D=180°.E ,F 分别是BC ,CD 上的点,且∠EAF=2 1 ∠BAD ,上述结论是否仍然成立,并说明理由.

全等三角形中常用辅助线(经典)

三角形中的常用辅助线 课程解读 一、学习目标: 归纳、掌握三角形中的常见辅助线 二、重点、难点: 1、全等三角形的常见辅助线的添加方法。 2、掌握全等三角形的辅助线的添加方法并提高解决实际问题的能力。 三、考点分析: 全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。判断三角形全等的公理有SAS、ASA、AAS、SSS和HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。 典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。

全等三角形之辅助线(习题及答案)

全等三角形之辅助线(习题) 例题示范 例1:已知:如图,在△ABC 中,∠C =90°,D 是AB 边上一点,AD =AC ,过点D 作DE ⊥AB ,交BC 于点E . 求证:CE =DE . 【思路分析】1 读题标注:2梳理思路: 要证CE =DE ,考虑把这两条线段放在两个三角形中证全等,利用全等三角形对应边相等来证明. 观察图形,发现不存在全等的三角形. 结合条件,AC =AD ,∠C =∠ADE =90°,考虑连接AE ,证明△ACE ≌△ADE . 【过程书写】 证明:如图,连接AE ∵DE ⊥AB ∴∠ADE =90° ∵∠C =90° ∴∠C =∠ADE 在Rt △ACE 和Rt △ADE 中 AE AE AC AD =??=?(公共边)(已知)∴Rt △ACE ≌Rt △ADE (HL ) ∴CE =DE (全等三角形对应边相等) 过程规划:1.描述辅助线:连接AE 2.准备条件:∠C =∠ADE =90°3.证明△ACE ≌△ADE 4.由全等性质得,CE = DE

巩固练习1.已知:如图,B ,C ,F ,E 在同一条直线上,AB ,DE 相交于点G ,且BC =EF ,GB =GE ,∠A =∠D .求证:DC =AF . 2.已知:如图,∠C =∠F ,AB =DE ,DC = AF ,BC =EF .求证:AB ∥DE .过程规划: 过程规划:

3.已知:如图,AB∥CD,AD∥BC,E,F分别是AD,BC的 中点.求证:BE=DF. 4.已知:如图,在正方形ABCD中,AD=AB,∠DAB=∠B=90°, 点E,F分别在AB,BC上,且AE=BF,AF交DE于点G.求证:DE⊥AF.

初中数学(中考数学)常见解题模型及思路(初中数学自有定理)

初中数学压轴题常见解题模型及套路(自有定理) A . 代数篇: 1.循环小数化分数:设元—扩大——相减(无限变有限)相消法。 例.把0.108108108???化为分数。 设S=0.108108108??? (1) 两边同乘1000得:1000S=108.108108???(2) (2)-(1)得:999S=108 从而:S= 108 999 余例仿此—— 2.对称式计算技巧:“平方差公式—完全平方公式”—整体思想之结合:x+y ;x-y ;xy ; 22x y + 中,知二求二。 222222()2()2x y x y x y x y x y x y +=++?+= +- 2222()2()4x y x y x y x y x y -=+-=+- 加减配合,灵活变型。 3.特殊公式 22 1 1 2x x x x ±=+±2 ()的变型几应用。 4.立方差公式:3322a b a b a ab b ±=±+m ()() 5.等差数列求和的三种方法:首尾相加法;梯形大法;倒序相加法。 例.求:1+2+3+222+2017的和。三种方法举例:略 6.等比数列求和法:方法+公式:设元—乘等比—相减—求解。 例.求1+2+4+8+16+32+2222n 令S=1+2+4+8+16+32+222+2n (1) 两边同乘2得: 2S=2+4+8+32+64+222+2n +12n + (2) (2)-(1)得:2S-S=12n +- 1 从而求得S 。 7. 11n m m n --=mn 的灵活应用:如:1111 62323 ==-?等。 8.用二次函数的待定系数法求数列(图列)的通项公式f (n )。 9.韦达定理求关于两根的代数式值的套路:

全等三角形常用辅助线做法

五种辅助线助你证全等 姚全刚 在证明三角形全等时有时需添加辅助线,对学习几何证明不久的学生而言往往是难点?下面介绍证明全等时常见的五种辅助线,供同学们学习时参考. 一、截长补短 一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用 截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等. 例1.如图1,在△ ABC 中,/ ABC=60 ° , AD、CE 分别平分/ BAC、/ ACB .求证: AC=AE+CD . 分析:要证AC=AE+CD , AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明 CF=CD . 证明:在AC上截取AF=AE,连接OF. ?/ AD、CE 分别平分/ BAC、/ ACB,/ ABC=60 ° ???/ 1 + Z 2=60 ° ,A Z 4=Z 6= / 1 + Z 2=60 ° . 显然,△ AEO ◎△ AFO,?/ 5= / 4=60 ° ,?/ 7=180° — (/ 4+ / 5) =60 ° 在厶DOC 与厶FOC 中,/ 6= / 7=60°,/ 2= / 3, OC=OC ???△ DOC ◎△ FOC, CF=CD ? AC=AF+CF=AE+CD 截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等, 或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作 法,适合于证明线段的和、差、倍、分等类的题目。

例2:如图甲,AD// BC 点E在线段AB上,/ ADE=/CDE / DC=Z ECB 求证: CD=AD F BC 思路分析: 1)题意分析:本题考查全等三角形常见辅助线的知识:截长法或补短法。 2)解题思路:结论是CDAC+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CE,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。 解答过程: 证明:在CD上截取CF=BC如图乙 6 = CS CE= CE ???△ FCE^A BCE(SAS, ???/ 2=Z 1。 又??? AD// BC ???/ ADG-Z BCD:180°, ???/ DC+Z CD=90°,

全等三角形中辅助线的添加解析

全等三角形中辅助线的添加 一.教学内容:全等三角形的常见辅助线的添加方法、基本图形的性质的掌握及熟练应用。 二.知识要点: 1、添加辅助线的方法和语言表述 (1)作线段:连接……; (2)作平行线:过点……作……∥……; (3)作垂线(作高):过点……作……⊥……,垂足为……; (4)作中线:取……中点……,连接……; (5)延长并截取线段:延长……使……等于……; (6)截取等长线段:在……上截取……,使……等于……; (7)作角平分线:作……平分……;作角……等于已知角……; (8)作一个角等于已知角:作角……等于……。 2、全等三角形中的基本图形的构造与运用 常用的辅助线的添加方法: (1)倍长中线(或类中线)法:若遇到三角形的中线或类中线(与中点有关的线段),通常考虑倍长中线或类中线,构造全等三角形。 (2)截长补短法:若遇到证明线段的和差倍分关系时,通常考虑截长补短法,构造全等三角形。①截长:在较长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;②补短:将一条较短线段延长,延长部分等于另一条较短线段,然后证明新线段等于较长线段;或延长一条较短线段等于较长线段,然后证明延长部分等于另一条较短线段。 (3)一线三等角问题(“K”字图、弦图、三垂图):两个全等的直角三角形的斜边恰好是一个等腰直角三角形的直角边。 (4)角平分线、中垂线法:以角平分线、中垂线为对称轴利用”轴对称性“构造全等三角形。 (5)角含半角、等腰三角形的(绕顶点、绕斜边中点)旋转重合法:用旋转构造三角形全等。 (6)构造特殊三角形:主要是30°、60°、90°、等腰直角三角形(用平移、对称和弦图也可以构造)和等边三角形的特殊三角形来构造全等三角形。 三、基本模型: (1) △ABC中AD是BC边中线 方式1:延长AD到E,使DE=AD,连接BE

八年级数学《全等三角形》证明题中常见的辅助线的作法

D C B A E D F C B A 八年级数学《全等三角形》证明题中常见的辅助线的作法常见辅助线的作法有以下几种: 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”. 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”. 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 一、倍长中线(线段)造全等 例1、(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________. 例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF 与EF的大小. 例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE. 应用:

E D C B A D C B A P Q C B A 1、(09崇文二模)以ABC ?的两边AB 、AC 为腰分别向外作等腰Rt ABD ?和等腰 Rt ACE ?,90,BAD CAE ∠=∠=?连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与 DE 的位置关系及数量关系. (1)如图① 当ABC ?为直角三角形时,AM 与DE 的位置关系是 , 线段AM 与DE 的数量关系是 ; (2)将图①中的等腰Rt ABD ?绕点A 沿逆时针方向旋转?θ(0<θ<90)后,如图②所 示,(1)问中得到的两个结论是否发生改变?并说明理由. 二、截长补短 1、如图,ABC ?中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC 2、如图,AC ∥BD ,EA,EB 分别平分∠CAB,∠DBA ,CD 过点E ,求证;AB =AC+BD 3、如图,已知在ABC V 内,060BAC ∠=,040C ∠=,P ,Q 分别在BC , CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分 线。求 证:BQ+AQ=AB+BP 4、如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分ABC ∠, 求证: 0180=∠+∠C A 5、如图在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上 任意一点,求证;AB-AC >PB-PC 应用: 三、平移变换 例1 AD 为△ABC 的角平分线,直线MN ⊥AD 于A.E 为MN 上一点,△ABC 周长记为A P , △EBC 周长记为B P .求证B P >A P . 例2 如图,在△ABC 的边上取两点D 、E ,且BD=CE ,

初中数学解题模型专题讲解30---矩形大法

初中数学解题模型专题讲解 初中数学解题模型专题讲解 30 矩形大法 专题30 矩形大法 矩形大法 主要从三个方面和大家交流: 一:“矩形大法”的提出背景 二:“矩形大法”的基本构造 三:“矩形大法”的实例应用 一、矩形大法”的提出背景 问题:我们如何刻画一个角大小呢? 是的,角的大小有两种刻画方法:一种是传统的、人人皆知的度数刻画法;另一种是常被我们忽略的边长刻画法(即三角函数值)。 如果两个角的大小是用度数体现的,那么这两个角的和与差的度数能够非常容易地计算出来。 但如果两个角的大小是采用边长(即三角函数值)刻画的,那么两个角的和或差的大小是多少呢? 自然,这两个角和与差的大小也只能采用三角函数值刻画。 也许学习数学的人第一反应是马上想到高中的两角和与差的三角公式。 但现在讨论的背景是初中数学教学因此我们要回避用高中数学知识。 首先要提的就是南通2014年的28题第三问:

不知大家第一次看到这道题的第一反应是什么? 能否在短时间中用传统方法解决? 看到两角和差关系这样的条件想到什么? 本题它有比较巧妙的求法,但要发现,还是需要一定的时间的。 这里涉及到两角和差关系,需要说明的是,命题人员绝非希望你采用高中“两角和与差的三角公式”去解决问题,这是由于: ⑴他们当初没有意识到采用这样的思考方法是合理的,而且只要方法得当,的确能够解决问题。 ⑵即使意识到了,他们认为因为初中不具备这样的知识,有这样的想法却因为不具备的能力,从而无法解决原问题。 ⑶最关键的原因是,由于命题人员想出了构思极为巧妙,常人很难想到的解法。 于是,这样的考题在不知不觉中出现了,而且通常情况下,这样的考题必定处于试卷中的难题位置.那如果我们能有比较好的方法去破解这个和差关系,那不就可以不花多少时间直接攻破此题了呢! 再譬如今年盐城的中考题第3问:

全等三角形常用辅助线做法

全等三角形常用辅助线做 法 This manuscript was revised on November 28, 2020

五种辅助线助你证全等 姚全刚 在证明三角形全等时有时需添加辅助线,对学习几何证明不久的学生而言往往是难点.下面介绍证明全等时常见的五种辅助线,供同学们学习时参考. 一、截长补短 一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等. 例1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD. 分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD. 证明:在AC上截取AF=AE,连接OF. ∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60° ∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°. 显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60° 在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC ∴△DOC≌△FOC, CF=CD ∴AC=AF+CF=AE+CD. 截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。 例2:如图甲,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。 求证:CD=AD+BC。 思路分析: 1)题意分析:本题考查全等三角形常见辅助线的知识:截长法或补短法。 2)解题思路:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在CD 上截取CF=CB,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。 解答过程: 证明:在CD上截取CF=BC,如图乙 ∴△FCE≌△BCE(SAS), ∴∠2=∠1。 又∵AD∥BC, ∴∠ADC+∠BCD=180°, ∴∠DCE+∠CDE=90°, ∴∠2+∠3=90°,∠1+∠4=90°, ∴∠3=∠4。 在△FDE与△ADE中, ∴△FDE≌△ADE(ASA), ∴DF=DA,

全等三角形辅助线画法

五种辅助线助你证全等 在证明三角形全等时,有时需添加辅助线,下面介绍证明全等时常见的五种辅助线,可以帮助你更好的学习。 一、截长补短 一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等. 例1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD. 分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD. 证明:在AC上截取AF=AE,连接OF.

∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60° ∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°. 显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60° 在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC ∴△DOC≌△FOC,CF=CD ∴AC=AF+CF=AE+CD. 二、中线倍长 三角形问题中涉及中线(中点)时,将三角形中线延长一倍,构造全等三角形是常用的解题思路. 例2.已知三角形的两边长分别为7和5,那么第三边上中线长x的取值范围是(). 分析:要求第三边上中线的取值范围,只有将将中线与两个已知边转移到同一个三角形中,然后利用三角形的三边关系才能进行分析和判断.

解:如图2所示,设AB=7,AC=5,BC上中线AD=x.延长AD至E,使DE = AD=x. ∵AD是BC边上的中线,∴BD=CD ∠ADC=∠EDB(对顶角)∴△ADC≌△EDB ∴BE=AC=5 ∵在△ABE中AB-BE<AE<AB+BE 即7-5<2x<7+5∴1<x<6

初中数学模型解题法

初中数学模型解题法 解答题 1. (2001江苏苏州6分)如图,已知AB是半圆O的直径,AP为过点A的半圆的切线。在上任取一点C(点C与A、B不重合),过点C作半圆的切线CD交AP于点D;过点C 作CE⊥AB,垂足为E.连接BD,交CE于点F。 (1)当点C为的中点时(如图1),求证:CF=EF; (2)当点C不是的中点时(如图2),试判断CF与EF的相等关系是否保持不变,并证明你的结论。 【答案】解:(1)证明:∵DA是切线,AB为直径,∴DA⊥AB。 ∵点C是的中点,且CE⊥AB,∴点E为半圆的圆心。 又∵DC是切线,∴DC⊥EC。 又∵CE⊥AB,∴四边形DAEC是矩形。 ∴CD∥AO,CD=AD。∴,即EF= AD= EC。 ∴F为EC的中点,CF=EF。 (2)CF=EF保持不变。证明如下: 如图,连接BC,并延长BC交AP于G点,连接AC, ∵AD、DC是半圆O的切线,∴DC=DA。 ∴∠DAC=∠DCA。 ∵AB是直径,∴∠ACB=90°。∴∠ACG=90°。 ∴∠DGC+∠DAC=∠DCA+∠DCG=90°。 ∴∠DGC=∠DCG。 ∴在△GDC中,GD=DC。 ∵DC=DA,∴GD=DA。 ∵AP是半圆O的切线,∴AP⊥AB。 又∵CE⊥AB,∴CE∥AP。∴△BCF∽△BGD,△BEF∽△BAD。 ∴。 ∵GD=AD,∴CF=EF。 【考点】探究型,圆的综合题,切线的性质,矩形的判定和性质,平行线分线段成比例定理,等腰三角形的判定,相似三角形的判定和性质。 【分析】(1)由题意得DA⊥AB,点E为半圆的圆心,DC⊥EC,可得四边形DAEC是矩形,即可得出,即可得EF与EC的关系,可知CF=EF。 (2)连接BC,并延长BC交AP于G点,连接AC,由切线长定理可得DC=DA,∠DAC=∠DCA,由角度代换关系可得出∠DGC=∠DCG,即可得GD=DC=DA,由已知可得CE∥AP,所以,即可知CF=EF。 2. (2001江苏苏州7分)已知一个三角形纸片ABC,面积为25,BC的长为10,∠B、∠C都为锐角,M为AB边上的一动点(M与A、B不重合),过点M作MN∥BC交AC于点N,设MN=x。 (1)用x表示△AMN的面积; (2)△AMN沿MN折叠,使△AMN紧贴四边形BCNM(边AM、AN落在四边形BCNM 所在的平面内),设点A落在平面BCNM内的点A′,△A′MN与四边形BCNM重叠部分的面积为y。 ①用的代数式表示y,并写出x的取值范围; ②当x为何值时,重叠部分的面积y最大,最大为多少?

