物理化学知识点总结

物理化学知识点总结
物理化学知识点总结

第一章 热力学第一定律

一、基本概念

系统与环境,状态与状态函数,广度性质与强度性质,过程与途径,热与功,内能与焓。 二、基本定律

热力学第一定律:ΔU =Q +W 。 焦耳实验:ΔU =f (T ) ; ΔH =f (T ) 三、基本关系式

1、体积功的计算 δW = -p e d V

恒外压过程:W = -p e ΔV

可逆过程:12

21ln ln p p nRT V V nRT W ==

2、热效应、焓

等容热:Q V =ΔU (封闭系统不作其他功) 等压热:Q p =ΔH (封闭系统不作其他功) 焓的定义:H =U +pV ; d H =d U +d(pV )

焓与温度的关系:ΔH =?2

1

d p T T T C

3、等压热容与等容热容

热容定义:V V )(T U C ??=;p p )(T H

C ??=

定压热容与定容热容的关系:nR C C =-V p

热容与温度的关系:C p =a +bT +c’T 2

四、第一定律的应用

1、理想气体状态变化

等温过程:ΔU =0 ; ΔH =0 ; W =-Q =?-p e d V 等容过程:W =0 ; Q =ΔU =?T C d V ; ΔH =?T C d p 等压过程:W =-p e ΔV ; Q =ΔH =?T C d p ; ΔU =?T C d V 可逆绝热过程:Q =0 ; 利用p 1V 1γ=p 2V 2γ

求出T 2,

W =ΔU =?T C d V ;ΔH =?T C d p

不可逆绝热过程:

Q =0 ; 利用C V (T 2-T 1)=-p e (V 2-V 1)求出T 2,

W =ΔU =?T C d V ;ΔH =?T C d p

2、相变化

可逆相变化:ΔH =Q =n Δ_H ;

W=-p (V 2-V 1)=-pV g =-nRT ; ΔU =Q +W

3、热化学

物质的标准态;热化学方程式;盖斯定律;标准摩尔生成焓。

摩尔反应热的求算:)298,()298(B H H m f B m r θθν?=?∑

反应热与温度的关系—基尔霍夫定律:

)(])([,p B C T H m p B

B m r ∑=???ν。

第二章 热力学第二定律

一、基本概念

自发过程与非自发过程 二、热力学第二定律

1、热力学第二定律的经典表述

克劳修斯,开尔文,奥斯瓦尔德。实质:热功转换的不可逆性。

2、热力学第二定律的数学表达式(克劳修斯不等式)

“=”可逆;“>”不可逆

三、熵

1、熵的导出:卡若循环与卡诺定理

2

3、熵的物理意义:系统混乱度的量度。

4、绝对熵:热力学第三定律

5、熵变的计算

(1)理想气体等温过程:

(2

(3

(4)理想气体pTV 都改变的过程:

2

1

12,ln

ln p p nR T T nC S m p +=?

(5

(6)化学反应过程:)298,()298(B S S m B m r ∑=?θθν

四、赫姆霍兹函数和吉布斯函数

1、定义:A=U-TS ;G=H-TS

等温变化:ΔA=ΔU -TΔS ;ΔG=ΔH -TΔS

2、应用:不做其他功时,ΔA T ,V ≤0 ;自发、平衡 ΔG T ,P ≤0 ;自发、平衡

3、热力学基本关系式

d A =-S d T -V d p ;d G =-S d T +p d V

4、ΔA 和ΔG 的求算 (1)理想气体等温过程

用公式:ΔA=ΔU -TΔS ;ΔG=ΔH -TΔS

用基本关系式:d A =-S d T -V d p ;d G =-S d T +p d V (2)可逆相变过程

ΔA=ΔU -TΔS =W =-nRT ;ΔG =0 (3)化学反应过程的ΔG

标准熵法:ΔG=ΔH -TΔS 标准生成吉布斯函数法:

)298,()298(B G G m f B m r θ

θ

ν?=?∑

(4)ΔG 与温度的关系

ΔG=ΔH -TΔS ,设ΔH 、ΔS 不遂温度变化。

五、化学势

1、化学式的定义和物理意义

)(,,)(B c c n p T B

B n G ≠??=μ

;在T 、p 及其他物质的量保持不变

的情况下,增加1molB 物质引起系统吉布斯函数的增量。

2、化学势的应用

在等温等压不作其他功时,∑B B μν<0自发;=0平衡;>逆向自发

3、化学时表示式

理想气体:

)/ln(θ

θμμp p RT += 纯固体和纯液体:θ

μμ=

第三章 化学平衡

一、化学平衡常数与平衡常数表达式

如:Zn+2HCl(aq)=H 2+ZnCl 2(aq )

)

HCl ()]ZnCl (][/)H ([222

c c p p K θ

θ= 二、 标准平衡常数的求算

θ

θ

K RT T G m r ln )(-=?

三、 范特荷夫等温方程

θ

θ

θ

θ

K J RT J RT T G T G m r m r /ln ln )()(=+?=?

四、平衡常数与温度的关系

θ

θθm r m r m r S T H T G ?-?=?)(;θ

θK RT T G m r ln )(-=?

五、各种因素对平衡的影响

分压、总压、惰性气体、温度。

第四章 液态混合物和溶液

一、拉乌尔定律和亨利定律

1、拉乌尔定律

p A =p *x A ;p A =p *a x ,A

适用于液态混合物和溶液中的溶剂。 2、亨利定律

p B =k x,B x B =k b,B b B =k %,B [%B ] ; p B =k x,B a x,B =k b,B a b,B =k %,B a %,B 适用于溶液中的溶质。

二、液态混合物和溶液中各组分的化学势

1、理想液态混合物

x RT T mix p T x ln )(),,(+=θ

μμ

标准态为:同温下的液态纯溶剂。 2、真实液态混合物

x x a RT T mix p T ln )(),,(+=θ

μμ

标准态为:同温下的液态纯溶剂。 3、理想稀溶液

溶剂:A A x A x RT T sln p T ln )(),,(+=θ

μμ

标准态为:同温下的液态纯溶剂。

溶质:B B x B x RT T sln p T ln )(),,(+=θ

μμ

标准态为:同温下x B =1且符合亨利定律的溶质(假想状态)。

4、真实溶液

溶剂:A x A x A a RT T sln p T ,,ln )(),,(+=θ

μμ ;a x,A =f x,A x ;

