竞赛力矩平衡(定轴问题)
物理竞赛讲义_静力学第二讲力平衡(一)答案

第二讲 力平衡(一)精选例题【例1】 如图所示一个均匀的质量为1m 的球挂在天花板上,从同一点挂一个重物质量为2m 。
问所成角度。
O 【解析】相对于点的总力矩为0.)m g (l +R )sin =m 12g R -(l +R sin θθ⎡⎤⎣⎦∴()1212sin []+R m (m +)m R l θ-=该题如果用变力分析去解题,对悬挂2m 的绳对大球的支持力的方向比较困难,而用力矩去解题,显得尤为简单【例2】 如图,重为G 木块用绳子悬挂在两个轻杆支架的交点P ,现给木块一个水平方向的F F 12N 、N 、T 作用力,缓慢增大并且系统保持平衡,求作用力的变化趋势。
N 【解析】可以采用图解法,分别考虑木块以及P 点的受力平衡,将二者的受力三角形画在同一个图中,利用几何相似三角形的方法可以得到三个力的变化趋势。
最后可得,不变,2N 1和T 增加。
【例3】 如图,一个半径为R 非均匀质量光滑的圆球,其重心不在球心O 处,先将它置于A 30︒B A B 30︒C O 水平地面上,平衡时球面上的点和地面接触;再将它置于倾角为的粗糙斜面上,平衡时球面上的点与斜面接触,已知到的圆心角也为,试求球体的重心到球心的距离.【解析】B BC A OA 放在斜面上,球受重力支持力和摩擦力,三力共点必过点的重心在过B 于平面垂直的直线上。
即,又放在水平面上点落地,则此时球受重力和支持力,则球重心必在连线上,则重心位置在C 点.CO==【例6】有一长l重为W的均匀杆AB,A顶端竖直的粗糙墙壁上,杆端与墙间的摩擦系数μB CθμθP A P WPB PA x 为,端用一强度足够而不可伸长的绳悬挂,绳的另一端固定在墙壁点,木杆呈水平状态,绳与杆的夹角为(如图),求杆能保持平衡时与应满足的条件。
杆保持平衡时,杆上有一点存在,若与点间挂一重物,则足够大可以破坏平衡了,而在间任一点悬挂任意重物均不能破坏平衡。
求距离. 【解析】受力分析coT Nsθ=力平衡siT f W Wnθ+=+A力矩平衡:以为支点,θ=Wsin2lTl W+x∴f=W+W-N tan≤Nθμ2W xtanθ=+N W∴0002l2lW Wx xW+W Wtanlμθ-+()≤(+W)∴00()2l2W W)≤(+WtanlW Wx xμθ+-①0W=ntaμθ≥当不挂生物,此即为不挂重物平衡的条件,可得②W0(1)2tan(+1)-W Wμxμθl tanθ-+≤W取穷大,则上式仍成立.∴μθl tan(1)+-1tanxl tanθθμ+≥0⇒x≥wr G【例7】有一个半径为a,高为4a,重为的两端开口的薄壁圆筒,现将筒竖放在光滑的水平面上,之后将半径为,重为的两个完全相同的光滑圆球放入筒内而呈叠放状态,如图,当<r 2<a 2a 时,试求使圆筒不翻倒的条件.【解析】方法一:先看一个直角三角形O 对进行受力分析∴cos sin T =G cot θθ=N T θ=N G ⇒22212-a r ar -a r N =G ar -a sin θG =G =再对筒受力分析A N A 考虑以为支点,考虑翻倒则地面给筒的支持力的作用点移到点.则不翻倒条件。
力矩平衡力矩有固定转动轴物体的平衡(学案)

力矩平衡力矩有固定转动轴物体的平衡(学案)教案(09)——力矩有固定转动轴物体的平衡考点解读教学目标1.知道力矩的定义,会求力矩.2.会求有固定转轴物体的平衡问题.教师归纳1.力矩(1)力臂:从转动轴到力的作用线(不是作用点)的垂直距离.(2)力矩:力F和力臂L的乘积叫作力对转动轴的力矩M,即M=FL,力矩的单位是Nm. 2.物体的平衡态(1)物体保持静止或匀速直线运动状态.(2)物体绕固定转动轴匀速转动.3.有固定转动轴的物体的平衡条件:物体所受外力的力矩的代数和为零,即∑M=0(或顺时针力矩之和等于逆时针力矩之和,即M顺=M逆).分类剖析(一) 如图所示,直杆OA可绕过O点的水平轴自由转动,图中虚线与杆平行,杆的另一端A点受到四个力F1、F2、F3、F4的作用,力的作用线与OA杆在同一竖直平面内,它们对转轴O的力矩分别为M1、M2、M3、M4,则它们间的大小关系是( )A.M1=M2>M3=M4 B.M2>M1=M3>M4 C.M4>M2>M3>M1 D.M2>M1>M3>M4【解析】将各力分解成沿杆方向和垂直于杆方向的两个力,只比较后者的力矩即可,选B.