初中(中考)数学常见解题模型及思路(压轴题题眼全覆盖)

初中数学常见解题模型及思路(自有定理) A . 代数篇: 1.循环小数化分数:设元—扩大——相减(无限变有限)相消法。 例.把0.108108108???化为分数。 设S=0.108108108??? (1) 两边同乘1000得:1000S=108.108108???(2) (2)-(1)得:999S=108 从而:S= 108 999 余例仿此—— 2.对称式计算技巧:“平方差公式—完全平方公式”—整体思想之结合:x+y ;x-y ;xy ; 22x y + 中,知二求二。 222222()2()2x y x y x y x y x y x y +=++?+= +- 2222()2()4x y x y x y x y x y -=+-=+- 加减配合,灵活变型。 3.特殊公式 22 1 1 2x x x x ±=+±2 ()的变型几应用。 4.立方差公式:3322a b a b a ab b ±=±+m ()() 5.等差数列求和的三种方法:首尾相加法;梯形大法;倒序相加法。 例.求:1+2+3+222+2017的和。三种方法举例:略 6.等比数列求和法:方法+公式:设元—乘等比—相减—求解。 例.求1+2+4+8+16+32+2222n 令S=1+2+4+8+16+32+222+2n (1) 两边同乘2得: 2S=2+4+8+32+64+222+2n +12n + (2) (2)-(1)得:2S-S=12n +- 1 从而求得S 。 7. 11n m m n --=mn 的灵活应用:如:1111 62323 ==-?等。 8.用二次函数的待定系数法求数列(图列)的通项公式f (n )。 9.韦达定理求关于两根的代数式值的套路:

(完整版)几种证明全等三角形添加辅助线的方法

教学过程 构造全等三角形几种方法 在几何解题中,常常需要添加辅助线构造全等三角形,以沟通题设与结论之间的联系。现分类加以说明。 一、延长中线构造全等三角形 例1. 如图1,AD是△ABC的中线,求证:AB+AC>2AD。 证明:延长AD至E,使AD=DE,连接CE。如图2。 ∵AD是△ABC的中线,∴BD=CD。 又∵∠1=∠2,AD=DE, ∴△ABD≌△ECD(SAS)。AB=CE。 ∵在△ACE中,CE+AC>AE, ∴AB+AC>2AD。

二、沿角平分线翻折构造全等三角形 例2. 如图3,在△ABC中,∠1=∠2,∠ABC=2∠C。求证:AB+BD=AC。 证明:将△ABD沿AD翻折,点B落在AC上的E点处,即:在AC上截取AE=AB,连接ED。如图4。 ∵∠1=∠2,AD=AD,AB=AE, ∴△ABD≌△AED(SAS)。 ∴BD=ED,∠ABC=∠AED=2∠C。 而∠AED=∠C+∠EDC, ∴∠C=∠EDC。所以EC=ED=BD。 ∵AC=AE+EC,∴AB+BD=AC。 三、作平行线构造全等三角形 例3. 如图5,△ABC中,AB=AC。E是AB上异于A、B的任意一点,延长AC到D,使CD=BE,连接DE交BC于F。求证:EF=FD。 证明:过E作EM∥AC交BC于M,如图6。 则∠EMB=∠ACB,∠MEF=∠CDF。 ∵AB=AC,∴∠B=∠ACB。 ∴∠B=∠EMB。故EM=BE。 ∵BE=CD,∴EM=CD。

