概率实验一随机数的生成与蒙特卡洛随机模拟方法
通信系统仿真技术 第4章蒙特卡洛仿真与随机数产生

2014-7-16
22
通信系统仿真技术(第4章 蒙特卡洛仿真与随机数产生 )
4、舍选法 当随机变量的分布函数不存在封闭形式时,反 变换法难于使用,因此,出现了舍选法。 实现步骤: ①确定f(X)的最大值为C; ②产生在[0, 1]上产生均匀分布的独立随机变 量U1和U2; ③令U1=CU1; ④如果 CU1 f U 2 ,则输出 X=U2,否则,拒 收U2返回(2)。
X
U k 6.0
k 1
12
其中 k 1, 2, 12
说明:U(k)在[1,0]内均匀分布同时相互独立的随 机变量,其均值为0.5,方差为1/12。 取数值12是传统参数,它反映了产生速度与 “准确性”之间的折衷。
2014-7-16 25
通信系统仿真技术(第4章 蒙特卡洛仿真与随机数产生 )
2014-7-16 15
通信系统仿真技术(第4章 蒙特卡洛仿真与随机数产生 )
几何解释
F(Z) 1 Uk
F
Z
0
Zk
Z
2014-7-16
16
通信系统仿真技术(第4章 蒙特卡洛仿真与随机数产生 )
实例1、产生指数型分布随机变量的算法;
实例2、产生几何型分布随机变量的算法;
实例3、产生伽马型分布随机变量的算法;
4.2.2由任意概率密度函数生成随机数的方法
要求:准确性和快速性。
1、解析变换法
理论依据:以概率积分变换定理为基础,通过 对均匀分布随机变量U的变换,可以得到具有任意概 率密度函数的的随机变量Z。 产生步骤: ①产生在 [0,1]上均匀分布的独立随机变量U; ②根据Z的分布函数F(Z),输出 Z F 1 U 。
蒙特卡洛算法

蒙特卡洛的优缺点
优点 •蒙特卡洛方法直观易懂 •受几何条件限制小
•概率收敛与问题维数无关(解决高维问题)
•可同时处理类似问题
缺点
1. 较高精度的近似结果通常情况下很难获 得 2. 在解决处理较低维数的实际状况时,效果 可能不是很好,收敛速度较慢 3. 误差具有随机性(因为蒙特卡洛方法的 误差是在一定置信水平下估计的, 误差会 随着置信水平的不同而不同)
0
f
x dx
用常规的数值积分方法: 随着分段数量增加,误差将减小,近 似面积将逐渐逼近真实的面积 蒙特卡洛方法: 不需要将所有方柱的面积相加,而只 需要随机地抽取一些函数值,利用概 率论中所提到的几何概型可以算出函 数图像与x轴围成的面积,从而得到积 分的值。
圆周率求解
在平面上画一个半径r的圆 和边长为2r的正方形,让他 们的中心重合。随机的向正 方形内投点N次,观察投在 圆内的点的数目m。
•Normrnd(MU,SIGMA,m,n) 生成正态高斯分布的随机函数
其它函数
• Fix(x) : 截位取整,直接将小数部分舍去
(向零取整) • • • Floor(x) : 不超过x的最大整数(向下取整) Ceil(x) : 不小于x 的最小整数(向上取整) Round(x): 四舍五入取整
随机变量的抽样
3.1596
3.1553 3.1419 3.1415929
基本思想
由蒲丰试验可以看出,当所求问题的解是 某个事件的概率,或者是某个随机变量的 数学期望,或者是与概率、数学期望有关 的量时,通过某种试验的方法,得出该事 件发生的频率,或者该随机变量若干个具 体观察值的算术平均值,通过它得到问题 的解。这就是蒙特卡罗方法的基本思想。
概率实验一随机数的生成与蒙特卡洛随机模拟方法