(二)如图(1)所示,均匀杆AC长2 m,重10 N,在竖直平面内,A端有水平固定转动轴,C端挂一重70 N的重物,水平细绳BD系在杆上B点,且AB=3AC/4.要使绳BD的拉力是100N,则∠ABD =________;要使BD绳的拉力最小,且B点位置不变,改变BD的长度,则需BD与AC呈________状态.(1)(2)【解析】取AC杆为研究对象,以A为转轴,对AC杆产生转动作用的力是AC杆的重力G0、BD绳的拉力T、竖直向下的细绳的拉力F,F在数值上等于重力G;再由力矩的平衡条件∑M=0求解.对AC受力分析如图(2)所示,由力矩的平衡条件1G0cosα+FACcosα=2T ABsinα1102cosα+702cosα=231002sinα4∴tanα=1,α=∠ABD=45°因为重力的力矩、竖直向下的细绳拉力的力矩为一定值,若要使BD拉力最小,只有当拉力力臂最长时,即BD与AC呈垂直状态T最小.图中为南方少数民族常用的舂米工具.O为固定转动轴,重锤为A.脚踩在左端B处,可以使重锤升高,放开脚重锤落下打击稻谷.若脚用力方向始终竖直向下且转动保持平衡状态,则在重锤升起过程中,脚踩B端向下的力F和力矩M 将( )A.F增大,M增大B.F先增大后减小,M不变C.F不变,M先增大后减小D.F不变,M先减小后增大【解析】以O为轴,以舂米杠杆为研究对象,在重锤自下向上升起的过程中,重锤的力臂是先增大后减小,所以重锤的力矩先增大后减小.同时脚的力臂也是先增大后减小的,所以根据力矩的平衡条件,设杆与水平方向夹角为α,有mgAOcosα=FBOcosαAO∴F=mgBO无论杆在何位置F的大小始终不变.MF=mgAOcosα,MF先增大后减小,所以正确答案选C.(三)一个质量为m=50kg的均匀圆柱体,放在台阶的旁边,台阶的高度h是圆柱体半径r的一半,如图(1)所示(图为横截面),柱体与台阶接触处图中P点,要在图中柱体的最上方A处施加一最小的力,使柱体刚能以P 为轴向台阶上滚(g取10m/s2).求:(1)所加力的大小;(2)台阶对柱体的作用力的大小.(1) (2)【解析】(1)以P点为轴,欲在A处施最小的力,必须使这个力的力臂最长,那么该力的方向应垂直于PA,如图(2)所示.要使柱体刚能以P为轴向台阶上滚,即意味着此时地面对柱体的支持力恰好为零.这样由作用力F与重力mg对P点的力矩平衡可得mgBP =FAP 由几何关系得∠POB=60°,∠PAO=30°所以BP=rsin60°,AP=2rcos30°,解得F=250N.(2)柱体刚能以P为轴向台阶上滚时,它受到在同一平面内三个非平行力的作用,即重力mg,作用在A点的外力F和台阶P点对柱体的作用力T.三力平衡必共点,据此可延长重力作用线与F交于A点,那么台阶对柱体的作用力T的延长线必定通过A点,即T的方向垂直于F的方向,所以T 的大小必等于重力在AP上的分力,因此有T=mgcos30°=433N.【点评】T是台阶P点对柱体的作用力,其指向球心的分力即为对柱体的支持力,而沿P点切线方向的分力则为对柱体的摩擦力.显然,对于光滑的接触点,是无法用此题给出的条件将柱体滚上台阶的.如图所示,OAB是一刚性轻质直角三角形支架,边长AB =0.2m,∠OAB=37°;在A、B两顶角处各固定一个大小不计的小球,质量均为1kg.支架可绕过O的水平轴在竖直平面内无摩擦地转动.(sin37°=0.6,cos37°=0.8,重力加速度g取10m/s2)(1)为使支架静止时AB边水平,求在支架上施加的最小力;(2)若将支架从AB位于水平位置开始由静止释放,求支架转动过程中A处小球速度的最大值.【解析】施加的最小力满足的条件是:力臂最大,所以该力的作用点在A点,方向垂直OA向上mgOAcos37°=mgOBcos53°+FminOA OA=0.16m,OB=0.12m,可解得Fmin=3.5N.