标准态为:同温下的液态纯溶剂。

溶质:B x B x B a RT T sln p T ,ln )(),,(+=θ

μμ ; a x,B =γx,B x B ;

标准态为:同温下x B =1且符合亨利定律的溶质(假想状态)。

B b B b B a RT T sln p T ,,ln )(),,(+=θ

μμ; a b,B =γb,B b B ;

标准态为:同温下b B =1且符合亨利定律的溶质(假想状态)。

B B

B a RT T sln p T %,%,ln )(),,(+=θ

μμ; a %,B =γ%,B [%B]; 标准态为:同温下[B%]=1且符合亨利定律的溶质(一般为假想状态)。 三、各种平衡规律

1、液态混合物的气液平衡

p A =p *A

a x,A ; p B =p *A

a x,B ; p=p A +p B 2、溶液的气液平衡

p A =p *A

a x,A ;p B =k x,B a x,B =k b,B a b,B =k %,B a %,B ;p=p A +p B 3、理想稀溶液的凝固点降低

4、分配定律

5、化学平衡

6、西弗特定律:[O%]=K θp 0.5

(O 2)

第五章相平衡

一、相律

1、物种数、独立组分数、相数、自由度数

2、相律公式f=C-φ+2

二、单组分系统

1、克-克方程

2、水的相图

三面、三线、一点。

三、双组分系统

1、相律分析

根据f=C-φ+1(一般固定压力),φ=2,f=1;φ=3,f=0

2、杠杆规则

3、步冷曲线

四、典型相图

1、Mg-Ge相图

2、Na-K相图

3、Ag-Cu相图

第六章 电解质溶液

一、电解质溶液的电导

1、电导

G =1/R ; 单位:S(西门子) 2、电导率

G =κA /l 或κ=G l /A ; 单位:S/m 3、摩尔电导率

Λm =κ/c

4、无限稀释摩尔电导率

∞-

-∞+

+∞+=ΛΛΛm

νν

5、离子的电迁移

l

E

U ?=++υ ;-

++

--+++++=+===

U U U I I Q Q t υυυ ;1=+-+t t

二、电解质溶液的活度

1、电解质的化学势(电解质溶液的浓度用m B 或b B 表示)

B B B a RT ln +=θ

μμ

;)

(;)(;/)(;/1/1/1ννννννθ

ννννγγγγ-+-+-+-+±-+±±±-+±±?=?=?=?==m m m m m a a a a a B 2、离子强度

∑=2

2

1B

B z m I

3、德拜—休克尔极限公式

I z z ||5093.0lg -+±-=γ ;适用于25℃时的极稀水溶

液。

第七章 电化学

一、可逆电池的构成

电池反应互为逆反应;充放电时电流无穷小。 二、可逆电池热力学

1、;zFE G m

r -=?C/mol 96500;=-=?F zFE

G m r θ

θ 23、m r m r m r S T G H ?+?=?

4

、m r r S T Q ?= ;电池反应做了其他功。 三、能斯特方程

1、电池反应的能斯特方程

2、电极反应的能斯特方程

)H ()

O (lg

0592.0a a z E E +=++θ

;不常用

四、可逆电极的种类

1、第一类电极

金属电极;气体电极 2、第二类电极

难溶盐电极;难溶氧化物电极 3、氧化还原电极 五、电极电势的应用

1、测定电池反应的热力学函数

2、测定电解质的±γ

3、测定溶液的pH 值

4、浓差定氧

六、极化现象和超电势

1、浓差极化

电极反应速度比离子迁移速度快造成的。 2、电化学极化

电极反应速度比电子移动速度慢造成的。 3、极化结果

e i E E -=η;对阳极η总为正;对阴极η总为负。 七、金属腐蚀与防护

1、金属腐蚀

电化学腐蚀:析氢腐蚀,吸氧腐蚀

大学物理化学公式集

电解质溶液 法拉第定律:Q =nzF m = M zF Q dE r U dl ++ = dE r U dl --= t +=-+I I =-++r r r +=-+U U U ++=∞∞ +Λm ,m λ=() F U U F U ∞∞+∞+-+ r +为离子移动速率,U +( U -)为正(负)离子的电迁移率(亦称淌度)。 近似:+∞+≈,m ,m λλ +∞ +≈,m ,m U U m m Λ≈Λ∞ (浓度不太大的强电解质溶液) 离子迁移数:t B = I I B =Q Q B ∑B t =∑+t +∑-t =1 电导:G =1/R =I/U =kA/l 电导率:k =1/ρ 单位:S ·m -1 莫尔电导率:Λm =kV m =k/c 单位S ·m 2·mol -1 cell l R K A ρ ρ== cell 1K R kR ρ== 科尔劳乌施经验式:Λm =() c 1 m β-∞Λ 离子独立移动定律:∞Λm =()m,m,+U U F λλ∞∞∞∞ +-- +=+ m U F λ∞∞+,+= 奥斯特瓦儿德稀释定律:Φc K =() m m m 2 m c c ΛΛΛΛ∞∞Φ - 平均质量摩尔浓度:±m =() v 1v v m m - - ++ 平均活度系数:±γ=() 1v v -- +γγ+ 平均活度:±a =() v 1v v a a - - ++=m m γ± ± Φ 电解质B 的活度:a B =v a ±=v m m ?? ? ??Φ±±γ +v v v B + a a a a ± -- == m +=v +m B m -=v -m B ( ) 1 v v v B m v v m +±+-- = 离子强度:I = ∑i 2i i z m 21 德拜-休克尔公式:lg ±γ=-A|z +z --|I

北京理工大学物理化学A(南大版)上册知识点总结

物理化学上册公式总结 第一章.气体 一、理想气体适用 ①波义耳定律:定温下,一定量的气体,其体积与压力成反比 pV=C ②盖·吕萨克定律:对定量气体,定压下,体积与T成正比 V t=C`T ③阿伏伽德罗定律:同温同压下,同体积的各种气体所含分子数相同。 ④理想气体状态方程式 pV=nRT 推导:气体体积随压力温度和气体分子数量改变,即: V=f(p,T,N) 对于一定量气体,N为常数dN=0,所以 dV=(?V/?p)T,N dp+(?V/?T)p,N dT 根据波义耳定律,有V=C/P,∴(?V/?p)T,N=-C/p2=-V/p 根据盖·吕萨克定律,V=C`T,有(?V/?T)p,N=C`=V/T 代入上式,得到 dV/V=-dp/p+dT/T 积分得 lnV+lnp=lnT+常数

