与三角形有关的线段,与三角形有关的角练习题
三角形相关线段习题精选(含答案)

三角形相关线段习题精选1、如图,在平面直角坐标系中,点B、A分别在x轴、y轴上,∠BAO=60°,在坐标轴上找一点C,使得△ABC是等腰三角形,则符合条件的等腰三角形ABC有个.2、如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1+S2=3、如图,在△ABC中,点D,E分别在AB,AC上,且CD与BE相交于点F,已知△BDF的面积为6,△BCF的面积为9,△CEF的面积为6,则四边形ADFE的面积为.4、直角三角形两直角边长分别为5和12,则它的斜边上的高为.5、如图,中,,,,点D是BC的中点,将沿AD翻折得到,联结CE,那么线段CE的长等于.第5题图第6题图第7题图第9题图6、如图,在△ABC中,已知点D、E、F分别是边BC、AD、CE上的中点,且S△ABC=4,则S△BFF=_______7、如图,D,E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△FCE的面积为S2,若S△ABC=6,则S1-S2的值为_________.8、在△ABC中,AB=5,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.9、如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条B.3条C.4条D.5条10、已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为( )A.2 B.3 C.5 D.1311、如果三角形的两边长分别为5和7,第三边长为偶数,那么这个三角形的周长可以是()A.10 B.11 C.16 D.2612、小华要画一个有两边长分别为7cm和8cm的等腰三角形,则这个等腰三角形的周长是()A.16cm B.17cm C.22cm或23cm D.11cm13、下列长度的三根木棒首尾相接,不能做成三角形框架的是()A.5cm,7cm,10cm B.5cm,7cm,13cmC.7cm,10cm,13cm D.5cm,10cm,13cm14、若等腰三角形的两边长分别为4和9,则它的周长为()A.22 B.17 C.13 D.17或2215、如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=10,DE=2,AB=4,则AC长是()A.9 B.8 C.7 D.616、如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.617、已知三角形的两边分别为4和9,则此三角形的第三边可能是()18、如图,△ABC中,点D在BC上,△ACD和△ABD面积相等,线段AD是三角形的().A.高B.角平分线C.中线D.无法确定19、.下列命题正确的是()A.三角形的角平分线,中线,高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.直角三角形斜边上的高等于斜边的一半20、下列长度的三条线段能组成三角形的是(),2cm,3cm ,2cm,3cm ,6cm,8cm ,12cm,6cm21、若某三角形的三边长分别为3,5,,则的取值范围是()A.0<<9 B.3<<9C.0<<7 D.3<<722、若△ABC的边长都是整数,周长为11,且有一边长为4,则这个三角形的最大边长为()A.7 B.6 C.5 D.423、、如图,△ABC的三边AB、BC、AC的长分别12,18,24,O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S=()△OACA.1:1:1 B.1:2:3 C.2:3:4 D.3:4:524、设△ABC的面积为1,如图①将边BC、AC分别2等份,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等份,BE1、AD1相交于点O,△AOB的面积记为S2;……,依此类推,则S5的值为()A.B.C.D.25、如图,AD是△ABC的中线,DE是△ADC的高线,AB=3,AC=5,DE=2,点D到AB的距离是()A.2B.C.D.26、下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,1127、已知在ΔABC中,AB=AC,周长为24,AC边上的中线BD把ΔABC分成周长差为6的两个三角形,则ΔABC各边的长分别变为______。
人教版 八年级数学上册 11.1 与三角形有关的线段 同步训练 (含答案)

2020-2021 八年级数学上册11.1 与三角形有关的线段同步训练(含答案)一、选择题(本大题共10道小题)1. 如图所示,在△ABC中,D,E,F是BC边上的三点,且∠1=∠2=∠3=∠4,则AE是哪个三角形的角平分线()A.△ABE B.△ADFC.△ABC D.△ABC,△ADF2. 如图,在△ABC中,AC边上的高是()图A.线段DA B.线段BAC.线段BC D.线段BD3. 若a、b、c为△ABC的三边长,且满足|a-4|+b-2=0,则c的值可以为()A. 5B. 6C. 7D. 84. 若三角形的两边长分别为3和6,则它的第三边长可以为()A.3 B.4C.9 D.105. 如图,为估计池塘岸边A,B两地之间的距离,小明在池塘的一侧选取一点O,测得OA=10米,OB=8米,那么A,B两地之间的距离可能是()A.2米B.15米C.18米D.28米6. 下列关于三角形的分类,有如图K-1-4所示的甲、乙两种分法,则()A.甲、乙两种分法均正确B.甲分法正确,乙分法错误C.甲分法错误,乙分法正确D.甲、乙两种分法均错误7. 有长度分别为4 cm,5 cm,9 cm,13 cm的四根木条,以其中三根为边,制作一个三角形框架,那么这个三角形框架的周长可能是()A.18 cm B.26 cm C.27 cm D.28 cm8. 将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是直角三角形B.都是钝角三角形C.都是锐角三角形D.是一个直角三角形和一个钝角三角形9. 下列长度的三条线段能组成钝角三角形的是()A. 3,4,4B. 3,4,5C. 3,4,6D. 3,4,710. 试通过画图来判断,下列说法正确的是()A.一个直角三角形一定不是等腰三角形B.一个等腰三角形一定不是锐角三角形C.一个钝角三角形一定不是等腰三角形D.一个等边三角形一定不是钝角三角形二、填空题(本大题共6道小题)11. 如图,以点A为顶点的三角形有________个,它们分别是_______________.12. 