(2)如图(1)(2)当支架到达平衡位置时,A球的速度最大,根据杠杆原理,此时A、B距O点垂线的距离相等,如图(2)所示,AE=BD=ABsin37°cos37°=0.096mCD=CEAC-AE=0.028m OF=ABsin37°cos37°=AE h1=OE-OF=0.032m h2=OF-OD=0.024m11mg(h1-h2)v2+m(vtan37°)222v=质量M=2.0kg的小铁块静止于水平轨道AB的A端.导轨及支架ABCD形状及尺寸如图所示,质量m=4.0kg.它只能绕通过支架D点垂直于纸面水平转动,其中心在图中的O点,现有一细线沿导轨拉小铁块,拉力F=12N,小铁块和导轨之间的动摩擦因数μ=0.50.从小铁块运动时起,导轨(及支架)能保持静止的最长时间是多少?(g取10m/s2)【解析】当导轨刚要不能维持平衡时,C端受的力为零,此时导轨(及支架)受四个力作用:滑块对导轨的压力FN=Mg,竖直向下,滑块对导轨的摩擦力Ff=μMg=10N,重力G=mg,作用在O点,方向竖直向下,作用于轴D端的力.设此时的铁块走过的路程S,根据有固定转动轴物体平衡条件及图中尺寸,有:mg×0.1+Mg(0.7-s)=Ff×0.8=μMg×0.8 40×0.1+20(0.7-s)=10×0.8 s=0.5m铁块受的摩擦力Ff=10N,方向向右.F-Ff=Ma a=1.0m/s2 ∵s=1/2at2 ∴t=1.0s【点评】此题是一道典型的力学综合题,考查面较广,从静力学,运动学到动力学,由于质量为m的铁块和T形支架不具有相同的运动状态,故必须采用隔离法.本章小结知识网络定义:力是物体对物体的作用,不能离开施力物体与受力使物体发生形变物体而存在概念 效果 改变物体运动状态要素:大小、方向、作用点(力的图示)效果:拉力、动力、阻力、支持力、压力 重力:方向、作用点(关于重心的位置)分类 性质 弹力:产生条件、方向、大小(胡克定律) 摩擦力:(静摩擦与动摩擦)产生条件、方向、大小力的合成运算——平行四边形定则 |F1-F2|≤F合≤F1+F2力的分解 共点力作用下物体平衡物体平衡有固定转动轴物体平衡力考题解析考题1 如图所示,用两根细线把A、B两小球悬挂在天花板上的同一点O,并用第三根细线连接A、B两小球,然后用某个力F 作用在小球A上,使三根细线均处于直线状态,且OB细线恰好沿竖直方向,两小球均处于静止状态,则该力可能为图中的()A.F1 B.F2 C.F3 D.F4【解析】本题考查平衡物体的受力情况分析,属于基础知识.A、B两个小球用细线连接,且整个系统处在静止状态,在所提供的四个力中,能使系统保持静止的只能是F2和F3而不能是F1和F4,这是因为,若取F1,则F1可分解为水平向右和竖直向下两个分力,向下的分力将使A球向下运动,破坏了系统保持静止的前提;同样若取F4,则F4可分解为竖直向上和水平向左两个分力,向左的分力将使A球向左运动,且B球不再在竖直位置上.答案为选项B、C.考题 2 对如图所示的皮带传动装置,下列说法中正确的是( )A.A轮带动B轮沿逆时针方向旋转B.B轮带动A轮沿逆时针方向旋转C.C轮带动D轮沿顺时针方向旋转D.D轮带动C轮沿顺时针方向旋转【解析】本题主要考查考生灵活运用知识分析具体问题的能力.虽然涉力矩有固定转动轴物体的平衡(学案)及摩擦力概念,但重要的是如何运用摩擦力的概念分析与平常习题不同情境的问题.根据题目中呈示的图片,分别研究皮带绷紧的最高部分,结合摩擦力的概念,可以判断B、D为正确选项.考题 3 如图所示,在竖直平面内的直角坐标系中,一个质量为m的质点在外力F的作用下,从坐标原点O由静止沿直线ON斜向下运动,直线ON与y轴负方向成θ角(θ<π/4).则F大小至少为__________;若F=mgtanθ,则质点机械能大小的变化情况是______________________________.【解析】考题考查力的最小值.该质点受到重力和外力F 从静止开始做直线运动,说明质点做匀加速直线运动,如图中显示,当F力的方向为a方向(垂直于ON)时,F力最小为mgsinθ;若F=mgtanθ,即F力可能为b方向或c方向,故F力的方向可能与运动方向相同,也可能与运动方向相反,除重力外的F力对质点做正功,也可能做负功,故质点机械能增加、减少都有可能.考题4 如图所示,一根木棒AB在O点被悬挂起来,AO =OC,在A、C两点分别挂有两个和三个钩码,木棒处于平衡状态.如在木棒的A、C点各增加一个同样的钩码,则木棒DA.