又∵∠EFM=∠DFC,∠MEF=∠CDF, ∴△EFM≌△DFC(AAS)。EF=FD。 四、作垂线构造全等三角形 例4. 如图7,在△ABC中,∠BAC=90°,AB=AC。M是AC边的中点。AD ⊥BM交BC于D,交BM于E。求证:∠AMB=∠DMC。 证明:作CF⊥AC交AD的延长线于F。如图8。 ∵∠BAC=90°,AD⊥BM, ∴∠FAC=∠ABM=90°-∠BAE。 ∵AB=AC,∠BAM=∠ACF=90°, ∴△ABM≌△CAF(ASA)。 ∴∠F=∠AMB,AM=CF。 ∵AM=CM,∴CF=CM。 ∵∠MCD=∠FCD=45°,CD=CD, ∴△MCD≌△FCD(SAS)。所以∠F=∠DMC。 ∴∠AMB=∠F=∠DMC。 五、沿高线翻折构造全等三角形 例5. 如图9,在△ABC中,AD⊥BC于D,∠BAD>∠CAD。求证:AB>AC。

全等三角形中做辅助线总结(供参考)

全等三角形中做辅助线技巧要点大汇总 口诀: 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 一、由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a、对称性;b、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 如图1-1,∠AOC=∠BOC,如取OE=OF,并连接DE、DF,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。 例1.如图1-2,AB//CD,BE平分∠BCD,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。 例2.已知:如图1-3,AB=2AC,∠BAD=∠CAD,DA=DB,求证DC⊥AC B 图1-2 D B C 1文档来源为:从网络收集整理.word版本可编辑.

2文档来源为:从网络收集整理.word 版本可编辑. 例3. 已知:如图1-4,在△ABC 中,∠C=2∠B,AD 平分∠BAC ,求证:AB-AC=CD 分析:此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差倍分问题。用到的是截取法来证明的,在长的线段上截取短的线段,来证明。试试看可否把短的延长来证明呢? 练习 1. 已知在△ABC 中,AD 平分∠BAC ,∠B= 2∠C ,求证:AB+BD=AC 2. 已知:在△ABC 中,∠CAB=2∠B ,AE 平分∠CAB 交BC 于E ,AB=2AC , 求证:AE=2CE 3. 已知:在△ABC 中,AB>AC,AD 为∠BAC 的平分线,M 为AD 上任一点。 求证:BM-CM>AB-AC 4. 已知:D 是△ABC 的∠BAC 的外角的平分线AD 上的任一点,连接DB 、 DC 。求证:BD+CD>AB+AC 。 (二)、角分线上点向角两边作垂线构全等 过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。 例1. 如图2-1,已知AB>AD, ∠BAC=∠FAC,CD=BC 。 求证:∠ADC+∠B=180 分析:可由C 向∠BAD 的两边作垂线。近而证∠ADC 与∠B 之和为平角。 例2. 如图2-2,在△ABC 中,∠A=90 ,AB=AC ,∠ABD=∠CBD 。 求证:BC=AB+AD 图1-4 A B C 图2-1 B C 图 2-2 B C

全等三角形经典题型辅助线答案

全等三角形常见辅助线作法 【例1】.已知:如图6,△BCE 、△ACD 分别是以BE 、AD 为斜边的直角三角形,且BE AD =,△CDE 是等边三角形.求证:△ABC 是等边三角形. 【例2】、如图,已知BC > AB ,AD=DC 。BD 平分∠ABC 。求证:∠A+∠C=180°. 一、线段的数量关系: 通过添加辅助线构造全等三角形转移线段到一个三角形中证明线段相等。 1、倍长中线法 【例. 3】如图,已知在△ABC 中,90C ?∠=,30B ?∠=,AD 平分BAC ∠,交BC 于点D . 求证:2BD CD = 证明:延长DC 到E ,使得CE=CD,联结AE ∵∠ADE=60° ∵∠C=90° ∴△ADE 为等边三角形 ∴AC ⊥CD ∴AD=DE ∵CD=CE ∵DB=DA ∴AD=AE ∴BD=DE ∵∠B=30°∠C=90° ∴BD=2DC ∴∠BAC=60° ∵AD 平分∠BAC ∴∠BAD=30° ∴DB=DA ∠ADE=60° D C B A D C B E A