如图,D是△ABC的边BC上的一点,则在△ABC中,∠C所对的边是________;在△ACD中,∠C所对的边是________.13. 如图,AD为△ABC的角平分线,DE∥AB交AC于点E.若∠BAC=100°,则∠ADE=________°.14. 若一个等腰三角形两边的长分别为2 cm,5 cm,则它的周长为________cm.15. 设三角形三边之长分别为3,7,1+a,则a的取值范围为__________.16. 如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为________.三、解答题(本大题共4道小题)17. 等面积法如图,BE,CF均是△ABC的中线,且BE=CF,AM⊥CF于点M,AN⊥BE于点N.求证:AM=AN.18. 在平面内,分别用相同的3根、5根、6根……火柴首尾顺次相接,能搭成什么形状的三角形呢?通过尝试,列表如下:(1)4根火柴能搭成三角形吗?(2)12根火柴能搭成几种不同形状的三角形?请画出它们的示意图.(提示:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形)19. 数学活动课上,老师让同学们用长度分别是20 cm,90 cm,100 cm的三根木棒搭一个三角形的木架,小明不小心把100 cm的木棒折去了35 cm,他发现:用折断后剩下的木棒与另两根木棒怎么也搭不成三角形.(1)你知道为什么吗?(2)100 cm长的木棒至少折去多长后剩余的部分就不能与另两根木棒搭成三角形?20. 观察探究观察并探求下列各问题.(1)如图①,在△ABC中,P为边BC上一点,则BP+PC________AB+AC(填“>”“<”或“=”);(2)将(1)中的点P移到△ABC内,如图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由;(3)将(2)中的点P变为两个点P1,P2,如图③,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.2020-2021 八年级数学上册11.1 与三角形有关的线段同步训练(含答案)-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】D3. 【答案】A【解析】∵|a-4|≥0,b-2≥0,∴a=4,b=2,∵三角形的两边之和大于第三边,两边之差小于第三边,故c的取值范围为:2<c<6,故本题选A.4. 【答案】B5. 【答案】B[解析] 设A,B两地之间的距离为x米.依据题意,得10-8<x <10+8,即2<x<18,所以A,B两地之间的距离可能是15米.6. 【答案】C7. 【答案】C8. 【答案】C[解析] 如图①,沿虚线剪开即可得到两个直角三角形.如图②,钝角三角形沿虚线剪开即可得到两个钝角三角形.如图③,直角三角形沿虚线剪开即可得到一个直角三角形和一个钝角三角形.因为剪开的边上的两个角互补,故这两个三角形不可能都是锐角三角形.9. 【答案】C【解析】①∵32+42=52,∴三条线段3、4、5组成直角三角形,∴B选项不正确;②当把斜边5变成7时,3+4=7,不满足三角形两边之和大于第三边,不能构成三角形,∴D选项不正确;③当把斜边5稍微变小一点为4时,三条线段为3、4、4组成锐角三角形,∴A选项不正确;④当把斜边5稍微变大一点为6时,三条线段为3、4、6组成钝角三角形,∴C选项正确.10. 【答案】D[解析] 等腰直角三角形既是直角三角形,也是等腰三角形,故选项A错误;等边三角形既是等腰三角形,也是锐角三角形,故选项B错误;顶角是120°的等腰三角形,既是钝角三角形,也是等腰三角形,故选项C错误;因为一个等边三角形的三个角都是60°,所以等边三角形是锐角三角形.故选项D正确.二、填空题(本大题共6道小题)11. 【答案】4△ABC,△ADC,△ABE,△ADE12. 【答案】AB AD13. 【答案】50[解析] ∵AD为△ABC的角平分线,∠BAC=100°,∴∠BAD=∠CAD=12×100°=50°.∵DE∥AB,∴∠ADE=∠BAD=50°.14. 【答案】12[解析] 分两种情况讨论:①当腰长为5 cm时,三边长分别为5 cm,5 cm,2 cm,满足三角形三边关系,周长=5+5+2=12(cm).②当腰长为2 cm 时,三边长分别为5 cm ,2 cm ,2 cm.∵2+2=4<5, ∴5 cm ,2 cm ,2 cm 不满足三角形的三边关系. 综上,它的周长为12 cm.15. 【答案】3<a <9[解析] 由题意,得7-3<1+a <7+3,解得3<a <9.16. 【答案】13【解析】由折叠的性质可得:CD =AD ,∴△BCD 的周长=BC+CD +BD =BC +AD +BD =BC +BA =6+7=13.三、解答题(本大题共4道小题)17. 【答案】83证明:∵BE ,CF 均是△ABC 的中线,∴S △ABE =S △ACF =12S △ABC .∵BE =CF ,AM ⊥CF 于点M ,AN ⊥BE 于点N , ∴12AM·CF =12AN·BE. ∴AM =AN.18. 【答案】解:(1)4根火柴不能搭成三角形.(2)12根火柴能搭成3种不同形状的三角形. 示意图如下:19. 【答案】解:(1)把100 cm 的木棒折去了35 cm 后还剩余65 cm. ∵20+65<90,∴20 cm,65 cm,90 cm长的三根木棒不能构成三角形.(2)设折去x cm后剩余的部分不能与另两根木棒搭成三角形.根据题意,得20+(100-x)≤90,解得x≤30,∴100 cm长的木棒至少折去30 cm后剩余的部分就不能与另两根木棒搭成三角形.20. 【答案】解:(1)<(2)△BPC的周长<△ABC的周长.理由:如图①,延长BP交AC于点M.在△ABM中,BP+PM<AB+AM.在△PMC中,PC<PM+MC.两式相加,得BP+PC<AB+AC,∴△BPC的周长<△ABC的周长.(3)四边形BP1P2C的周长<△ABC的周长.理由:如图②,分别延长BP1,CP2交于点M.由(2)知,BM+CM<AB+AC.又∵P1P2<P1M+P2M,∴BP1+P1P2+P2C<BM+CM<AB+AC.∴四边形BP1P2C的周长<△ABC的周长.。
与三角形有关的线段和角练习题