绕O点顺时针方向转动B.绕O点逆时针方向转动C.平衡可能被破坏,转动方向不定D.仍能保持平衡状态【解析】设木板AO段重力G1,重心离O点L1,木板BO段重力G2,重心离O点L2,AO长度l,由力矩平衡条件:G1L1+2Gl =G2L2+3Gl ,当两边各挂一个钩码后,等式依然成立:G1L1+3Gl =G2L2+4Gl ,即只要两边所增加挂钩码个数相同,依然能平衡.故选D.考题5 如图所示,半径分别为r和2r的两个质量不计的圆盘,共轴固定连结在一起,可以绕水平轴O无摩擦转动,大圆盘的边缘上固定有一个质量为m的质点,小圆盘上绕有细绳.开始时圆盘静止,质点处在水平轴O的正下方位置.现以水平恒力F拉细绳,使两圆盘转动,若恒力F=mg,两圆盘转过的角度θ=________时,质点m的速度最大.若圆盘转过的最大角度θ=π/3,则此时恒力F=________.1【解析】此题若用函数极值法,由动能定理有:mv2=Frθ-mg(2r-2rcosθ),可得2v=2gr(θ+2cos-2),然后求极值,很难求.换用力矩平衡条件,对盘、质点整体,π1以O为轴,当Fr=mg2rsinθ时,转速最大即质点速度最大,得sinθ=,所以有θ=.当26πππ3mg圆盘转过最大角度θ=时,由动能定理有2mgr(1-cos)=0,可得F.333π百度搜索“就爱阅读”,专业资料,生活学习,尽在就爱阅读网,您的在线图书馆。
物理竞赛力学典型题目汇编(含答案)

第一讲 平衡问题典题汇总类型一、物体平衡种类的问题一般有两种方法解题,一是根据平衡的条件从物体受力或力矩的特征来解题,二是根据物体发生偏离平衡位置后的能量变化来解题。
1、如图1—4所示,均匀杆长为a ,一端靠在光滑竖直墙上,另一端靠在光滑的固定曲面上,且均处于Oxy 平面内.如果要使杆子在该平面内为随遇平衡,试求该曲面在Oxy 平面内的曲线方程.分析和解:本题也是一道物体平衡种类的问题,解此题显然也是要从能量的角度来考虑问题,即要使杆子在该平面内为随遇平衡,须杆子发生偏离时起重力势能不变,即杆子的质心不变,y C 为常量。
又由于AB 杆竖直时12C y a =, 那么B 点的坐标为 sin x a θ=111cos (1cos )222y a a a θθ=-=- 消去参数得222(2)x y a a +-=类型二、物体系的平衡问题的最基本特征就是物体间受力情况、平衡条件互相制约,情况复杂解题时一定要正确使用好整体法和隔离法,才能比较容易地处理好这类问题。
例3.三个完全相同的圆柱体,如图1一6叠放在水平桌面上,将C 柱放上去之前,A 、B 两柱体之间接触而无任何挤压,假设桌面和柱体之间的摩擦因数为μ0,柱体与柱体之间的摩擦因数为μ,若系统处于平衡,μ0与μ必须满足什么条件?分析和解:这是一个物体系的平衡问题,因为A 、B 、C 之间相互制约着而有单个物体在力系作用下处于平衡,所以用隔离法可以比较容易地处理此类问题。
设每个圆柱的重力均为G ,首先隔离C 球,受力分析如 图1一7所示,由∑Fc y =0可得111)2N f G += ① 再隔留A 球,受力分析如图1一8所示,由∑F Ay =0得1121022N f N G +-+= ② 由∑F Ax =0得211102f N N -= ③ 由∑E A =0得12f R f R = ④ 由以上四式可得12f f ===112N G =,232N G =而202f N μ≤,11f N μ≤0μ≥2μ≥类型三、物体在力系作用下的平衡问题中常常有摩擦力,而摩擦力F f 与弹力F N 的合力凡与接触面法线方向的夹角θ不能大于摩擦角,这是判断物体不发生滑动的条件.在解题中经常用到摩擦角的概念.例4.如图1一8所示,有两根不可伸长的柔软的轻绳,长度分别为1l 和2l ,它们的下端在C 点相连接并悬挂一质量为m 的重物,上端分别与质量可忽略的小圆环A 、B 相连,圆环套在圆形水平横杆上.A 、B 可在横杆上滑动,它们与横杆间的动摩擦因数分别为μ1和μ2,且12l l <。
2021年初中物理竞赛及自主招生专题讲义第二讲力与物体的平衡第四节有固定转动轴的物体的平衡含解析

对于静止的物体,不仅满足共点力平衡,同时对任意转动轴也都满足力矩平衡。因此我们在分 析物体的力矩平衡时,可以选择一些力的交点作为转轴,使这些力的力矩为零,从而使解决问题变 得简便。