若所取气体为1mol,则体积为V m,常数记作lnR,即得 pV m=RT 上式两边同时乘以物质的量n,则得 pV=nRT ⑤道尔顿分压定律:混合气体的总压等于各气体分压之和。 ⑥阿马格分体积定律:在一定温度压力下,混合气体的体积等于组成该气体的各组分分体积之和。 ⑦气体分子在重力场的分布 设在高度h处的压力为p,高度h+dh的压力为p-dp,则压力差为 dp=-ρgdh 假定气体符合理想气体状态方程,则ρ=Mp/RT,代入上式, -dp/p=Mgdh/RT 对上式积分,得lnp/p0=-Mgh/RT ∴p=p0exp(-Mgh/RT) ρ=ρ0exp(-Mgh/RT)或n=n0exp(-Mgh/RT) 二、实际气体适用 ①压缩因子Z Z=pV m/RT 对于理想气体,Z=1,对实际气体,当Z大于1,表明同温度同压力下,实际气体体积大于理想气体方程计算所得结果,即实际气体的可压缩性比理想气体小。当Z小于1,情况则相反。 ②范德华方程式

初中物理化学知识点总结.doc

化学知识点的归纳总结。 一、初中化学常见物质的颜色 (一)、固体的颜色 1、红色固体:铜,氧化铁 2、绿色固体:碱式碳酸铜 3、蓝色固体:氢氧化铜,硫酸铜晶体 4、紫黑色固体:高锰酸钾 5、淡黄色固体:硫磺 6、无色固体:冰,干冰,金刚石 7、银白色固体:银,铁,镁,铝,汞等金属 8、黑色固体:铁粉,木炭,氧化铜,二氧化锰,四氧化三铁,(碳黑,活性炭) 9、红褐色固体:氢氧化铁 10、白色固体:氯化钠,碳酸钠,氢氧化钠,氢氧化钙,碳酸钙,氧化钙,硫酸铜,五氧化二磷,氧化镁 (二)、液体的颜色 11、无色液体:水,双氧水 12、蓝色溶液:硫酸铜溶液,氯化铜溶液,硝酸铜溶液 13、浅绿色溶液:硫酸亚铁溶液,氯化亚铁溶液,硝酸亚铁溶液 14、黄色溶液:硫酸铁溶液,氯化铁溶液,硝酸铁溶液 15、紫红色溶液:高锰酸钾溶液 16、紫色溶液:石蕊溶液 (三)、气体的颜色 17、红棕色气体:二氧化氮 18、黄绿色气体:氯气 19、无色气体:氧气,氮气,氢气,二氧化碳,一氧化碳,二氧化硫,氯化氢气体等大多数气体。 二、初中化学之三 1、我国古代三大化学工艺:造纸,制火药,烧瓷器。 2、氧化反应的三种类型:爆炸,燃烧,缓慢氧化。 3、构成物质的三种微粒:分子,原子,离子。 4、不带电的三种微粒:分子,原子,中子。 5、物质组成与构成的三种说法: (1)、二氧化碳是由碳元素和氧元素组成的; (2)、二氧化碳是由二氧化碳分子构成的; (3)、一个二氧化碳分子是由一个碳原子和一个氧原子构成的。 6、构成原子的三种微粒:质子,中子,电子。 7、造成水污染的三种原因: (1)工业“三废”任意排放, (2)生活污水任意排放 (3)农药化肥任意施放 8、收集方法的三种方法:排水法(不容于水的气体),向上排空气法(密度 比空气大的气体),向下排空气法(密度比空气小的气体)。

天津大学版物理化学复习提纲

物理化学复习提纲 一、 热力学第一定律 1. 热力学第一定律:ΔU = Q -W (dU=δQ -δW ,封闭体系、静止、无 外场作用) *热Q,习惯上以系统吸热为正值,而以系统放热为负值;功W ,习惯上以系统对环境作功为正值,而以环境对系统作功为负值。 **体积功 δW=(f 外dl =p 外·Adl )=p 外dV=nRT ?21/V V V dV =nRTlnV 2/V 1=nRTlnp 1/p 2 2. 焓:定义为H ≡U+pV ;U ,H 与Q ,W 区别(状态函数与否?) 对于封闭体系,Δ H= Qp, ΔU= Qv, ΔU= -W (绝热过程) 3. Q 、W 、ΔU 、ΔH 的计算 a. ΔU=T nCv.md T T ?21= nCv.m(T 2-T 1) b. ΔH=T nCp.md T T ?21= nCp.m(T 2-T 1) c. Q :Qp=T nCp.md T T ?21;Qv=T nCv.md T T ?2 1 d. T ,P 衡定的相变过程:W=p (V 2-V 1);Qp=ΔH=n ΔH m ;ΔU=ΔH -p(V 2-V 1) 4. 热化学 a. 化学反应的热效应,ΔH=∑H(产物)-∑H (反应物)=ΔU+p ΔV (定压反应) b. 生成热及燃烧热,Δf H 0m (标准热);Δr H 0m (反应热)

c. 盖斯定律及基尔戈夫方程 [G .R.Kirchhoff, (?ΔH/?T)=C p(B) -C p(A)= ΔCp] 二、 热力学第二定律 1. 卡诺循环与卡诺定理:η=W/Q 2=Q 2+Q 1/Q 2=T 2-T 1/T 2,及是 (Q 1/T 1+Q 2/T 2=0)卡诺热机在两个热源T 1及T 2之间工作时,两个热源的“热温商”之和等于零。 2. 熵的定义:dS=δQr/T, dS ≠δQir/T (克劳修斯Clausius 不等式, dS ≥δQ/T ;对于孤立体系dS ≥0,及孤立系统中所发生任意过程总是向着熵增大的方向进行)。 熵的统计意义:熵是系统混乱度的度量。有序性高的状态 所对应的微观状态数少,混乱度高的状态所对应的微观状态数多,有S=kln Ω, 定义:S 0K =0, 有 ΔS=S (T)-S 0K =dT T Cp T ??/0 3. P 、V 、T 衡时熵的计算: a. ΔS=nRlnP 1/P 2=nRlnV 2/V 1(理气,T 衡过程) b. ΔS=n T T nCp.md T T /21?(P 衡,T 变) c. ΔS=n T T nCv.md T T /21?(V 衡,T 变) d. ΔS=nC v.m lnT 2/T 1+ nC p.m lnV 2/V 1(理气P 、T 、V 均有变化时) 4. T 、P 衡相变过程:ΔS=ΔH 相变/T 相变 5. 判据: a. ΔS 孤{不能实现可逆,平衡不可逆,自发 00 0?=? (ΔS 孤=ΔS 体+ΔS 环, ΔS 环=-Q 体/T 环)

