主成分分析的计算步骤

合集下载

统计学中的主成分分析

统计学中的主成分分析

统计学中的主成分分析主成分分析(Principal Component Analysis, PCA)是一种多变量分析方法,用于降维和数据可视化。

它通过将原始数据转换为新的坐标系,使得转换后的数据能够保留原始数据的主要变化趋势,并且可以按照重要性进行排序。

在本文中,将介绍主成分分析的原理、应用场景和步骤。

一、主成分分析原理主成分分析的核心是寻找数据中的主要变化趋势,即找到数据中的主成分。

主成分是数据最大方差方向上的投影,也即是能够解释数据中最大不同的变量。

对于一个具有p个变量的数据集,主成分分析可以得到p个主成分,按照重要性递减排序。

通过选择适当数量的主成分,可以实现对数据的降维和可视化。

主成分分析的计算过程可以通过特征值分解或奇异值分解来实现。

特征值分解会得到数据的特征向量和特征值,而奇异值分解则可以直接得到主成分。

在实际应用中,奇异值分解是更常用的方法。

二、主成分分析的应用场景主成分分析广泛应用于各个领域,包括金融、生物学、社会科学等。

下面将介绍主成分分析在这些领域的具体应用。

1. 金融:主成分分析常用于资产组合管理和风险管理。

通过将各种金融数据进行主成分分析,可以获得具有代表性的主成分,从而有效降低资产组合的维度,减少投资组合中的相关风险。

2. 生物学:主成分分析可以应用于基因表达数据的分析。

通过主成分分析,可以从大量的基因表达数据中提取出基因表达的主要变化趋势,帮助研究人员理解基因与表型之间的关系。

3. 社会科学:主成分分析可以用于社会调查数据的分析。

通过对调查数据进行主成分分析,可以发现不同变量之间的相关性,进而揭示不同因素对于社会问题的影响程度。

三、主成分分析的步骤主成分分析的步骤通常包括以下几个步骤:1. 数据标准化:对原始数据进行标准化处理,将不同量级的变量转化为标准差为1的变量。

这一步骤是为了消除变量间的量纲差异。

2. 计算协方差矩阵:根据标准化后的数据计算协方差矩阵,用于度量变量之间的相关性。

主成分分析法的原理应用及计算步骤

主成分分析法的原理应用及计算步骤

F1 a11 X1 a21 X 2 ... a p1 X p
,由数学知识可知,每一个主成分所提取的信息量可
用其方差来度量,其方差 Var(F1)越大,表示 F1 包含的信息越多。常常希望第 一主成分 F1 所含的信息量最大,因此在所有的线性组合中选取的 F1 应该是 X1, X2,…,XP 的所有线性组合中方差最大的,故称 F1 为第一主成分。如果第一主 成分不足以代表原来 p 个指标的信息,再考虑选取第二个主成分指标 F2,为有 效地反映原信息,F1 已有的信息就不需要再出现在 F2 中,即 F2 与 F1 要保持独 立、不相关,用数学语言表达就是其协方差 Cov(F1, F2)=0,所以 F2 是与 F1 不
U1 称为第一主成分,U2 称为第二主成分,…,Up 称为第 p 主成分。 5 、对 m 个主成分进行综合评价 对 m 个主成分进行加权求和,即得最终评价值,权数为每个主成分的方差贡献率。
一、主成分分析基本原理 概念: 主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析 方法。从数学角度来看,这是一种降维处理技术。 思路:一个研究对象,往往是多要素的复杂系统。变量太多无疑会增加分析 问题的难度和复杂性, 利用原变量之间的相关关系,用较少的新变量代替原来较 多的变量, 并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这 样问题就简单化了。 原理:假定有 n 个样本,每个样本共有 p 个变量,构成一个 n×p 阶的数据 矩阵,
l (Zi ,X j ) i aij (i 1, 2,
, m; j 1, 2,
, p)
在 SPSS 软件中主成分分析后的分析结果中, “成分矩阵”反应的就是主成分 载荷矩阵。 (5)计算主成分得分 计算样品在 m 个主成分上的得分:

主成分分析步骤

主成分分析步骤

主成分分析步骤1.了解数据:首先,在进行主成分分析之前,我们需要对研究的全部数据进行充分了解和分析,了解数据内包含的变量和观测范围,包括变量的类型和样本量(数据表覆盖的观测次数)。

在确定了数据内容及相关参数之后,可以进行下一步工作。

2.准备数据:主成分分析需要对数据进行统计处理,以去除数据间的相关性。

我们需要使用描述统计和回归分析来检验数据与主成分之间的相关性,并量化这种相关性。

3.标准化数据:一旦数据集准备完毕,就要将每个变量标准化--具体地说,就是计算每个变量的平均值和标准差,并将每个变量减去其平均值,然后除以其标准差,使每个变量平均为0,标准差为1,构成标准化数据集。

4.分解协方差矩阵:在执行主成分分析之前,要求将数据集的所有变量的协方差矩阵进行分解,把它分解成各个主成分的特征值和特征向量。

特征向量是由基本主成分变量组成的一整组变量,特征值是这些变量之间的协方差。

5.计算对角化矩阵:对分解后的协方差矩阵进行对角化处理,得到最后的对角化矩阵。

该矩阵可用于显示主成分的方差分布和重要性。

6.计算新的特征向量:利用得到的对角化矩阵,可以计算出一组新的特征向量,被称为新主成分变量,即原始变量的映射。

7.提取主成分:对新生成的特征向量按照特征值的大小进行排序,以便确定我们可以提取出来的主成分的数量。

从新特征向量中抽取出较大特征值对应的特征向量,这些特征向量往往与原始变量之间存在较强的相关性。

8.数据转换:拥有了新生成的特征向量之后,就可以对数据集中的变量进行转换,即从原始变量转换成主成分变量。

完成这个转换后,可以利用统计分析法来探究新变量与数据集中其他变量之间的相关性,从而获得研究结果。

主成分分析法及其应用

主成分分析法及其应用

主成分分析法及其应用一、本文概述主成分分析法(Principal Component Analysis,简称PCA)是一种广泛应用于数据降维和特征提取的统计方法。

它通过正交变换将原始数据集中的多个变量转换为少数几个互不相关的主成分,这些主成分能够最大程度地保留原始数据集中的信息。

本文旨在全面介绍主成分分析法的基本原理、实现步骤以及在各个领域中的应用案例。

我们将详细阐述主成分分析法的数学基础和算法流程,包括协方差矩阵、特征值、特征向量等关键概念的计算方法。

然后,我们将通过实例演示如何使用主成分分析法进行数据降维和特征提取,以及如何通过可视化工具展示降维后的数据效果。

我们将探讨主成分分析法在机器学习、图像处理、生物信息学、社会科学等多个领域中的实际应用,展示其在数据分析和处理中的重要价值和潜力。

二、主成分分析法的基本原理主成分分析法(Principal Component Analysis,简称PCA)是一种在多个变量中找出主要影响因素,并通过降维技术把多个变量转化为少数几个互不相关的综合变量的统计方法。

这种方法在保持数据信息损失最小的原则下,通过正交变换将原始数据转化为一个新的坐标系统,使得在这个新的坐标系统中,任何数据的最大方差都投影在第一主成分上,第二大的方差都投影在第二主成分上,以此类推。

变量降维:在多数情况下,原始数据集中可能存在多个变量,这些变量之间可能存在相关性。

主成分分析通过构造新的变量(即主成分),这些新变量是原始变量的线性组合,并且新变量之间互不相关,从而将原始的高维数据空间降维到低维空间,实现数据的简化。

方差最大化:主成分分析的另一个重要原理是方差最大化。

这意味着,第一个主成分将捕获数据中的最大方差,第二个主成分捕获第二大方差,以此类推。

通过这种方式,主成分分析能够识别出数据中的主要变化方向和模式。

数据解释性:主成分分析生成的主成分是对原始数据的线性变换,因此,每个主成分都可以被解释为原始变量的某种组合。

主成分分析计算流程

主成分分析计算流程

主成分分析计算流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!主成分分析(Principal Component Analysis,PCA)是一种常用的数据分析方法,用于将多个相关变量转换为一组较少的不相关变量,这些不相关变量称为主成分。