与三角形有关的线段和角练习题一、单选题(共12题;共36分)1、下列长度的三根小木棒能构成三角形的是()A、2cm,3cm,5cmB、7cm,4cm,2cmC、3cm,4cm,8cmD、3cm,3cm,4cm2、如图,∠1的大小等于()A、40°B、50°C、60°D、70°3、如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A、两点之间的线段最短B、长方形的四个角都是直角C、长方形是轴对称图形D、三角形有稳定性4、将三角尺的直角顶点放在直线a上,a//b,∠1=50°,∠2=60°,则∠3的度数为( )A、50°B、60°C、70°D、80°5、已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A、8或10B、8C、10D、6或126、下列说法正确的使()A、三角形的外角大于它的内角B、三角形的一个外角等于它的两个内角之和C、三角形的一个内角小于和它不相邻的外角D、三角形的外角和是180°7、△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A、50°B、51°C、°D、°8、在△ABC中,如图,CD平分∠ACB,BE平分∠ABC,CD与BE交于点F,若∠DFE=120°,则∠A=()A、30°B、45°C、60°D、90°9、已知a、b、c是△ABC三边的长,则+|a+b—c|的值为 ( )A、2aB、2bC、2cD、2(a一c)10、三角形三个内角之比为1:2:3,则该三角形三个外角之比为()A、5:4:3B、3:2:1C、1:2:3D、2:3:411、如图,∠B+∠C+∠D+∠E﹣∠A等于()A、360°B、300°C、180°D、240°12、在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A=∠B=α∠C;④∠A﹕∠B﹕∠C=1﹕2﹕3中能确定△ABC为直角三角形的条件有()A、2个B、3个C、4个D、5个二、填空题(共5题;共20分)13、如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是________.第13题图第14题图第15题图14、如图,已知△ABC的∠ABC和∠ACB的平分线BE,CF交于点G,若∠BGC=115°,则∠A=________15、如图,在△ABC中,点D、E、F分别为BC、AD、CE的中点.若S△BFC=1,则S△ABC=________ .16、在△ABC中,高BD,CE相交于点H,若∠BHC=110°,则∠A等于________.第16题图第17题图17、如图,由平面上五个点A、B、C、D、E连接而成,则∠A+∠B+∠C+∠D+∠E=________.三、解答题(共7题;共64分)18、如图,已知FD⊥BC于D,DE⊥AB于E,∠B=∠C,∠AFD=140°,求∠EDF的度数.19、如图,在△ABC中,AD⊥BC于D,AE平分∠DAC,∠BAC=80°,∠B=60°,求∠AEC的度数.20、在等腰三角形ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分为15和6两部分,求该等腰三角形的腰长及底边长。
初中数学三角形有关的线段讲解及习题

(2)周长问题:如图所示,AD是BC边上的中线,△ABD和△ACD的周长之差实质上就是AB与AC的差,这也是三角形中线中常出现的问题.
【例10】有一块三角形优良品种试验基地,如图所示,由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择(画图说明).
所以∠DAC+∠C=90°,∠EBC+∠C=90°.
所以∠DAC=∠EBC.
10.三角形中线应用拓展
三角形的中线是三角形中的一条重要线段,它最大的特点是已知三角形的中线,图中一定含有相等线段,由此延伸出中线的应用:
(1)面积问题:三角形的中线将三角形分成面积相等的两个三角形,如图,在△ABC中,AD是BC边上的中线,则S△ABD=S△ACD=S△ABC.
9.三角形高的应用
从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高.
因为三角形的高是通过作垂线得到的,既有直角,又有垂线段,因此它的应用方向主要有两方面:一是求面积问题,高是垂线段,也是点到直线的距离,是求三角形的面积所必须知道的长度;二是直角,高是垂线段,因而一定有直角,根据所有直角都相等或互余关系进行解题是三角形的高应用的另一方向.
【例7-1】以下列长度的三条线段为边,能组成三角形吗?
(1)6 cm,8 cm,10 cm;
(2)三条线段长之比为4∶5∶6;
(3)a+1,a+2,a+3(a>0).
分析:根据三角形的三边关系来判断已知的三条线段能否组成三角形,选择较短的两条线段,看它们的和是否大于第三条线段,即可判断能否组成三角形.
方案3:如图(3),分别取BC的中点D、CD的中点E、AB的中点F,连接AD,AE,DF.
与三角形有关的边、角的练习试题

一、选择题 家长签名: 如图1所示,以AB 为一边的三角形有( )个 个 个 个2.已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为( ) A.2cm B.3cm C.4cm D.5cm3.已知四组线段的长分别如下,以各组线段为边,能组成三角形的是( ),2,3,5,8 ,4,5 ,5,104.已知三角形的三边长分别为4、5、x ,则x 不可能是( )A .3 B .5 C .7 D .95.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A.13cm6.一个三角形的两条边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是( )7.如果线段a 、b 、c 能组成三角形,那么,它们的长度比可能是( ) ∶2∶4∶3∶4∶4∶7∶3∶48.已知等腰三角形的两边长分别为4cm 和7cm ,则此三角形的周长为( ) A.15cm或18cm D.不能确定9.下列各组给出的三条线段中不能组成三角形的是( ) ,4,5B.3a ,4a ,5a +a ,4+a ,5+aD.三条线段之比为3∶5∶810.如图2,在△ABC 中EF ∥AC ,BD ⊥AC 于D ,交EF 于G ,则下面说话中错误的是( ) 是△ABC 的高 是△BCD 的高 是△ABD 的高是△BEF 的高11.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( ) A.锐角三角形 B.直角三角形 C.钝角三角形D.不能确定12.三角形的三条高的交点一定在( ) A.三角形内部B.三角形的外部C.三角形的内部或外部D.以上答案都不对13.下列把四边形的不稳定性合理地应用到生产实际中的例子有( )(1)活动挂架 (2)放缩尺 (3)屋顶钢架 (4)能够推拢和拉开的铁拉门(5)自行车的车架(6)大桥钢架图1图214. 以下列各组线段为边,能组成三角形的是( ),2cm ,4cm B. 2cm ,3cm ,5cm ,6cm ,12cm D. 4cm ,6cm ,8cm 15.已知三角形的三边长分别为4,5,x ,则x 不可能是( ) 16.已知等腰三角形的两边分别为2和5,则它的周长为( )或 917. 