大学物理化学主要公式

第一章 气体的pVT 关系 主要公式及使用条件 1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 / y B m,B B * =V ?∑* A V y A m ,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩 尔体积。∑*A A m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上 述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * === 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。* B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律

p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体 V RT n p /B B = 4. 阿马加分体积定律 V RT n V /B B =* 此式只适用于理想气体。 5. 范德华方程 RT b V V a p =-+))(/(m 2m nRT nb V V an p =-+))(/(22 式中a 的单位为Pa · m 6 · mol -2,b 的单位为m 3 · mol -1,a 和b 皆为只与气体的种类有关的常数,称为范德华常数。 此式适用于最高压力为几个MPa 的中压范围内实际气体p ,V ,T ,n 的相互计算。 6. 维里方程 ......)///1(3m 2m m m ++++=V D V C V B RT pV 及 ......)1(3'2''m ++++=p D p C p B RT pV 上式中的B ,C ,D,…..及B’,C’,D’….分别称为第二、第三、第四…维里系数,它们皆是与气体种类、温度有关的物理量。 适用的最高压力为1MPa 至2MPa ,高压下仍不能使用。 7. 压缩因子的定义 )/()/(m RT pV nRT pV Z == Z 的量纲为一。压缩因子图可用于查找在任意条件下实际气体的压缩因子。但计算结果常产生较大的误差,只适用于近似计算。 第二章 热力学第一定律

物理化学知识点总结(热力学第一定律)

物理化学知识点总结 (热力学第一定律) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

热力学第一定律 一、基本概念 1.系统与环境 敞开系统:与环境既有能量交换又有物质交换的系统。 封闭系统:与环境只有能量交换而无物质交换的系统。(经典热力学主要研究的系统) 孤立系统:不能以任何方式与环境发生相互作用的系统。 2.状态函数:用于宏观描述热力学系统的宏观参量,例如物质的量n、温度 T、压强p、体积V等。根据状态函数的特点,我们 把状态函数分成:广度性质和强度性质两大类。 广度性质:广度性质的值与系统中所含物质的量成 正比,如体积、质量、熵、热容等,这种性质的函数具 有加和性,是数学函数中的一次函数,即物质的量扩大 a倍,则相应的广度函数便扩大a倍。 强度性质:强度性质的值只与系统自身的特点有关,与物质的量无关,如温度,压力,密度,摩尔体积等。 注:状态函数仅取决于系统所处的平衡状态,而与此状态的历史过程无关,一旦系统的状态确定,其所有的状态函数便都有唯一确定的值。

二、热力学第一定律 热力学第一定律的数学表达式: 对于一个微小的变化状态为: dU= 公式说明:dU表示微小过程的内能变化,而δQ和δW则分别为微小过程的热和功。它们之所以采用不同的符号,是为了区别dU是全微分,而δQ和δW不是微分。或者说dU与过程无关而δQ和δW却与过程有关。这里的W既包括体积功也包括非体积功。 以上两个式子便是热力学第一定律的数学表达式。它们只能适用在非敞开系统,因为敞开系统与环境可以交换物质,物质的进出和外出必然会伴随着能量的增减,我们说热和功是能量的两种传递形式,显然这种说法对于敞开系统没有意义。 三、体积功的计算 1.如果系统与环境之间有界面,系统的体积变化时,便克服外力做功。将一 定量的气体装入一个带有理想活塞的容器中,活塞上部施加外压。当气体膨胀微小体积为dV时,活塞便向上移动微小距离dl,此微小过程中气

大学物理化学公式大全Word版

热力学第一定律 功:δW =δW e +δW f (1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移。如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。 热 Q :体系吸热为正,放热为负。 热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。 热容 C =δQ/dT (1)等压热容:C p =δQ p /dT = (?H/?T )p (2)等容热容:C v =δQ v /dT = (?U/?T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2 常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差: (1)任意体系 C p —C v =[p +(?U/?V )T ](?V/?T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程: pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=1 1 -γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1 nR -δ(T 1—T 2) 热机效率:η= 2 1 2T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β= 1 21 T T T - 焦汤系数: μJ -T =H p T ???? ????=-()p T C p H ?? 实际气体的ΔH 和ΔU : ΔU =dT T U V ??? ????+dV V U T ??? ???? ΔH =dT T H P ??? ????+dp p H T ???? ???? 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑B B γRT 化学反应热效应与温度的关系:()()()dT B C T H T H 2 1 T T m p B 1m r 2m r ? ∑??,+=γ 热力学第二定律

物理化学知识点(全)

第二章 热力学第一定律 内容摘要 ?热力学第一定律表述 ?热力学第一定律在简单变化中的应用 ?热力学第一定律在相变化中的应用 ?热力学第一定律在化学变化中的应用 一、热力学第一定律表述 U Q W ?=+ d U Q W δδ=+ 适用条件:封闭系统的任何热力学过程 说明:1、amb W p dV W '=-+? 2、U 是状态函数,是广度量 W 、Q 是途径函数 二、热力学第一定律在简单变化中的应用----常用公式及基础公式 2、基础公式 热容 C p .m =a+bT+cT 2 (附录八) ● 液固系统----Cp.m=Cv.m ● 理想气体----Cp.m-Cv.m=R ● 单原子: Cp.m=5R/2 ● 双原子: Cp.m=7R/2 ● Cp.m / Cv.m=γ 理想气体 ? 状态方程 pV=nRT