例 1 (上海第 24 届大同杯初赛)如图 4.174 所示,三根长度均为 L 的轻绳分别连接于 C ,D 两点, A , B 两端悬挂在水平天花板上,相距为 2L 。现在 C 点悬挂一个 质量为 m 的重物,为使 CD 绳保持水平,在 D 点应施加的最小作用力为
5
FBL cos 37
N
L 2
,解得
FB
N 2 cos 37
第四节 有固定转动轴的物体的平衡
我们学习过杠杆的概念,杠杆就是在力的作用下可以绕固定点转动的一根硬棒。在这一节,我 们将加以延伸,得到更一般情况下物体处于转动平衡的条件。
一、转动轴与力矩 日常生活中我们可以见到许多转动的物体,比如,开门或者关门时,门绕着门轴做圆周运动, 电风扇转动时,叶片上各个点都做圆周运动,圆周的中心在同一条直线上。像这样物体在转动时, 各点做圆周运动的圆心的连线叫做转轴。例如,地球的转轴就是地轴。地球、门、电风扇都在做定 轴转动,即绕着固定轴转动。 力使物体转动的效果不仅与力的大小有关,还与转轴到力的 作用线的距离有关。从转轴到力的作用线的垂直距离叫做力臂。 在纸面内作图时,转轴往往与纸面垂直,与纸面有一个交点,而 力往往在纸面内,因此力臂实际上是该交点(即通常所说的支点) 到力的作用线的距离,如图 4.173 所示。
动而棒 AB 匀速转动,则关于木板对棒的弹力,下列说法正确的是( )
A.逐渐变大
B.先变大后变小
C.先变小后变大
D.逐渐变小
分析与解 棒匀速转动过程中,受三个力:重力 G 、板对棒的弹力 N 和滑动摩擦力 f ,由于
力矩转动平衡问题

力矩转动平衡问题(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2第17讲 力矩 转动平衡问题1.力臂:从转轴到力的作用线的F 垂直距离.2.力矩:力F 与力臂上的乘积.即M=FL ,力矩的单位是N ·m3.作用:反映力对物体的转动效果,是使物体的转动状态发生改变的原因.4.力矩的平衡:有固定转动轴的物体的平衡条件是力矩和等于零.即∑M=0或∑M 逆=∑M 顺。
5.力矩的计算方法力对某转动轴的力矩,顺时针方向,规定为负力矩;逆时针方向,规定为正力矩.当力与转轴平行时,力对该轴没有力矩,当力与转动轴成任意角度时,力对这一转动轴的力矩,可将力分解为与轴平行和垂直的两个分力,垂直于轴的分力对轴的力矩也就是该力的力矩.6.有固定转动轴物体受力分析的要点:首先认准转动轴,只分析作用线不通过转动轴的力,因作用线过转动轴的力的力矩为零,对物体的转动不产生影响.作受力分析图时,力的作用点、作用线不能随意移动,这与用共点力的平衡研究问题时的受力分析图有一定区别,共点力平衡问题讨论的是物体的平动问题,可以把物体视为质点看待,画受力图强调的是方向问题,作用力的作用点,作用线不作要求.力矩的平衡问题讨论的是转动问题,物体不可以视为质点,则力的作用点,作用线要求准确,不能在物体上随意移动.7.一般物体的平衡对一般物体来说,其平衡条件必是满足∑F=0,对任意轴的力矩有∑M=0.8.利用力矩平衡条件解题的一般程序是:(1)确定研究对象,即明确要研究哪一个物体的转动趋势.(2)确定转动轴.转动平衡物体的转轴理论可任意选择,选轴的一般原则:使未知力尽可能多地通过轴,以减少方程数.(3)对研究对象进行受力分析,并作出受力示意图.(4)根据受力分析,确定每一个力对转动轴的力臂.(5)计算每一个力对转动轴的力矩,并确定各个力矩的正、负号.(6)根据力矩平衡列方程.必要时要根据题给条件列出辅助方程.(7)求解方程,并对所求结果进行必要的讨论,(一)力矩概念的考查1..如图所示,直杆OA 可绕O 点转动,图中虚线与杆平行,杆端A 承受两个力F 1、F 2的作用,力的作用线跟OA 杆在同一竖直面内,它们对转轴O 的力距分别是M 1、M 2,则力矩间的大小关系是( ).A .M 1> M 2B .M 1= M 2C .M 1< M 2D .无法推断2.如图所示直杆OA可绕O点转动,图中虚线与杆平行,杆端A点受四个力F1、F2、F3、F4的作用,图中力矢量的长短表示力的大小,力的作用线跟OA杆在同一平面内,它们对转轴O的力矩分别为M1、M2、,则力矩间的大小关系为 ( )A.M1= M2= M3= M4 B.M2> M1= M3> M4C. M1> M2> M3> M4; D.M2> M1> M4> M33.质量分布均匀,边长为a的正方体,重力为G.在与水平成α=450角的力F作用下将绕边棱M翻转,此时正方体共受4个力作用,如图1—117所示,请说明各个力的力矩大小.4.如图所示,重为G的均匀立方体A端支在竖直墙的凸处,C端被一轻绳固定,绳的另一端固定在竖直墙上。