任选长为13cm 、10cm 、7cm 、5cm 的四条线段中的三条线段为边,可以组成三角形的个数是( ) 个 个 个 个 18.三角形的角平分线、高和中线均为( )A.直线B.射线C.线段D.以上说法都不正确19.如果三角形三条高的交点是三角形的一个顶点,那么这个三角形是( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D. 以上说法都不正确 20.下列判断中,正确的个数为( )(1)D 是△ABC 中BC 边上的一个点,且BD =CD ,则AD 是△ABC 的中线 (2)D 是△ABC 中BC 边上的一个点,且∠ADC =90°,则AD 是△ABC 的高 (3)D 是△ABC 中BC 边上的一个点,且∠BAD =21∠BAC ,则AD 是△ABC 的角平分线 (4)三角形的中线、高、角平分线都是线段二、填空题1.三角形是具有________的图形,而四边形没有________.2.自行车用脚架撑放比较稳定的原因是________.3.如图3的三角形记作__________,它的三条边是__________,三个顶点分别是_________三个内角是__________,顶点A 、B 、C 所对的边分别是___________,用小写字母分别表示__________.4.三角形三边的比是3∶4∶5,周长是96cm ,那么三边分别是________cm.5. 已知三角形的三边长分别为3,8,x; 若x 的值为奇数,则x 的值有______个;6.如图4,在△ABC 中,BC 边上的高是_______;在△AFC 中, CF 边上的高是________;在△ABE 中,AB 边上的高是_________. 7.如图5,△ABC 的三条高AD 、BE 、CF 相交于点H ,则△ABH 的三条高是图3图4图5_______,这三条高交于是△_____、△_____、△____的高.8.如图6所示:(1)AD ⊥BC ,垂足为D ,则AD 是______的高,∠_____=∠_____=90°. (2)AE 平分∠BAC ,交BC 于E 点,则AE 叫做△ABC 的_____,∠_____=∠_____=21∠______. (3)若AF =FC ,则△ABC 的中线是________,S △ABF =________. (4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线.图6 图7 图8 8.如图7,DE ∥BC ,CD 是∠ACB 的平分线,∠ACB =60°,那么∠EDC =______度. 9.如图8,BD =DC ,∠ABN =21∠ABC ,则AD 是△ABC 的______线,BN 是△ABC 的________,ND 是△BNC 的________线. 三、解答题1. 一个三角形中有两边相等,其周长为10,其中一边为3,求其他两边长。
培优专题02 与三角形有关的线段和角的问题-解析版

培优专题02 与三角形有关的线段和角的问题1.(2022·全国·八年级专题练习)如图,在ABC V 中,20AB =,18AC =,AD 为中线.则ABD △与ACD △的周长之差为( )A .1B .2C .3D .4【答案】B 【分析】利用三角形中线的定义、三角形的周长公式进行计算即可得出结果.【详解】Q 在ABC V 中,AD 为中线,BD CD \=.ABD C AB BD AD =++Q △,ACD C AC CD AD =++△,20182ABD ACD C C AB AC \-=-=-=V V .故选:B .【点睛】本题考查三角形的中线的理解与运用能力.三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线.明确三角形的中线的定义,运用两个三角形的周长的差等于两边的差是解本题的关键.2.(2022·全国·八年级专题练习)如图,ABC V 的面积是2,AD 是ABC V 的中线,13AF AD =,12CE EF =,则CDE △的面积为( )A .29B .16C .23D .49【答案】A【分析】根据中线的性质即可求出S △ACD ,然后根据等高时,面积之比等于底之比,即可依此求出3.(2022·四川成都·七年级期中)如图,ABC V 中,12Ð=Ð,G 为AD 中点,延长BG 交AC 于E ,F 为AB 上一点,且CF AD ^于H ,下列判断,其中正确的个数是( )①BG 是ABD V 中边AD 上的中线;②AD 既是ABC V 中BAC Ð的角平分线,也是ABE V 中BAE Ð的角平分线;③CH 既是ACD V 中AD 边上的高线,也是ACH V 中AH 边上的高线.A .0B .1C .2D .3【答案】C【分析】根据三角形的高,中线,角平分线的定义可知.【详解】解:①G 为AD 中点,所以BG 是ABD △边AD 上的中线,故正确;②因为12Ð=Ð,所以AD 是ABC V 中BAC Ð的角平分线,AG 是ABE △中BAE Ð的角平分线,故错误;③因为CF AD ^于H ,所以CH 既是ACD △中AD 边上的高线,也是ACH V 中AH 边上的高线,故正确.故选:C .【点睛】熟记三角形的高,中线,角平分线是解决此类问题的关键.4.(2018·江苏省江阴市第一中学七年级期中)如图,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为1,则满足条件的点C 个数是( )A .5B .6C .7D .8【答案】B 【分析】据三角形ABC 的面积为1,可知三角形的底边长为2,高为1,或者底边为1,高为2,可通过在正方形网格中画图得出结果.【详解】解:C 点所有的情况如图所示:由图可得共有6个,故选:B .【点睛】本题考查了三角形的面积的求法,此类题应选取分类的标准,才能做到不遗不漏,难度适中.5.(2022·江苏·七年级专题练习)如图, D 、E 分别在∆ABC 的边 BC 、AC 上,13CD BC =,13CE AC =,CD = 1 ,CE = 1 ,AC , AD 与 BE 交于点O ,已知∆ABC 的面积为 12,则∆ABO 的面积为()A .4B .5C .6D .76.(2019·天津市静海区第二中学八年级期中)如图,在△ABC 中,∠B=70°,∠C=40°,AD 是BC 边上的高,AE 是∠BAC 的平分线,则∠DAE 的度数是()A .15°B .16°C .70°D .18°7.(2021·安徽·中考真题)两个直角三角板如图摆放,其中90BAC EDF Ð=Ð=°,45E Ð=°,30C Ð=°,AB 与DF 交于点M .若//BC EF ,则BMD Ð的大小为( )A .60°B .67.5°C .75°D .82.5°【答案】C 【分析】根据//BC EF ,可得45FDB F Ð=Ð=°,再根据三角形内角和即可得出答案.