•当研究对象视为大量相互独立的随机变量之和, 且其中每一种变量对总和的影响都很小时,可以 认为该对象服从正态分布。
4.产生 m n 阶期望值为 的指数分布的随机数矩阵: exprnd (,m, n )
•若连续型随机变量X的概率密度函数为
1 ex/ f (x) 0 x0 x0
一、随机数的产生
一)产生模拟随机数的计算机命令
在Matlab软件中,可以直接产生满足各种分布的随 机数,命令如下: 1.产生m*n阶(a,b)均匀分布U(a,b)的随机数矩阵: unifrnd (a,b,m, n) 产生一个[a,b]均匀分布的随机数: unifrnd (a,b) 当只知道一个随机变量取值在(a,b)内,但 不知道(也没理由假设)它在何处取值的概率大, 在何处取值的概率小,就只好用U(a,b)来模拟它。
实验一
随机数的产生及蒙特卡 洛随机模拟方法
实验目的
学习随机数的产生及蒙特卡洛随机模拟方法 的基本过程与方法。
实验内容
1、产生随机数的计算机命令。 2、蒙特卡洛随机模拟实例。
实验作业
数学模拟的方法
在一定的假设条件下,运用数学运算模拟系统 的运行,称为数学模拟。现代的数学模拟都是在计 算机上进行的,称为计算机模拟。 计算机模拟可以反复进行,改变系统的结构和 系数都比较容易。 在实际问题中,面对一些带随机因素的复杂系 统,用分析方法建模常常需要作许多简化假设, 与面临的实际问题可能相差甚远,以致解答根本 无法应用。这时,计算机模拟几乎成为唯一的选 择。
proguji = 0.5557
三)蒲丰投针实验:
法国科学家蒲丰(Buffon)在1777年提出 的蒲丰投针实验是早期几何概率一个非常 著名的例子。蒲丰投针实验的重要性并非 是为了求得比其它方法更精确的π 值,而 是它开创了使用随机数处理确定性数学问题的先河,
概率实验报告_蒙特卡洛积分

本科实验报告实验名称:《概率与统计》随机模拟实验随机模拟实验实验一设随机变量X 的分布律为-i P{X=i}=2,i=1,2,3......试产生该分部的随机数1000个,并作出频率直方图。
一、实验原理采用直接抽样法:定理:设U 是服从[0,1]上的均匀分布的随机变量,则随机变量-1()Y F U =与X 有相同的分布函数-1()Y F U =(为F(x)的逆函数),即-1()Y F U =的分部函数为()F x .二、题目分析易得题中X 的分布函数为1()1- ,1,0,1,2,3, (2i)F x i x i i =≤≤+=若用ceil 表示对小数向正无穷方向取整,则F(x)的反函数为产生服从[0,1]上的均匀分布的随机变量a ,则m=F -1(a)则为题中需要产生的随 机数。
三、MATLAB 实现f=[]; i=1;while i<=1000a=unifrnd(0,1); %产生随机数a ,服从【0,1】上的均匀分布 m=log(1-a)/log(1/2);b=ceil(m); %对m 向正无穷取整 f=[f,b]; i=i+1; enddisplay(f);[n,xout]=hist(f); bar(xout,n/1000,1)产生的随机数(取1000个中的20个)如下:-1ln(1-)()1ln()2a F a ceil ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦频率分布直方图实验二设随机变量X 的密度函数为24,0,()0,0x xe x f x x -⎧>=⎨≤⎩试产生该分布的随机数1000个,并作出频率直方图 一、实验原理取舍抽样方法,当分布函数的逆函数难以求出时,可采用此方法。
取舍抽样算法的流程为:(1) 选取一个参考分布,其选取原则,一是该分布的随机样本容易产生;二是存在常数C ,使得()()f x Cg x ≤。
(2) 产生参考分布()g x 的随机样本0x ; (3) 独立产生[0,1]上的均匀分布随机数0u ;(4) 若000()()u Cg x f x ≤,则保留x 0,作为所需的随机样本;否则舍弃。
蒙特卡洛法的基本原理