物理竞赛讲义(三)力矩、定轴转动物体的平衡条件、重心

郑梁梅高级中学高一物理竞赛辅导讲义第三讲:力矩、定轴转动物体的平衡条件、重心【知识要点】(一)力臂:从转动轴到力的作用线的垂直距离叫力臂。
(二)力矩:力和力臂的乘积叫力对转动轴的力矩。
记为M=FL ,单位“牛·米”。
一般规定逆时针方向转动为正方向,顺时针方向转动为负方向。
(三)有固定转轴物体的平衡条件作用在物体上各力对转轴的力矩的代数和为零或逆时针方向力矩总是与顺时针方向力矩相等。
即ΣM=0,或ΣM 逆=ΣM 顺。
(四)重心:物体所受重力的作用点叫重心。
计算重心位置的方法:1、同向平行力的合成法:各分力对合力作用点合力矩为零,则合力作用点为重心。
2、割补法:把几何形状不规则的质量分布均匀的物体分割或填补成形状规则的物体,再由同向(或反向)平行力合成法求重心位置。
3、公式法:如图所示,在平面直角坐标系中,质量为m 1和m 2的A 、B 两质点坐标分别为A (x 1,y 1),B (x 2,y 2)则由两物体共同组成的整体的重心坐标为: 212211m m x m x m x C ++= 212211m m y m y m y C ++= 一般情况下,较复杂集合体,可看成由多个质点组成的质点系,其重心C 位置由如下公式求得:i i i C m x m x ∑∑= i i i C m y m y ∑∑= ii i C m z m z ∑∑= 本节内容常用方法有:①巧选转轴简化方程:选择未知量多,又不需求解结果的力线交点为轴,这些力的力矩为零,式子简化得多;②复杂的物体系平衡问题有时巧选对象:选整体分析,常常转化为力矩平衡问题求解;③无规则形状的物体重心位置计算常用方法是通过割补思想,结合平行力合成与分解的原则处理,或者助物体重心公式计算。
【典型例题】【例题1】如图所示,光滑圆弧形环上套有两个质量不同的小球A 和B 两球之间连有弹簧,平衡时圆心O 与球所在位置的连线与竖直方向的夹角分别为α和β,求两球质量之比。
力矩平衡

一.力矩: 力矩: M=FL = 1.力臂: .力臂: (1)转动轴到力的作用线的垂直距离, )转动轴到力的作用线的垂直距离, (2)最大可能值为力的作用点到转动轴 ) 的距离。 的距离。
练习:如图所示,直杆 可绕 点转动, 可绕O点转动 练习:如图所示,直杆OA可绕 点转动,图中虚线 与杆平行,杆端A点受四个力 点受四个力F 的作用, 与杆平行,杆端 点受四个力 1、F2、F3、F4的作用, 力的作用线与OA杆在同一竖直平面内 它们对转轴O 杆在同一竖直平面内, 力的作用线与 杆在同一竖直平面内,它们对转轴 的力矩分别为M 的力矩分别为 1、M2、M3、M4,则它们力矩间的大小 关系是( 关系是( ) (A)M1=M2>M3=M4, ) O’ (B)M2>M1=M3>M4, ) (C)M4>M2>M3>M1, F2 F3 F4 ) O (D)M2>M1>M3>M4。 1 ) F
C A O
2m
30°
B
4m
8m
G1x1=G2×2
x1=1.2m
G1x2+G2×2 =FT sin 30°× °×8 °× x2=0.4m
C A C 30° B A O
FT x2
30° B
x1 O 2m
G1
G2
2m G 2
G1
例2:一杆秤如图,杆及钩的总重为 ,秤砣重为 , :一杆秤如图,杆及钩的总重为G,秤砣重为P, 已知秤钩与杆的重心到提纽的距离OA和OG,求:(1) 已知秤钩与杆的重心到提纽的距离 和 , :( ) 零刻度的位置,( ,(2)证明刻度是均匀的,( ,(3) 零刻度的位置,( )证明刻度是均匀的,( )讨论 若秤砣换成2P,某刻度的读数是否为原来的两倍? 若秤砣换成 ,某刻度的读数是否为原来的两倍?