主成分分析计算方法和步骤【范本模板】

主成分分析计算方法和步骤【范本模板】

主成分分析计算方法和步骤:在对某一事物或现象进行实证研究时,为了充分反映被研究对象个体之间的差异, 研究者往往要考虑增加测量指标,这样就会增加研究问题的负载程度。

但由于各指标都是对同一问题的反映,会造成信息的重叠,引起变量之间的共线性,因此,在多指标的数据分析中,如何压缩指标个数、压缩后的指标能否充分反映个体之间的差异,成为研究者关心的问题。

而主成分分析法可以很好地解决这一问题。

主成分分析的应用目的可以简单地归结为: 数据的压缩、数据的解释。

它常被用来寻找和判断某种事物或现象的综合指标,并且对综合指标所包含的信息给予适当的解释, 从而更加深刻地揭示事物的内在规律。

主成分分析的基本步骤分为: ①对原始指标进行标准化,以消除变量在数量极或量纲上的影响;②根据标准化后的数据矩阵求出相关系数矩阵 R;③求出 R 矩阵的特征根和特征向量; ④确定主成分,结合专业知识对各主成分所蕴含的信息给予适当的解释;⑤合成主成分,得到综合评价值。

结合数据进行分析本题分析的是全国各个省市高校绩效评价,利用全国2014年的相关统计数据(见附录),从相关的指标数据我们无法直接评价我国各省市的高等教育绩效,而通过表5-6的相关系数矩阵,可以看到许多的变量之间的相关性很高。

如:招生人数与教职工人数之间具有较强的相关性,教育投入经费和招生人数也具有较强的相关性,教工人数与本科院校数之间的相关系数最高,到达了0.963,而各组成成分之间的相关性都很高,这也充分说明了主成分分析的必要性。

表5-6 相关系数矩阵本科院校数招生人数教育经费投入相关性师生比0。

279 0。

329 0.252重点高校数0。

345 0。

204 0。

310教工人数0.963 0。

954 0。

896本科院校数 1.000 0.938 0.881招生人数0.938 1。

000 0。

893师生比重点高校数教工人数相关性师生比1。

000 —0。

218 0。

208重点高校数-0。

主成分分析法的原理应用及计算步骤

主成分分析法的原理应用及计算步骤

一、概述 在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。

而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。

为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。

为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。

主成分分析正是这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。

主成分分析以最少的信息丢失为前提,将众多的原有变量综合6210x 较少几个综合指标,通常综合指标(主成分)有以下几个特点:✍主成分个数远远少于原有变量的个数原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。

✍主成分能够反映原有变量的绝大部分信息因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。

✍主成分之间应该互不相关通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。

✍主成分具有命名解释性总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。

二、基本原理主成分分析是数学上对数据降维的一种方法。

其基本思想是设法将原来众多的具有一定相关性的指标X1,X2,…,XP (比如p 个指标),重新组合成一组较少个数的互不相关的综合指标Fm 来代替原来指标。

那么综合指标应该如何去提取,使其既能最大程度的反映原变量Xp 所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。

PCA主成分分析计算步骤

PCA主成分分析计算步骤

主成分分析( Principal Component Analysis , PCA )是一种掌握事物主要矛盾的统计分析方法,它可以从多元事物中解析出主要影响因素,揭示事物的本质,简化复杂的问题。

计算主成分的目的是将高维数据投影到较低维空间。

给定 n 个变量的 m 个观察值,形成一个 n*m 的数据矩阵, n 通常比较大。

对于一个由多个变量描述的复杂事物,人们难以认识,那么是否可以抓住事物主要方面进行重点分析呢?如果事物的主要方面刚好体现在几个主要变量上,我们只需要将这几个变量分离出来,进行详细分析。