? 过程方程 恒温:1122p V p V = ? 恒压: 1122//V T V T = ? 恒容: 1122/ / p T p T = ? 绝热可逆: 1122 p V p V γγ= 111122 T p T p γγγγ--= 1111 22 TV T V γγ--= 三、热力学第一定律在相变化中的应用----可逆相变化与不可逆相变化过程 1、 可逆相变化 Q p =n Δ 相变 H m W = -p ΔV 无气体存在: W = 0 有气体相,只需考虑气体,且视为理想气体 ΔU = n Δ 相变 H m - p ΔV 2、相变焓基础数据及相互关系 Δ 冷凝H m (T) = -Δ蒸发H m (T) Δ凝固H m (T) = -Δ熔化H m (T) Δ 凝华 H m (T) = -Δ 升华 H m (T) (有关手册提供的通常为可逆相变焓) 3、不可逆相变化 Δ 相变 H m (T 2) = Δ 相变 H m (T 1) +∫Σ(νB C p.m )dT 解题要点: 1.判断过程是否可逆; 2.过程设计,必须包含能获得摩尔相变焓的可逆相变化步骤; 3.除可逆相变化,其余步骤均为简单变化计算. 4.逐步计算后加和。 四、热力学第一定律在化学变化中的应用 1、基础数据 标准摩尔生成焓 Δf H θm,B (T) (附录九) 标准摩尔燃烧焓 Δc H θ m.B (T)(附录十) 2、基本公式 ?反应进度 ξ=△ξ= △n B /νB = (n B -n B.0) /νB ?由标准摩尔生成焓计算标准摩尔反应焓 Δr H θm.B (T)= ΣνB Δf H θ m.B (T) ?由标准摩尔燃烧焓计算标准摩尔反应焓 Δr H θ m.B (T)=-Σ νB Δc H θ m.B (T) (摩尔焓---- ξ=1时的相应焓值) ?恒容反应热与恒压反应热的关系 Q p =Δr H Q v =Δr U Δr H =Δr U + RT ΣνB (g) ?Kirchhoff 公式 微分式 d Δr H θ m (T) / dT=Δr C p.m 积分式 Δr H θm (T 2) = Δr H θ m (T 1)+∫Σ(νB C p.m )dT 本章课后作业: 教材p.91-96(3、4、10、11、16、17、38、20、23、24、28、30、33、34)

大学物理化学下册(第五版傅献彩)知识点分析归纳-(1)

第八章电解质溶液

、 第九章 1.可逆电极有哪些主要类型每种类型试举一例,并写出该电极的还原反应。对于气体电极和氧化还原电极在书写电极表示式时应注意什么问题 答:可逆电极有三种类型: (1)金属气体电极如Zn(s)|Zn2+ (m) Zn2+(m) +2e- = Zn(s) (2)金属难溶盐和金属难溶氧化物电极如Ag(s)|AgCl(s)|Cl-(m),AgCl(s)+ e- = Ag(s)+Cl-(m) (3)氧化还原电极如:Pt|Fe3+(m1),Fe2+(m2) Fe3+(m1) +e- = Fe2+(m2) 对于气体电极和氧化还原电极,在书写时要标明电极反应所依附的惰性金属。 》 2.什么叫电池的电动势用伏特表侧得的电池的端电压与电池的电动势是否相同为何在测电动势时要用对消法 答:正、负两端的电势差叫电动势。不同。当把伏特计与电池接通后,必须有适量的电流通过才能使伏特计显示,这样电池中发生化学反应,溶液浓度发生改变,同时电池有内阻,也会有电压降,所以只能在没有电流通过的情况下才能测量电池的电动势。 3.为什么Weslon标准电池的负极采用含有Cd的质量分数约为~的Cd一Hg齐时,标准电池都有稳定的电动势值试用Cd一Hg的二元相图说明。标准电池的电动势会随温度而变化吗答:在Cd一Hg的二元相图上,Cd的质量分数约为~的Cd一Hg齐落在与Cd一Hg固溶体的两相平衡区,在一定温度下Cd一Hg齐的活度有定值。因为标准电池的电动势在定温下只与Cd一Hg 齐的活度有关,所以电动势也有定值,但电动势会随温度而改变。 4.用书面表示电池时有哪些通用符号为什么电极电势有正、有负用实验能测到负的电动势吗

大学物理化学公式大全

热力学第一定律 功:δW=δW e+δWf (1)膨胀功δWe=p 外 dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移.如δW(机械功)=fdL,δW(电功)=EdQ,δW(表面功)=rdA。 热Q:体系吸热为正,放热为负. 热力学第一定律:△U=Q—W 焓H=U+pV 理想气体得内能与焓只就是温度得单值函数. 热容C=δQ/dT (1)等压热容:C p=δQ p/dT= (?H/?T)p (2)等容热容:Cv=δQ v/dT= (?U/?T)v 常温下单原子分子:C v ,m =C v,m t=3R/2 常温下双原子分子:C v,m=C v ,m t+C v,m r=5R/2 等压热容与等容热容之差: (1)任意体系C p -Cv=[p+(?U/?V)T](?V/?T)p (2)理想气体Cp—C v=nR 理想气体绝热可逆过程方程: pVγ=常数TVγ-1=常数p1-γTγ=常数γ=Cp/ C v 理想气体绝热功:W=C v(T1—T2)=(p1V1—p2V2) 理想气体多方可逆过程:W=(T 1 -T2) 热机效率:η= 冷冻系数:β=-Q1/W 可逆制冷机冷冻系数:β= 焦汤系数: μJ- T ==- 实际气体得ΔH与ΔU: ΔU=+ΔH=+ 化学反应得等压热效应与等容热效应得关系:Q p=Q V+ΔnRT 当反应进度ξ=1mol时,Δr H m=ΔrUm+RT 化学反应热效应与温度得关系: 热力学第二定律 Clausius不等式: 熵函数得定义:dS=δQ R /TBoltzman熵定理:S=klnΩ Helmbolz自由能定义:F=U-TS Gibbs自由能定义:G=H-TS 热力学基本公式: (1)组成恒定、不作非膨胀功得封闭体系得热力学基本方程:dU=TdS-pdVdH=TdS+Vdp dF=—SdT-pdV dG=-SdT+Vdp (2)Maxwell关系: ==- (3)热容与T、S、p、V得关系: CV=T C p =T Gibbs自由能与温度得关系:Gibbs-Helmholtz公式=-