刚体定轴转动的转动定律力矩

力矩平衡的条件
静平衡
刚体在转动过程中,如果合力矩 为零,则刚体保持静止状态。
动平衡
刚体在转动过程中,如果合力矩为 零,则刚体保持匀速转动状态。
平衡状态
无论是静平衡还是动平衡,刚体的 平衡状态都满足合力矩为零的条件。
力矩平衡的应用
机械平衡
在机械设计中,通过调整刚体的质量 分布或添加平衡装置,使刚体在转动 过程中满足力矩平衡条件,以保证机 械设备的稳定性和可靠性。
刚体的定轴转动
定轴转动:刚体绕某一固定轴线作旋 转运动。
在定轴转动中,刚体的角速度和角加 速度是矢量,其方向沿固定轴线,而 力矩是改变刚体转动状态的唯一物理 量。
刚体定轴转动的特点
角速度矢量、角加速度矢量和力 矩矢量都与固定轴线平行。
刚体定轴转动时,其上各点的速 度方向与该点到轴线的垂直线段 相垂直,各点的加速度方向与该
实例三:旋转木马的旋转
总结词
旋转木马的旋转是刚体定轴转动的又一实例,通过外力矩的作用,使旋转木马绕轴转动。
详细描述
旋转木马在外力矩的作用下开始转动,当旋转木马转动时,由于摩擦阻力和空气阻力的作用,旋转木 马会逐渐减速并最终停止。
实例四:陀螺的稳定旋转
总结词
陀螺的稳定旋转是刚体定轴转动的最后一个实例,陀螺通过自转保持稳定的旋转状态。
在日常生活和工业生产中,转动 定律也广泛应用于各种旋转运动
的分析和设计。
04
刚体定轴转动的力矩平衡
力矩平衡的概念
力矩平衡
刚体在转动过程中,受到 的力矩之和为零,即合力 矩为零。
力矩
力对转动轴的力矩等于力 和力臂的乘积,其中力臂 是从转动轴到力的垂直距 离。
转动轴
刚体转动的中心轴,可以 是固定的点或线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1
F
NB
l
O
TB
mg
B
fB
2 6 TB = T= mg = mg 12 3 3 4
(8)
TC
T
TB
将(8)式分别代入(6)(7)式,得
N B =mg + 6 2 7 mg = mg 12 3 6 (9)
A
O
C
D
B
ห้องสมุดไป่ตู้
fB =
2 6 1 2 mg + mg = mg 4 12 3 3
线必交于一点,如图所示。 AB 为一根质量均匀的 硬棒,所以 O 为 AB 的中点,则由几何关系可得
C 为 BD 的中点,而
BD tan AD
CD tan AD
tan 2 tan
6. 如图所示, 重为 600N 的均匀木板搁在相距为 2.0m 的两堵竖 直墙之间,一个重为 800N 的人站在离左墙 0.5m 处,求左、右 两堵墙对木板的支持力的大小。
l 伸出,为保证两块不翻倒,木块 B 伸出桌边的长度不能超 4
过 A.l/2 C.l/4
B.3l/8 D.l/8
A
它们的重心不能超过桌边
B
证明 硬棒受到三个力作用平衡,则三个力的作用
5.如图所示,重为 G 的一根均匀硬棒 AB,杆的 A 端被细绳 吊起,在杆的另一端 B 作用一水平力 F,把杆拉向右边,整个 系统平衡后, 细线、 棒与竖直方向的夹角分别为 α、 β。 求证: tgβ=2tgα。
3 FA =2 F cos - =2 F sin = mg 3 2
NA
l
2mg
A
fA
D
3.由OA棒所受的竖直方向和水平方向合外力为零,可分别得
N A =2mg -T sin -2 (1)
f A =F +T cos -2
(2)
FA
T
F
O
将
2 T =F = mg 4
5.在一些重型机械和起重设备上,常用双块式电磁制动器,它的简化示意图 如图所示,O1 和 O2 为固定铰链。在电源接通时,A 杆被往下压,通过铰链 C1、C2、C3 使弹簧 S 被拉伸,制动块 B1、B2 与制动轮 D 脱离接触,机械得以 正常运转。当电源被切断后,A 杆不再有向下的压力(A 杆及图中所有连杆及 制动块所受重力皆忽略不计),于是弹簧回缩,使制动块产生制动效果。此 时 O1C1 和 O2C2 处于竖直位置。已知欲使正在匀速转动的 D 轮减速从而实现 制动,至少需要 M=1100N•m 的制动力矩,制动块与制动轮之间的摩擦系数 μ=0.40, 弹簧不发生形变时的长度为 L=0.300m, 制动轮直径 d=0.400m, 图示尺寸 a=0.065m,h1=0.245m,h2=0.340m,试求选用弹簧的劲度系数 k 最小要多大。
解: 如图所示,制动时制动块 B 、B 对 D 的正压力分别为 N 1 2 1
和 N2,滑动摩擦力分别为μN 1 和μN2 。则制动力矩
d d M N1 N 2 2 2
N2
N1 D N2
①
以左、右两杆为研究对象,由力矩平衡条件可得
F (h1 h2 ) N1h1 N1a
(10)
将(9)(10)式代入 f B B N B ,可得
fB 2 2 B = NB 7 (11)
由于B、C棒受力情况完全相同,故C棒平衡所需的最小摩擦系 数与B棒相等。比较(5)式与(11)式,即可得棒与地面间的 摩擦系数应满足
2 2 7
1.如图所示是单臂斜拉桥的示意图, 均匀桥板 ao 重为 G, 三根平行钢索与桥面成 30o ,间距 ab=bc=cd=do, 若每根钢索受力相同,左侧桥墩对桥板无作用力,则 每根钢索的拉力大小是 A.G C.G∕3 B. 3 G∕6 D.2G∕3