但是,在一般情况下,并不能直接找出这样的关键变量。

这时我们可以用原有变量的线性组合来表示事物的主要方面, PCA 就是这样一种分析方法。

PCA 的目标是寻找 r ( r<n )个新变量,使它们反映事物的主要特征,压缩原有数据矩阵的规模。

每个新变量是原有变量的线性组合,体现原有变量的综合效果,具有一定的实际含义。

这 r 个新变量称为“主成分”,它们可以在很大程度上反映原来 n 个变量的影响,并且这些新变量是互不相关的,也是正交的。

通过主成分分析,压缩数据空间,将多元数据的特征在低维空间里直观地表示出来。

例如,将多个时间点、多个实验条件下的基因表达谱数据( N 维)表示为 3 维空间中的一个点,即将数据的维数从 RN 降到 R3 。

在进行基因表达数据分析时,一个重要问题是确定每个实验数据是否是独立的,如果每次实验数据之间不是独立的,则会影响基因表达数据分析结果的准确性。

对于利用基因芯片所检测到的基因表达数据,如果用 PCA 方法进行分析,可以将各个基因作为变量,也可以将实验条件作为变量。

当将基因作为变量时,通过分析确定一组“主要基因元素”,它们能够很好地说明基因的特征,解释实验现象;当将实验条件作为变量时,通过分析确定一组“主要实验因素”,它们能够很好地刻画实验条件的特征,解释基因的行为。

下面着重考虑以实验条件作为变量的 PCA 分析方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

样本观测数据矩阵为:
⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛=np n n p p x x x x x x x x x X ΛM M M M ΛΛ212222111211 第一步:对原始数据进行标准化处理
)var(*j j
ij ij x x x x -= ),,2,1;,,2,1(p j n i ΛΛ==
其中 ∑==n
i ij j x n x 1
1 21
)(11)var(j n
i ij j x x n x --=∑= ),,2,1(p j Λ=
第二步:计算样本相关系数矩阵
⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎣⎡=pp p p p p r r r r r r r r r R ΛM ΛM M ΛΛ212222111211 为方便,假定原始数据标准化后仍用X 表示,则经标准化处理后的数据的相关系数为:
tj n
t ti ij x x n r ∑=-=1
11 ),,2,1,(p j i Λ=
第三步:用雅克比方法求相关系数矩阵R 的特征值(p λλλΛ21,)和相应的特征向量()p i a a a a ip i i i ΛΛ2,1,,,21==。

第四步:选择重要的主成分,并写出主成分表达式
主成分分析可以得到p 个主成分,但是,由于各个主成分的方差是递减的,包含的信息量也是递减的,所以实际分析时,一般不是选取p 个主成分,而是根据各个主成分累计贡献率的大小选取前k 个主成分,这里贡献率就是指某个主成分的方差占全部方差的比重,实际也就是某个特征值占全部特征值合计的比重。


贡献率=∑=p i i
i

λ 贡献率越大,说明该主成分所包含的原始变量的信息越强。

主成分个数k 的选取,主要根据主成分的累积贡献率来决定,即一般要求累计贡献率达到85%以上,这样才能保证综合变量能包括原始变量的绝大多数信息。

另外,在实际应用中,选择了重要的主成分后,还要注意主成分实际含义解释。

主成分分析中一个很关键的问题是如何给主成分赋予新的意义,给出合理的解释。

一般而言,这个解释是根据主成分表达式的系数结合定性分析来进行的。

主成分是原来变量的线性组合,在这个线性组合中个变量的系数有大有小,有正有负,有的大小相当,因而不能简单地认为这个主成分是某个原变量的属性的作用,线性组合中各变量系数的绝对值大者表明该主成分主要综合了绝对值大的变量,有几个变量系数大小相当时,应认为这一主成分是这几个变量的总和,这几个变量综合在一起应赋予怎样的实际意义,这要结合具体实际问题和专业,给出恰当的解释,进而才能达到深刻分析的目的。

第五步:计算主成分得分
根据标准化的原始数据,按照各个样品,分别代入主成分表达式,就可以得到各主成分下的各个样品的新数据,即为主成分得分。

具体形式可如下。

⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛nk n n k k F F F F F F F F F ΛM M M M ΛΛ212222111211
第六步:依据主成分得分的数据,则可以进行进一步的统计分析
其中,常见的应用有主成份回归,变量子集合的选择,综合评价等。

相关文档
最新文档