【详解】由图可得6045B F Ð=°Ð=°,,∵//BC EF ,∴45FDB F Ð=Ð=°,∴180180456075BMD FDB B Ð=°-Ð-Ð=°-°-°=°,故选:C .【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键.8.(2022·广西贵港·七年级期末)如图7,AB ⊥BC ,AE 平分∠BAD 交BC 于E ,AE ⊥DE ,∠1+∠2=90°,M ,N 分别是BA ,CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F .下列结论:①AB ∥CD ;②∠AEB +∠ADC =180°;③DE 平分∠ADC ;④∠F =135°,其中正确的有( )A .1个B .2个C .3个D .4个【答案】C 【分析】先根据AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,∠EAM 和∠EDN 的平分线交于点F ,由三角形内角和定理以及平行线的性质即可得出结论.【详解】解:标注角度如图所示:∵AB ⊥BC ,AE ⊥DE ,∴∠1+∠AEB =90°,∠DEC +∠AEB =90°,∴∠1=∠DEC ,又∵∠1+∠2=90°,∴∠DEC +∠2=90°,∴∠C =90°,∴∠B +∠C =180°,9.(2022·全国·八年级课时练习)如图,将ABC V 沿DH HG EF 、、翻折,三个顶点恰好落在点O 处.若140Ð=°,则2Ð的度数为( )A .12B .60°C .90°D .140°【答案】D【分析】根据翻折变换前后对应角不变,故∠B =∠EOF ,∠A =∠DOH ,∠C =∠HOG ,∠1+∠2+∠HOD +∠EOF +∠HOG =360°,进而求出∠1+∠2的度数.【详解】解:∵将△ABC 三个角分别沿DE 、HG 、EF 翻折,三个顶点均落在点O 处,∴∠B =∠EOF ,∠A =∠DOH ,∠C =∠HOG ,∠1+∠2+∠HOD +∠EOF +∠HOG =360°,∵∠HOD +∠EOF +∠HOG =∠A +∠B +∠C =180°,∴∠1+∠2=360°-180°=180°,∵∠1=40°,∴∠2=140°,故选:D .【点睛】此题主要考查了翻折变换的性质和三角形的内角和定理,根据已知得出∠HOD +∠EOF +∠HOG =∠A +∠B +∠C =180°是解题关键.10.(2022·全国·八年级专题练习)如图,a b ∥,一块含45°的直角三角板的一个顶点落在直线b 上,若15854¢Ð=°,则∠2的度数为( )A .1036¢°B .1046¢°C .10354¢°D .10454¢°【答案】C 【分析】设∠2的同位角为∠3,∠3的邻补角为∠5,三角板的一个锐角为∠4,根据等腰三角板的特点可求出∠4,根据三角形内角和即可求出∠5,再根据平角的性质即可求出∠3,进而根据两直线平行同位角相等即可求出∠2.【详解】设∠2的同位角为∠3,∠3的邻补角为∠5,三角板的一个锐角为∠4,如图,∵直角三角板含一个45°的锐角,∴该三角板为等腰三角形,∴∠4=45°,∵∠1=58°54′,又∵在三角形中有∠1+∠4+∠5=180°,∴∠5=180°-(∠1+∠4)=180°-(58°54′+45°)=180°-103°54′=76°6′,∵∠3+∠5=180°,∴∠3=180°-∠5=180°-76°6′=103°54′,∵a b ∥,∴∠2=∠3,∴∠2=103°54′,故选:C .【点睛】本题主要考查了平行线的性质以及三角形的内角和等知识,掌握两直线平行同位角相等是解答本题的关键.11.(2022·江苏·盐城市初级中学七年级期中)如图,AD 是ABC V 的高,45BAD Ð=°,65C =°∠,则BAC Ð=________.【答案】70°【分析】先由直角三角形的性质求得∠DAC ,然后再根据线段的和差求解即可.【详解】解:AD Q 是ABC V 的高,90ADC °\Ð=,∵65C =°∠=9025DAC C °\Ð-Ð=o ,254570BAC DAC BAD °°°\Ð=Ð+Ð=+=.故答案为:70°.【点睛】本题主要考查了角的和差、直角三角形的性质、三角形高的性质等知识点,掌握直角三角形两锐角互余是解答本题的关键.12.(2022·江苏·扬州中学教育集团树人学校七年级期中)如图,在△ABC 中,点D 在BC 上,点E 、F 在AB 上,点G 在DF 的延长线上,且∠B =∠DFB ,∠G =∠DEG ,若29BEG Ð=°,则∠BDE 的度数为_____.【答案】58°【分析】设BED x Ð=,则29G DEG x Ð=Ð=+°,再根据三角形的内角和定理可得1222EDG x Ð=°-,根据三角形的外角性质可得122B DFB x Ð=Ð=°-,然后在BDE V 中,根据三角形的内角和定理即可得.【详解】解:设BED x Ð=,29BEG Ð=°Q ,29BED G DEG BEG x Ð=Ð=Ð=++\а,1801222EDG G DEG x \Ð=°-Ð-Ð=°-,122BED B DFB EDG x \Ð=Ð=Ð=а-+,()()180********BED BDE B x x Ð+=\Ð=°-а-°-=+°,故答案为:58°.【点睛】本题考查了三角形的内角和定理、三角形的外角性质,熟练掌握三角形的内角和定理是解题关键.13.(2022·江苏·扬州市江都区第三中学七年级阶段练习)如图,∠A =45°,∠BCD =135°,∠AEB 与∠AFD 的平分线交于点P .下列结论:①EP ⊥FP ;②∠AEB +∠AFD =∠P ;③∠A =∠PEB +∠PFD .其中正确的结论是______.∵∠AEB与∠AFD的平分线交于点∴12BEPAEP AEB=Ð=ÐÐ∵∠BCD=135°,∴∠BCF=180°-∠BCD=45°14.(2022·全国·八年级专题练习)如图,在△ABC中,AM是△ABC的角平分线,AD是△ABC的高线.猜想∠MAD、∠B、∠C之间的数量关系,并说明理由.15.(2022·全国·八年级单元测试)在△ABC中,BC=8,AB=1;(1)若AC是整数,求AC的长;(2)已知BD是△ABC的中线,若△ABD的周长为10,求△BCD的周长.【答案】(1)8(2)17【分析】(1)根据三角形三边关系“两边之和大于第三边,两边之差小于第三边”得7<AC<9,根据AC是整数得AC=8;(2)根据BD是△ABC的中线得AD=CD,根据△ABD的周长为17和AB=1得AD+BD=9,即可求解.(1)由题意得:BC﹣AB<AC<BC+AB,∴7<AC<9,∵AC是整数,∴AC=8;(2)如图所示:∵BD是△ABC的中线,∴AD=CD,∵△ABD的周长为10,∴AB+AD+BD=10,∵AB=1,∴AD+BD=9,∴△BCD的周长=BC+BD+CD=BC+AD+CD=8+9=17.