(完整版)生物化学知识点重点整理

一、蛋白质化学 蛋白质的特征性元素(N),主要元素:C、H、O、N、S,根据含氮量换算蛋白质含量:样品蛋白质含量=样品含氮量*6.25 (各种蛋白质的含氮量接近,平均值为16%), 组成蛋白质的氨基酸的数量(20种),酸性氨基酸/带负电荷的R基氨基酸:天冬氨酸(D)、谷氨酸(E); 碱性氨基酸/带正电荷的R基氨基酸:赖氨酸(K)、组氨酸(H)、精氨酸(R) 非极性脂肪族R基氨基酸:甘氨酸(G)、丙氨酸(A)、脯氨酸(P)、缬氨酸(V)、亮氨酸(L)、异亮氨酸(I)、甲硫氨酸(M); 极性不带电荷R基氨基酸:丝氨酸(S)、苏氨酸(T)、半胱氨酸(C)、天冬酰胺(N)、谷氨酰胺(Q); 芳香族R基氨基酸:苯丙氨酸(F)、络氨酸(Y)、色氨酸(W) 肽的基本特点 一级结构的定义:通常描述为蛋白质多肽链中氨基酸的连接顺序,简称氨基酸序列(由遗传信息决定)。维持稳定的化学键:肽键(主)、二硫键(可能存在), 二级结构的种类:α螺旋、β折叠、β转角、无规卷曲、超二级结构, 四级结构的特点:肽键数≧2,肽链之间无共价键相连,可独立形成三级结构,是否具有生物活性取决于是否达到其最高级结构 蛋白质的一级结构与功能的关系:1、蛋白质的一级结构决定其构象 2、一级结构相似则其功能也相似3、改变蛋白质的一级结构可以直接影响其功能因基因突变造成蛋白质结构或合成量异常而导致的疾病称分子病,如镰状细胞贫血(溶血性贫血),疯牛病是二级结构改变 等电点(pI)的定义:在某一pH值条件下,蛋白质的净电荷为零,则该pH值为蛋白质的等电点(pI)。 蛋白质在不同pH条件下的带电情况(取决于该蛋白质所带酸碱基团的解离状态):若溶液pHpI,则蛋白质带负电荷,在电场中向正极移动。(碱性蛋白质含碱性氨基酸多,等电点高,在生理条件下净带正电荷,如组蛋白和精蛋白;酸性蛋白质含酸性氨基酸多,等电点低,在生理条件下净带负电荷,如胃蛋白酶), 蛋白质稳定胶体溶液的条件:(颗粒表面电荷同性电荷、水化膜), 蛋白质变性:指由于稳定蛋白质构象的化学键被破坏,造成其四级结构、三级结构甚至二级结构被破坏,结果其天然构象部分或全部改变。实质:空间结构被破坏。变性导致蛋白质理化性质改变,生物活性丧失。变性只破坏稳定蛋白质构象的化学键,即只破坏其构象,不破坏其氨基酸序列。变性本质:破坏二硫键 沉降速度与分子量及分子形状有关沉降系数:沉降速度与离心加速度的比值为一常数,称沉降系数 沉淀的蛋白质不一定变性变性的蛋白质易于沉淀 二、核酸化学 核酸的特征性元素:P,组成元素:C、H、O、N、P,核苷酸的组成成分:一分子磷酸、一分子戊糖、一分子碱基(腺嘌呤A、鸟嘌呤G、胞嘧啶C、胸腺嘧啶T、尿嘧啶U),

大学物理化学知识点归纳只是分享

大学物理化学知识点 归纳

第一章 气体的pvT 关系 一、 理想气体状态方程 pV=(m/M )RT=nRT (1.1) 或pV m =p (V/n )=RT (1.2) 式中p 、V 、T 及n 的单位分别为P a 、m 3、K 及mol 。V m =V/n 称为气体的摩尔体积,其单位为m 3·mol 。R=8.314510J ·mol -1 ·K -1称为摩尔气体常数。 此式适用于理想,近似于地适用 于低压下的真实气体。 二、理想气体混合物 1.理想气体混合物的状态方程 (1.3) pV=nRT=(∑B B n )RT pV=mRT/M mix (1.4) 式中M mix 为混合物的摩尔质量,其可表示为 M mix def ∑B B y M B (1.5) M mix =m/n= ∑B B m /∑B B n (1.6) 式中M B 为混合物中某一种组分B 的摩尔质量。以上两式既适用于各种混合气体,也适用于液态或固态等均匀相混合系统平均摩尔质量的计算。 2.道尔顿定律 p B =n B RT/V=y B p (1.7) P=∑B B p (1.8) 理想气体混合物中某一种组分B 的分压等于该组分单独存在于混合气体的温度T 及总体积V 的条件下所具有的压力。而混合气体的总压即等于各组分单独存在于混合气体的温度、体积条件下产生压力的总和。以上两

式适用于理想气体混合系统,也近似适用于低压混合系统。 3.阿马加定律 V B * =n B RT/p=y B V (1.9) V=∑V B * (1.10) V B *表示理想气体混合物中物质B 的分体积,等于纯气体B 在混合物的温度及总压条件下所占有的体积。理想气体混合物的体积具有加和性,在相同温度、压力下,混合后的总体积等于混合前各组分的体积之和。以上两式适用于理想气体混合系统,也近似适用于低压混合系统。 三、临界参数 每种液体都存在有一个特殊的温度,在该温度以上,无论加多大压力,都不可能使气体液化,我们把这个温度称为临界温度,以T c 或t c 表示。我们将临界温度T c 时的饱和蒸气 压称为临界压力,以p c 表示。在临界温度和临界压力下,物质的摩尔体积称为临界摩尔体积,以V m,c 表示。临 界温度、临界压力下的状态称为临界 状态。 四、真实气体状态方程 1.范德华方程 (p+a/V m 2)(V m -b)=RT (1.11) 或(p+an 2/V 2)(V-nb)=nRT (1.12) 上述两式中的a 和b 可视为仅与气体种类有关而与温度无关的常数,称为范德华常数。a 的单位为Pa ·m 6 ·mol ,b 的单位是m 3mol.-1。该 方程适用于几个兆帕气压范围内实际气体p 、V 、T 的计算。 2.维里方程 Z(p ,T)=1+Bp+Cp+Dp+… (1.13) 或Z(V m, ,T)=1+B/V m +C /