由②-①式得
②
G OB P OD OA P AD
B
O A G
P
D
3.如图所示,质量相等的小球 A 和 B ,分别用等长的细线 悬于轻杆的两端,杆支于 O 点时处于平衡。现将 B 球在水平 拉力作用下很缓慢地移动到 C 点,则下列说法中正确的是 A.轻杆仍处于水平平衡 B.轻杆平衡被破坏,左边下降,右边上升 C.轻杆将转过一角度,但仍可保持平衡 D.以上答案均不对
TC 必沿各自棒的方向,故这两个力的合力沿 OD 方向,其反作 用力 T 作用于 OA 棒的顶端,如图所示。 由 T 和小球重力相对 A 点合力矩为零,可得
l Tl sin -mg cos =0 2
2 T= mg 4
FA
T
F
O
由图所示的 F 和 T 的矢量关系。即可求得 OA 棒 顶端所受的作用力 FA 为
B
G
故若 f 0 ,即 2tg tg 时, 可取任意值。
若 f 0 ,即 f 方向向上,即 2tg tg
1 2 1 时, ( ) 3 tg tg
1 1 2 ) 若 f 0 ,即 f 方向向下,即 2tg tg 时, ( 3 tg tg
g 10m/s 2 )
B A C
D E
解:
设梯子质量为 M ,长为 l ;人的质量为 m ,人到 A 点的距 离为 x 以整体为研究对象,受力情况如图所示 C
N1 N 2 Mg mg
以 C 点为轴,应满足
N 2l sin15 mg(l x) sin15 N1l sin15
代入上(1)(2)式,可得
NA
5 N A = mg 3
l
(3)
A
2mg
fA
D
将(3)(4)代入 f A N A A
2 fA = mg 3
( 4)
,可得
fA 2 A = NA 5
(5)
OB棒的受力情况如图所示。
由此棒竖直方向和水平方向合外力为零,可分别得 N B =mg +TB sin (6) f B =F +TB cos (7) 由图所示的矢量关系,可得TB 、TC 与T 的关系为
O
A
C
B
1.三根棒的顶端相互靠在一起,如图所示。
由对称性可知,任何一棒(如 OA 棒)的顶端受到其余两棒对 它的作用力的合力 F 必沿水平方向。如图所示,D 是 BC 的中点,有
3 AD = DO = l 2 3 cos = (1) 3
O
A
C
D
B
由 OA 棒所受外力相对 A 点力矩平衡,得
l Fl sin -mg cos =0 (2 ) 2 将(1)式代入(2 )式,可解得
F
后
M
前
L
解: (1)如图图所示,当立方体向前翻滚时,以 B
点为转动轴,根据力矩平衡的条件可知,当力 臂最大时,施加的力最小,则施加的力 F 应垂 直于 BC
L Mg F 2 L 2
F C
前
F
若不发生相对滑动,此时应满足 ( Mg F sin 45 ) F cos 45
2Mg 4
M G
B
1 3
(2)如图所示,当立方体向后翻滚时,以 A 点为转 动轴,根据力矩平衡条件可知,当力臂最大时,施加 的力最小,则施加的力 F 应垂直于 AC
L Mg F L 2
F
后
C M G
Mg F 2
A
若不发生相对滑动,此时应满足 F Mg
1 2
4.质量为 m,长为 l 的均匀杆 AB,下端靠在竖直墙 上,借助绳 CD 保持倾斜状态。如图所示,绳的一端系
设 aO 长为 4L ,每根钢索受力为 T,以 O 点为转轴,由力 a 矩平衡条件得
G 2L T 3L sin 30 T 2L sin 30 T L sin 30
b
c
d
o
T
2 G 3
2. 如图所示的杆秤,O 为提扭,A 为刻度的起点,B 为秤钩,P 为秤 砣,关于杆秤的性能,下述说法中正确的是 A.不称物时,秤砣移至 A 处,杆秤平衡 B.不称物时,秤砣移至 B 处,杆秤平衡 C.称物时,OP 的距离与被测物的质量成正比 D.称物时,AP 的距离与被测物的质量成正比
②
N1
N2h1 F (h1 h2 ) N2a
③
而 F 为弹簧的弹力,由胡克定律可得
F k (d 2a L)
④
由①②③④四式可得
(h12 2 a 2 )M k 1.24 104 N / m h1d (h1 h2 )(d 2a L)
6、三根质量为 m 、长为 l 的相同匀质棒,如图所示地紧靠在一起, 三棒与地接触点的连线构成一边长为 l 的正三角形。 已知三个棒与地 面间的摩擦系数相等。 1.试求 OA 棒顶点所受作用力的大小与方向; 2.若在 OA 棒的中点固定一质量也为 m 的小球,再求其顶端所受作 用力的大小和方向; 3.固定小球后,要使体系保持静止,则棒与地面之间的摩擦系数至 少为多少?
O F C
B A
解: 小球缓慢移动过程中,可看作始终处于平衡状态,
受力情况如图所示, T cos G
而绳子拉力到支点 O 的力矩为
Tl cos Gl
在移动过程中保持不变,所以两侧力矩保持不变, 轻杆始终处于平衡状态。
T F C α
B A
O
G
4. 如图所示,A、B 是两个完全相同的长方形木块,长为 l,叠放在 一起,放在水平桌面上,端面与桌边平行。A 木块放在 B 上,右 端有
设板长为 2L, 对板进行受力分析如图所示, 以 A 为转轴,根据力矩平衡条件得