【点睛】本题考查的是三角形的三边关系、三角形的中线的定义,掌握三角形两边之和大于第三边、两边之差小于第三边是解题的关键.16.(2022·河南周口·七年级期末)如图.AD为△ABC的中线,BE为△ABD的中线,EF⊥BC于点F.(1)在△BEF中,请指出边EF上的高;(2)若BD=5,EF=2,求△ACD的面积;(3)若AB=m,AC=n,若△ACD的周长为a,请用含m,n,a的式子表示△ABD的周长.【答案】(1)边EF上的高是BF;(2)S△ACD=10;(3)△ABD的周长为m+a-n.【分析】(1)根据三角形高的定义即可得出边EF上的高是BF;(2)先求得△BDE的面积,然后根据三角形的中线将三角形分成两个三角形得到S△ABE=S△BDE=5,进一步得到S△ACD=S△ABD=10;(3)利用三角形周长公式即可求得.(1)解:∵EF⊥BC于点F,17.(2022·陕西渭南·七年级期末)如图,点A 在CB 的延长线上,点F 在DE 的延长线上,连接AF ,分别与BD 、CE 交于点G 、H .已知∠1=52°,∠2=128°.(1)探索BD 与CE 的位置关系,并说明理由;(2)若∠C =78°,求∠A 的度数.【答案】(1)BD CE ∥,理由见解析(2)50°【分析】(1)由152DGF Ð=Ð=°,∠2=128°,得到∠DGF +∠2=180°,利用“同旁内角互补,两直线平行”可证出BD CE ∥;(2)由BD CE ∥得到78ABD C Ð=Ð=°,由三角形内角和定理求解即可.(1)BD CE ∥,理由:∵152DGF Ð=Ð=°,∠2=128°,∴252128180DGF Ð+Ð=°+°=°,∴BD CE ∥.(2)∵BD CE ∥,∵78ABD C Ð=Ð=°,∴1801180785250A ABD Ð=°-Ð-Ð=°-°-°=°.【点睛】本题考查了平行线的判定与性质、三角形内角和定理,解题的关键是熟练掌握相关性质和定理.18.(2022·江苏·兴化市乐吾实验学校七年级阶段练习)(1)【问题背景】如图1的图形我们把它称为“8字形”,请说明A B C D Ð+Ð=Ð+Ð;(2)【简单应用】如图2,AP 、CP 分别平分BAD Ð、BCD Ð,若35ABC Ð=°,15ADC Ð=°,求P Ð的度数;(3)【问题探究】如图3,直线AP 平分BAD Ð的外角FAD Ð,CP 平分BCD Ð的外角BCE Ð,若35ABC Ð=°,29ADC Ð=°,请猜想P Ð的度数,并说明理由;(4)【拓展延伸】在图4中,若设C a Ð=,B b Ð=,13CAP CAB Ð=Ð,13CDP CDB Ð=Ð,试问P Ð与C Ð、B Ð之间的数量关系为:___.(用a 、b 表示P Ð,不必说明理由)【答案】(1)见解析(2)25P Ð=°(3)32P Ð=°;理由见解析。
八年级最新数学上册单元测试题初二数学上册章节练习题带图文答案解析全部100篇1期三角形有关的角同步练

初二数学人教新课标版(2012教材)第十一章 11.1—11.2与三角形有关的线段;与三角形有关的角同步练习(答题时间:60分钟)与三角形有关的边一、选择题1. 在下列长度的四组线段中,能组成三角形的是()A. 4,5,6B. 6,8,15C. 7,5,12D. 3,7,132. 如果三角形的两边长分别为3和5,则周长L的取值范围是()A. 6<L<15B. 6<L<16C. 11<L<13D. 10<L<163. 小明已有两根长度分别为5cm和8cm的木棒,他想把木棒首尾相接钉成一个三角形的木框,现在第三根木棒可从长度为3cm,5cm,10cm,13cm,14cm的木棒中选择,则小明可以选用的木棒有()A. 1根B. 2根C. 3根D. 4根*4. 一个三角形的两边分别是5和11,若第三边是整数,则这个三角形的最小周长是()A. 21B. 22C. 23D. 24二、填空题*5. 等腰三角形的两边长分别为3和4,则周长为_________。
三角形的中线、高线、角平分线一、选择题*1. 等腰三角形的底边长为5cm,一腰上的中线把原三角形的周长分成两部分,其差为3cm,则腰长为()A. 2cmB. 8cmC. 2cm或8cmD. 3cm*2. 下列四个图形是四位同学画钝角△ABC的高AD的示意图,其中正确的是()A. B. C. D.**3. 下列叙述中错误的一项是()A. 三角形的中线、角平分线、高都是线段B. 三角形的三条高线中至少存在一条在三角形内部C. 只有一条高在三角形内部的三角形一定是钝角三角形D. 三角形的三条角平分线都在三角形内部**4. 如图,三角形ABC中,AD平分∠BAC,EG⊥AD,且分别交AB、AD、AC及BC的延长线于点E、H、F、G,下列四个式子中正确的是()A . 11(23)2∠=∠-∠ B . 12(23)∠=∠-∠ C . 1(32)2G ∠=∠-∠ D. 112G ∠=∠二、填空题5. 如图,在△ABC 中,D 是BC 边上一点,且BD :DC=2:1,△ACD 的面积为4,则△ABC 的面积为______。
中考数学复习----《三角形之与三角形有关的线段》知识点总结与专项练习题(含答案解析)

中考数学复习----《三角形之与三角形有关的线段》知识点总结与专项练习题(含答案解析)知识点总结1.三角形的定义:三条线段首尾顺次连接组成的图形。
2.三角形的分类:①按角分类:锐角三角形,直角三角形,钝角三角形。
②按边分类:不等边三角形,等腰三角形。
等腰三角形底和腰相等时叫做等边三角形。
3.三角形的中线、高线、角平分线:①中线:连接顶点与对边中点得到的线段。
平分三角形的面积。
②高线:过定点做对边的垂线,顶点与垂足之间的线段。
得到两个直角三角形。
③角平分线:作三角形角的平分线与对边相交,顶点与交点间的线段。
4.三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。
三角形的三边一旦确定,这三角形就固定了,这是三角形具有稳定性。