【例4.】 如图,D 是ABC ?的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ?的中线。求证:2AC AE =。 证明:延长AE 到点F,使得EF=AE 联结DF 在△ABE 和△FDE 中 ∴∠ADC=∠ABD+∠BDA BE =DE ∵∠ABE=∠FDE ∠AEB=∠FED ∴∠ADC=∠ADB+∠FDE AE=FE 即 ∠ADC = ∠ADF ∴△ABE ≌ △FDE (SAS ) 在△ADF 和△ADC 中 ∴AB=FD ∠ABE=∠FDE AD=AD ∵AB=DC ∠ADF = ∠ADC ∴ FD = DC DF =DC ∵∠ADC=∠ABD+∠BAD ∴△ ADF ≌ ADC(SAS) ∵ADB BAD ∠=∠ ∴AF=AC ∴AC=2AE 【变式练习】、 如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE. 【小结】熟悉法一、法三“倍长中线”的辅助线包含的基本图形“八字型”和“倍长中线”两种基本操作方法,倍长中线,或者倍长过中点的一条线段以后的对于解决含有过中点线段有很好的效果。 【变式练习】:如图所示,AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且AC=BF 。 求证:AE=EF 。 E D C B A

初中数学解题模型专题讲解1---8字型

初中数学解题模型专题讲解 专题1 8字模型 模型模型 1 1 角的角的角的““8”字模型字模型 如图所示,AC、BD 相交于点 O, 连接 AD、BC。 结论:∠A+∠D=∠B+∠C。 证明:在△AOD 和△BOC 中,∠AOD=∠BOC(对顶角) 又∵∠A+∠D+∠AOD=∠B+∠C+∠BOC=180° ∴∠A+∠D=∠B+∠C 模型分析 8 字模型往往在几何综合题目中推导角度时用到。 模型实例 观察下列图形,计算角度: (1)如图①,∠A+∠B+∠C+∠D+∠E= _____; (2)如图②,∠A+∠B+∠C+∠D+∠E+∠F= _____。 模型精练模型精练 1.(1)如图①,求∠CAD+∠B+∠C+∠D+∠E=____ ; (2)如图②,求∠CAD+∠B+∠ACE+∠D+∠E= ______。

2.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=_____ 。 模型模型 2 2 边的边的边的““8”字模型字模型 如图所示,AC、BD 相交于点 O,连接 AD、BC。 结论:AC+BD>AD+BC。 证明:在△AOD 中,AO+OD>AD 在△BOC 中,BO+OC>BC ∴AC+BD=(A0+OC)+(B0+OD)>AD+BC ∴AC+BD>AD+BC 模型实例

如图,四边形 ABCD 的对角线求证:(1)AB+BC+CD+AD>AC (2)AB+BC+CD+AD<2A 模型3 3 相似相似8字模型字模型((⑴ 如图8型,对顶角的对边平⑵ 如图反8型,对顶角的对边已知:∠1=∠2, 结论:△ADE∽△ABC 证明:如图∠1=∠2,又∠ ∴∠E=∠C(∠D=∠ ∴△ADE∽△ABC(AAA 模型分析模型分析 在相似三角形的判定中,我们相似,后面会讲到),在做题 以下题目由沈阳数学高老师提对角线 AC、BD 相交于点 O。 AD>AC+BD; AD<2AC+2BD. 又称X 字型) 对边平行,则△ADE∽△ABC ; 的对边不平行,且有另一对角相等,则△ADE∽△ABC ∠DAE=∠BAC(对顶角) ∠B) AAA) 我们常通过作平行线,从而得到8字形相似(有时 在做题时,我们也常常关注题目中由平行线产生的 老师提供 ABC . 有时得到A 字形产生的相似三角形。

相关文档
最新文档