物理化学重点超强总结归纳

第一章热力学第一定律 1、热力学三大系统: (1)敞开系统:有物质和能量交换; (2)密闭系统:无物质交换,有能量交换; (3)隔绝系统(孤立系统):无物质和能量交换。 2、状态性质(状态函数): (1)容量性质(广度性质):如体积,质量,热容量。 数值与物质的量成正比;具有加和性。 (2)强度性质:如压力,温度,粘度,密度。 数值与物质的量无关;不具有加和性,整个系统的强度性质的数值与各部分的相同。 特征:往往两个容量性质之比成为系统的强度性质。 3、热力学四大平衡: (1)热平衡:没有热隔壁,系统各部分没有温度差。 (2)机械平衡:没有刚壁,系统各部分没有不平衡的力存在,即压力相同 (3)化学平衡:没有化学变化的阻力因素存在,系统组成不随时间而变化。 (4)相平衡:在系统中各个相(包括气、液、固)的数量和组成不随时间而变化。 4、热力学第一定律的数学表达式: ?U = Q + W Q为吸收的热(+),W为得到的功(+)。

12、在通常温度下,对理想气体来说,定容摩尔热容为: 单原子分子系统 ,V m C =32 R 双原子分子(或线型分子)系统 ,V m C =52R 多原子分子(非线型)系统 ,V m C 6 32 R R == 定压摩尔热容: 单原子分子系统 ,52 p m C R = 双原子分子(或线型分子)系统 ,,p m V m C C R -=,72 p m C R = 多原子分子(非线型)系统 ,4p m C R = 可以看出: ,,p m V m C C R -= 13、,p m C 的两种经验公式:,2p m C a bT cT =++ (T 是热力学温度,a,b,c,c ’ 是经 ,2' p m c C a bT T =++ 验常数,与物质和温度范围有关) 14、在发生一绝热过程时,由于0Q δ=,于是dU W δ= 理想气体的绝热可逆过程,有:,V m nC dT pdV =- ? 22 ,11 ln ln V m T V C R T V =- 21,12ln ,ln V m p V C Cp m p V ?= ,,p m V m C pV C γγ=常数 =>1. 15、-焦耳汤姆逊系数:J T T =( )H p μ??- J T μ->0 经节流膨胀后,气体温度降低; J T μ-<0 经节流膨胀后,气体温度升高; J T μ-=0 经节流膨胀后,气体温度不变。 16、气体的节流膨胀为一定焓过程,即0H ?=。 17、化学反应热效应:在定压或定容条件下,当产物的温度与反应物的温度相同而在反应过程中只做体积功不做其他功时,化学反应所 吸收或放出的热,称为此过程的热效应,或“反应热”。 18、化学反应进度:()()() n B n B B ξ ν-= 末初 (对于产物v 取正值,反应物取负值) 1ξ=时,r r m U U ξ ??= ,r r m H H ξ ??= 19、(1)标准摩尔生成焓(0 r m H ?):在标准压力和指定温度下,由最稳定的单质生成单位物质的量某物质的定压反应热,为该物质的 标准摩尔生成焓。 (2)标准摩尔燃烧焓(0 c m H ?):在标准压力和指定温度下,单位物质的量的某种物质被氧完全氧化时的反应焓,为该物质的标 准摩尔燃烧焓。 任意一反应的反应焓0 r m H ?等于反应物燃烧焓之和减去产物燃烧焓之和。 20、反应焓与温度的关系-------基尔霍夫方程

大学物理化学必考公式总结

物理化学期末重点复习资料

热力学第一定律 功:δW =δW e +δW f (1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移。如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。 热 Q :体系吸热为正,放热为负。 热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。 热容 C =δQ/dT (1)等压热容:C p =δQ p /dT = (?H/?T )p (2)等容热容:C v =δQ v /dT = (?U/?T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2 常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差: (1)任意体系 C p —C v =[p +(?U/?V )T ](?V/?T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程: pV γ=常数 TV γ-1=常数 p 1-γT γ =常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=1 1 -γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1 nR -δ(T 1—T 2) 热机效率:η= 2 1 2T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=1 21T T T - 焦汤系数: μ J -T =H p T ???? ????=-()p T C p H ?? 实际气体的ΔH 和ΔU : ΔU =dT T U V ??? ????+dV V U T ??? ???? ΔH =dT T H P ??? ????+dp p H T ???? ? ??? 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑B B γRT 化学反应热效应与温度的关系:()()()dT B C T H T H 2 1 T T m p B 1m r 2m r ? ∑??,+=γ 热力学第二定律

初三物理化学中考知识点

园丁教育培训中心初三物理化学知识手册 姓名_________________ 年级_________________ 园丁教育王老师制作

化学部分 一、物质的学名、俗名及化学式 1、单质:金刚石、石墨、炭黑: C 汞、水银:Hg 硫、硫磺:S 2、氧化物:固体二氧化碳、干冰:CO2 氧化钙、生石灰:CaO 氧化铁、铁锈的主要成份:Fe2O3 3、酸:盐酸:HCI的水溶液碳酸(汽水):H2CO3 4、碱:氢氧化钠、苛性钠、火碱、烧碱:NaOH 氢氧化钙、熟石灰、消石灰:Ca(OH)2 氨水、一水合氨:NH3H2O (为常见的碱,具有碱的通性,是一种不含金属离子的碱) 5、盐:碳酸钠、苏打、纯碱(不是碱,是盐):Na2CO3, 碳酸钠晶体、纯碱晶体N32CO3 1OH2O 碳酸氢钠、小苏打:NaHCO3 大理石,石灰石的主要成份是CaCO3 食盐的主要成分是NaCI 亚硝酸钠、工业用盐:NaNO2 (有毒) 硫酸铜晶体、胆矶、蓝矶:CuSO4 5H2O 碳酸钾、草木灰的主要成份:K2CO3 碱式碳酸铜、铜绿、孔雀石:Cu2(OH)2CO3 (分解生成三种氧化物的物质) 6、有机物:甲烷、CNG、沼气、天然气的主要成份:CH4 乙醇、酒精:C2H5OH 葡萄糖:C6H12O6 甲醇:CH3OH 有毒、致失明、死亡 乙酸、醋酸(16.6 'C冰醋酸)CH3COOH (具有酸的通性) 二、常见物质的颜色和状态 1、白色固体:MgO、P2O5、CaO、NaOH、Ca(OH) 2、KCIO 3、KCI、Na2CO3、NaCI、无水 CuSO4、铁、镁为银白色(汞为银白色液态) 2、黑色固体:石墨、炭粉、铁粉、CuO、MnO2、Fe3O4 ▲KMnO 4为紫黑色 3、红色固体:Cu、Fe2O3、HgO、红磷▲ Fe(OH)3为红褐色 4、蓝色固体:硫酸铜晶体(胆矶)、氢氧化铜 ▲硫:淡黄色▲ 碱式碳酸铜CU2(OH)2CO3为绿色 5、溶液的颜色:凡含Cu2+的溶液呈蓝色;凡含Fe2+的溶液呈浅绿色;凡含Fe3+的溶液呈棕黄色,高锰酸钾溶液为紫红色;其余溶液一般无色。 6、沉淀(即不溶于水的盐和碱):