专项练习题1.(2022•大庆)下列说法不正确的是()A.有两个角是锐角的三角形是直角或钝角三角形B.有两条边上的高相等的三角形是等腰三角形C.有两个角互余的三角形是直角三角形D.底和腰相等的等腰三角形是等边三角形【分析】根据直角三角形概念可判断A,C,由等腰三角形,等边三角形定义可判断B,D.【解答】解:∵有两个角是锐角的三角形,第三个角可能是锐角,直角或钝角,∴有两个角是锐角的三角形可能是锐角三角形,直角三角形或钝角三角形;故A不正确,符合题意;有两条边上的高相等的三角形是等腰三角形,故B正确,不符合题意;有两个角互余的三角形是直角三角形,故C正确,不符合题意;底和腰相等的等腰三角形是等边三角形,故D正确,不符合题意;故选:A.2.(2022•玉林)请你量一量如图△ABC中BC边上的高的长度,下列最接近的是()A.0.5cm B.0.7cm C.1.5cm D.2cm【分析】过点A作AD⊥BC于D,用刻度尺测量AD即可.【解答】解:过点A作AD⊥BC于D,用刻度尺测量AD的长度,更接近2cm,故选:D.3.(2022•杭州)如图,CD⊥AB于点D,已知∠ABC是钝角,则()A.线段CD是△ABC的AC边上的高线B.线段CD是△ABC的AB边上的高线C.线段AD是△ABC的BC边上的高线D.线段AD是△ABC的AC边上的高线【分析】根据三角形的高的概念判断即可.【解答】解:A、线段CD是△ABC的AB边上的高线,故本选项说法错误,不符合题意;B、线段CD是△ABC的AB边上的高线,本选项说法正确,符合题意;C、线段AD不是△ABC的BC边上高线,故本选项说法错误,不符合题意;D、线段AD不是△ABC的AC边上高线,故本选项说法错误,不符合题意;故选:B.4.(2022•广东)下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形【分析】根据三角形具有稳定性,四边形不具有稳定性即可得出答案.【解答】解:三角形具有稳定性,四边形不具有稳定性,故选:A.5.(2022•永州)下列多边形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性即可得出答案.【解答】解:三角形具有稳定性,其它多边形不具有稳定性,故选:D.6.(2022•常州)如图,在△ABC中,E是中线AD的中点.若△AEC的面积是1,则△ABD 的面积是.【分析】由题意可得CE是△ACD的中线,则有S△ACD=2S△AEC=2,再由AD是△ABC 的中线,则有S△ABD=S△ACD,即得解.【解答】解:∵E是AD的中点,∴CE是△ACD的中线,∴S△ACD=2S△AEC,∵△AEC的面积是1,∴S△ACD=2S△AEC=2,∵AD是△ABC的中线,∴S△ABD=S△ACD=2.故答案为:2.7.(2022•淮安)下列长度的三条线段能组成三角形的是()A.3,3,6 B.3,5,10 C.4,6,9 D.4,5,9【分析】根据三角形的三边关系判断即可.【解答】解:A、∵3+3=6,∴长度为3,3,6的三条线段不能组成三角形,本选项不符合题意;B、∵3+5<10,∴长度为3,5,10的三条线段不能组成三角形,本选项不符合题意;C、∵4+6>9,∴长度为4,6,9的三条线段能组成三角形,本选项符合题意;D、∵4+5=9,∴长度为4,5,9的三条线段不能组成三角形,本选项不符合题意;故选:C.8.(2022•衢州)线段a,b,c首尾顺次相接组成三角形,若a=1,b=3,则c的长度可以是()A.3 B.4 C.5 D.6【分析】根据三角形两边之和大于第三边,两边之差小于第三边直接列式计算即可.【解答】解:∵线段a=1,b=3,∴3﹣1<c<3+1,即2<c<4.观察选项,只有选项A符合题意,故选:A.9.(2022•南通)用一根小木棒与两根长分别为3cm,6cm的小木棒组成三角形,则这根小木棒的长度可以为()A.1cm B.2cm C.3cm D.4cm【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边;即可求第三根木条的取值范围.【解答】解:设第三根木棒长为xcm,由三角形三边关系定理得6﹣3<x<6+3,所以x的取值范围是3<x<9,观察选项,只有选项D符合题意.故选:D.10.(2022•益阳)如图1所示,将长为6的矩形纸片沿虚线折成3个矩形,其中左右两侧矩形的宽相等,若要将其围成如图2所示的三棱柱形物体,则图中a的值可以是()A.1 B.2 C.3 D.4【分析】本题实际上是长为6的线段围成一个等腰三角形.求腰长的取值范围.【解答】解:长为6的线段围成等腰三角形的腰长为a.则底边长为6﹣2a.由题意得,.解得<a<3.所给选项中分别为:1,2,3,4.∴只有2符合上面不等式组的解集.∴a只能取2.故选:B.11.(2022•西宁)若长度是4,6,a的三条线段能组成一个三角形,则a的值可以是()A.2 B.5 C.10 D.11【分析】根据三角形三边关系定理得出6﹣4<a<6+4,求出2<a<10,再逐个判断即可.【解答】解:∵长度是4,6,a的三条线段能组成一个三角形,∴6﹣4<a<6+4,∴2<a<10,∴只有选项B符合题意,选项A、选项C、选项D都不符合题意;故选:B.12.(2022•西藏)如图,数轴上A,B两点到原点的距离是三角形两边的长,则该三角形第三边长可能是()A.﹣5 B.4 C.7 D.8【分析】由实数与数轴与绝对值知识可知该三角形的两边长分别为3、4.然后由三角形三边关系解答.【解答】解:由题意知,该三角形的两边长分别为3、4.不妨设第三边长为a,则4﹣3<a<4+3,即1<a<7.观察选项,只有选项B符合题意.故选:B.13.(2022•邵阳)下列长度的三条线段能首尾相接构成三角形的是()A.1cm,2cm,3cm B.3cm,4cm,5cmC.4cm,5cm,10cm D.6cm,9cm,2cm【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:根据三角形的三边关系,得:A、1+2=3,不能构成三角形;B、3+4>5,能构成三角形;C、4+5<10,不能构成三角形;D、2+6<9,不能构成三角形.故选:B.14.(2022•金华)已知三角形的两边长分别为5cm和8cm,则第三边的长可以是()A.2cm B.3cm C.6cm D.13cm【分析】由三角形的两边长分别为5cm和8cm,可得第三边x的长度范围即可得出答案.【解答】解:∵三角形的两边长分别为5cm和8cm,∴第三边x的长度范围为:3cm<x<13cm,∴第三边的长度可能是:6cm.故选:C.15.(2022•德阳)八一中学九年级2班学生杨冲家和李锐家到学校的直线距离分别是5km 和3km.那么杨冲,李锐两家的直线距离不可能是()A.1km B.2km C.3km D.8km【分析】根据三角形的三边关系得到李锐两家的线段的取值范围,即可得到选项.【解答】解:当杨冲,李锐两家在一条直线上时,杨冲,李锐两家的直线距离为2km或8km,当杨冲,李锐两家不在一条直线上时,设杨冲,李锐两家的直线距离为xkm,根据三角形的三边关系得5﹣3<x<5+3,即2<x<8,杨冲,李锐两家的直线距离可能为2km,8km,3km,故选:A.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
11.1与三角形有关的线段练习题
1.两根木棒的长分别为7cm 和10cm .要选择第三根木棒,将它们钉成一个三角形框架,那么,第三根木棒长x (cm )的范围是______. 3.ABC △中,6a =,8b =,则周长P 的取值范围是______. 4.a b c ,,是ABC △中A ∠,B ∠,C ∠的对边,若4a λ=,
3b λ=,14c =,则λ的取值范围是______.
5.若a b c ,,为ABC △的三边,则
a b c
a b c
---+______0(填“>,=,<”). 6.古希腊数学家把数1,3,6,10,15,21,…,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为 . 7.等腰三角形的底边BC=8 cm ,且|AC -BC|=2 cm ,则腰长AC 为( ) A.10 cm 或6 cm B.10 cm C.6 cm D.8 cm 或6 cm 8.等腰三角形周长为23,且腰长为整数,这样的三角形共有( )个 A.4个 B.5个 C.6个 D.7个 9.如图2,以BC 为公共边的三角形的个数是( ) A.2 B.3 C.4 D.5 10.若三条线段中3a =,5b =,c 为奇数, 那么由a b c ,,为边组成的三角形共有( ) A.1个
B.3个
C.无数多个
D.无法确定
11.如果线段a b c ,,能组成三角形,那么它们的长度比可能是( ) A.1:2:4
B.1:3:4
C.3:4:7
D.2:3:4
12. 在△ABC 中,D 是BC 上的点,且BD :DC=2:1,S △ACD =12,那么S △ABC 等于( )
A. 30
B. 36
C. 72
D. 24
13.如图3所示,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点,
且S △ABC =4cm 2,则S 阴影等于( ) A.2cm 2 B.1cm 2 C.1
2
cm
2
D.1
4
cm
15. 三角形的最长边为10,另两边的长分别为x 和4,周长为c ,求x 和c 的取值范围。
15. 已知a ,b ,c 是△ABC 的三边长,化简∣a —b —c ∣+∣b —c —a ∣+∣
c +a —b ∣.
16. 已知:△ABC 的周长为48cm ,最大边与最小边之差为14cm ,另一边与最小边之和为25cm ,求:△ABC 的各边的长。
17. 如图,△ABC 的周长为18 cm ,BE 、CF 分别为AC 、AB 边上的中
线,BE 、CF 相交于点O ,AO 的延长线交BC 于D ,且AF=3 cm,AE=2 cm ,求BD 的长.
图
3
2
2
1
D
A 11.2与三角形有关的角练习题
1.下列说法正确的是( )
A.三角形的内角中最多有一个锐角;
B.三角形的内角中最多有两个锐角
C.三角形的内角中最多有一个直角;
D.三角形的内角都大于60° 2.已知△ABC 中,∠A=∠B+∠C,则∠A 的度数为( ) A.100° B.120° C.90° D.80°
3.已知三角形两个内角的差等于第三个内角,则它是( )
A.锐角三角形
B.钝角三角形
C.直角三角形
D.等边三角形
4.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.无法确定
5.三角形所有外角的和是( )
A .180°
B .360°
C .720°
D .540
6.如果三角形的一个外角和与它不相邻的两个内角的和为180°,那么与这
个外角相邻的内角的度数为( )
A.30°
B.60°
C.90°
D.120°
7.已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为( )
A.90°
B.110°
C.100°
D.120° 8.如图1所示,若∠A=32°,∠B=45°,∠C=38°,则∠DFE 等于( ) A.120° B.115° C.110° D.105° 9.如图2所示,在△ABC 中,E,F 分别在AB,AC 上, 则下列各式不能成立的是( )
A.∠BOC=∠2+∠6+∠A;
B.∠2=∠5-∠A;
C.∠5=∠1+∠4;
D.∠1=∠ABC+∠4 二、填空题:
10.在△ABC 中,∠A=45°,∠ B=43 ° 则∠ C= 。
11.在△ABC 中, ∠A :∠B:∠C=1:3:5则∠A = ∠ B= 12.已知等腰三角形的两个内角的度数之比为1: 2, 则它的顶角为_____. 13.如右图,已知∠1=20°,∠2=25,∠A=35°,则∠BDC 的度数为______. 14.某三角形的各内角与一个外角的和是225°,则与这个 外角相邻的内角是_____度.
15.在△ABC 中,已知∠B-∠A=5°,∠C-∠B=20°,求三角形各内角的度数.
16.如图所示,在△ABC 中,AD ⊥BC 于D,AE 平分∠BAC , ∠C=70°,∠B=26°,试求∠EAD 的度数.
17.如图,五角星中,求∠ A +∠ B +∠ C +∠ D +∠ E 的度数.
18.如图,AD 为△ABC 的中线,BE 为△ABD 的中线。
(1)∠ABE=15°,∠BAD=40°,求∠BED 的度数; (2)在△BED 中作BD 边上的高; (3)若△ABC 的面积为40,BD=5,则点E 到BC 边
的距离为多少?
E A
图7
F
E D C A 图1 654321
F E C B A O。