大学物理化学公式集[整理版]9页word文档

大学物理化学公式集 热力学第一定律 热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。 热容 C =δQ/dT (1)等压热容:C p =δQ p /dT = (?H/?T )p (2)等容热容:C v =δQ v /dT = (?U/?T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2 常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差: (1)任意体系 C p —C v =[p +(?U/?V )T ](?V/?T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程: pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=1 1 -γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1 nR -δ(T 1—T 2) 热机效率:η= 2 1 2T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=1 21 T T T - 实际气体的ΔH 和ΔU : ΔU =dT T U V ??? ????+dV V U T ??? ???? ΔH =dT T H P ??? ????+dp p H T ???? ???? 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑B B γRT 化学反应热效应与温度的关系:()()()dT B C T H T H 2 1 T T m p B 1m r 2m r ? ∑??,+=γ 热力学第二定律 Clausius 不等式:0T Q S B A B A ≥?∑ →δ— 熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:A =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:

物理化学界面现象知识点

279 界面现象 1. 表面张力、表面功及表面吉布斯函数 表面张力γ:引起液体或固体表面收缩的单位长度上的力,单位为N·m -1。 表面功:'δ/d r s W A ,使系统增加单位表面所需的可逆功,单位为J·m -2。 表面吉布斯函数:B ,,()(/)s T p n G A α??,恒温恒压下系统增加单位表面时所增加的吉布斯 函数,单位为J·m -2。 表面吉布斯函数的广义定义: B()B()B()B(),,,,,,,,( )()()()S V n S p n T V n T p n s s s s U H A G A A A A ααααγ????====???? ',r s T p s W dA dG dA γδ== 表面张力是从力的角度描述系统表面的某强度性质,而表面功及表面吉布斯函数则是从能量角度和热力学角度描述系统表面的某一性质。三者虽为不同的物理量,但它们的数值及量纲等同的,均可化为N·m -1。 在一定温度、压力下,若系统有多个界面,其总界面吉布斯函数: s i i s i G A γ=∑ 2. 弯曲液面的附加压力、拉普拉斯方程 附加压力:Δp =p 内-p 外 拉普拉斯方程:2p r γ?= 规定弯曲液面凹面一侧压力位p 内,凸面一侧压力位p 外;γ为表面张力;r 为弯曲液面的曲率半径,△p 一律取正值;附加压力方向总指向凹面曲率半径中心。 3. 毛细现象 毛细管内液体上升或下降的高度 2cos h r g γθρ= 式中:γ为表面张力;ρ为液体密度;g 为重力加速度;θ为接触角;r 为毛细管半径。当液体不能润湿管壁,θ>90°即0cos θ<时,h 为负值,表示管内凸液体下降的深度。 4. 微小液滴的饱和蒸汽压——开尔文公式

大学物理化学知识整理

第一章 理想气体 1、理想气体:在任何温度、压力下都遵循PV=nRT 状态方程的气体。 2、分压力:混合气体中某一组分的压力。在混合气体中,各种组分的气体分子分别占有相同的体积(即容器的总空间)和具有相同的温度。混合气体的总压力是各种分子对器壁产生撞击的共同作用的结果。每一种组分所产生的压力叫分压力,它可看作在该温度下各组分分子单独存在于容器中时所产生的压力B P 。 P y P B B =,其中∑=B B B B n n y 。 分压定律:∑=B B P P 道尔顿定律:混合气体的总压力等于与混合气体温度、体积相同条件下各组分单独存在时所产生的压力的总和。 ∑=B B V RT n P ) /( 3、压缩因子Z Z=)(/)(理实m m V V 4、范德华状态方程 RT b V V a p m m =-+ ))((2 nRT nb V V an p =-+))((22 5、临界状态(临界状态任何物质的表面张力都等于0) 临界点C ——蒸气与液体两者合二为一,不可区分,气液界面消失; 临界参数: (1)临界温度c T ——气体能够液化的最高温度。高于这个温度,无论如何加压 气体都不可能液化; (2)临界压力c p ——气体在临界温度下液化的最低压力; (3)临界体积c V ——临界温度和临界压力下的摩尔体积。 6、饱和蒸气压:一定条件下,能与液体平衡共存的它的蒸气的压力。取决于状

态,主要取决于温度,温度越高,饱和蒸气压越高。 7、沸点:蒸气压等于外压时的温度。 8、对应状态原理——处在相同对比状态的气体具有相似的物理性质。 对比参数:表示不同气体离开各自临界状态的倍数 (1)对比温度c r T T T /= (2)对比摩尔体积c r V V V /= (3)对比压力c r p p p /= 9、r r r c r r r c c c T V p Z T V p RT V p Z =?= 10、压缩因子图:先查出临界参数,再求出对比参数r T 和r p ,从图中找出对应的Z 。 11、阿玛格定律:B B Vy V = p RT n V B B /= 12、单原子理想气体 R C m p 25,= ,双原子理想气体R C m p 27,= 第二章 热力学第一定律 1、热力学第一定律:自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递过程中能量的总和不变,△U=Q+W (适用于非开放系统)。 2、 广度性质(有加和性):U,H,S,G,A,V 系统的某一性质等于各部分该性质之和 强度性质(无加和性):P,T 系统中不具加和关系的性质 3、恒容热:U Q v ?=(dV=0,W ’=0) 恒压热:H Q p ?=(dP=0,W ’=0),非体积功不为0时'W H Q p -?=

相关文档
最新文档