蒙特卡洛法的基本原理蒙特卡洛法(Monte Carlo method)是一种基于随机抽样的数值计算方法,用于解决难以通过解析方法或传统数学模型求解的问题。
它在物理学、化学、工程学、计算机科学、金融学、生物学等领域都有广泛应用。
本文将介绍蒙特卡洛法的基本原理,包括随机数生成、统计抽样、蒙特卡洛积分、随机漫步等方面。
一、随机数生成随机数是蒙特卡洛法中的基本元素,其质量直接影响着计算结果的准确性。
随机数的生成必须具有一定的随机性和均匀性。
常见的随机数生成方法有:线性同余法、拉斯维加斯法、梅森旋转算法、反序列化等。
梅森旋转算法是一种广泛使用的准随机数生成方法,其随机数序列的周期性长、随机性好,可以满足大多数应用的需要。
二、统计抽样蒙特卡洛法利用抽样的思想,通过对输入参数进行随机取样,来模拟整个系统的行为,并推断出某个问题的答案。
统计抽样是蒙特卡洛方法中最核心的部分,是通过对概率分布进行样本抽取来模拟随机事件的发生,从而得到数值计算的结果。
常用的统计抽样方法有:均匀分布抽样、正态分布抽样、指数分布抽样、泊松分布抽样等。
通过对这些概率分布进行抽样,可以在大量随机取样后得到一个概率分布近似于输入分布的“抽样分布”,进而求出所需的数值计算结果。
三、蒙特卡洛积分蒙特卡洛积分是蒙特卡洛法的重要应用之一。
它利用统计抽样的思想,通过对输入函数进行随机抽样,计算其随机取样后的平均值,来估算积分的值。
蒙特卡洛积分的计算精度与随机取样的数量、抽样分布的质量等因素有关。
蒙特卡洛积分的计算公式如下:$I=\frac{1}{N}\sum_{i=1}^{N}f(X_{i})\frac{V}{p(X_{i})}$$N$为随机取样的数量,$f(X_{i})$为输入函数在点$X_{i}$的取值,$V$为积分区域的体积,$p(X_{i})$为在点$X_{i}$出现的抽样分布的概率密度函数。
通过大量的样本拟合,可以估算出$I$的值接近于真实积分的值。
1_随机模拟与蒙特卡洛方法

随机模拟的应用: 报童问题
利润公式:
ra (n r )b, r n, L na, r n.
随机模拟的应用: 报童问题
产生服从经验概率分布的随机数 产生一[0,1]上的均匀分布的随机数U, Y=1000*U
300 350 400 450 r 500 550 600 650 700 0 Y<25 25 Y<75 75 Y<175 175 Y<350 350 Y<650 650 Y<825 825 Y<925 925 Y<975 975 Y 1000
表 船在港口的平均停留时间 船在港口的最长停留时间 船的平均等待时间 船的最长等待时间 114
3 79 96 88 126 115 223 61 173
248 224 205 171 371 57 24 41 35 71
175 152 155 122 309 0.1 5 0.1 9 0.1 2 0.1 4 0.1 7
随机模拟与蒙特卡洛方法
随机模拟与蒙特卡洛方法
模拟:把某一现实的或抽象的系统的部分状 态或特征用另一系统(称为模型)来代替或模 仿 计算机模拟在复杂系统或过程的研究中发挥 着越来超重要的作用 随机模拟和蒙特卡洛(Monte CarIo)方法
蒙特卡洛方法的基本思想
基本思想:把各种随机事件的概率特征 与 数学分析的解联系起来,用试验的方法确定 事件的相应概率与数学期望 特点:概率模型的解是由试验得到的,而不 是计算出来的。 作用:可以解决其它方法无法解决的实际问 题、对理论研究进行补充及辅助
为了分析码头的效率,我们考虑共有
n
条船到达码头卸货的情形,原则上讲,
蒙特卡罗法生成服从正态分布的随机数

《蒙特卡罗法生成服从正态分布的随机数》一、引言“蒙特卡罗法”这一词汇,源自于蒙特卡罗赌场,是一种通过随机抽样和统计模拟来解决问题的方法。
而生成服从正态分布的随机数,是在数理统计、金融工程、风险管理等领域中常常遇到的问题。
在本文中,我们将探讨如何利用蒙特卡罗法生成服从正态分布的随机数,从而可以更深入地理解这一方法并应用于实际问题中。
二、蒙特卡罗法的基本原理蒙特卡罗法是一种基于随机抽样的方法,通过对概率模型进行模拟实验来获取近似解。
对于生成服从正态分布的随机数,我们可以利用蒙特卡罗法来模拟正态分布的概率密度函数,从而得到符合正态分布的随机数。
在生成正态分布的随机数时,我们可以采用以下步骤:1. 生成服从均匀分布的随机数2. 利用反函数法将均匀分布的随机数转化为正态分布的随机数3. 进行模拟实验,不断调整参数,直至生成的随机数符合所需的正态分布三、蒙特卡罗法生成正态分布的随机数的具体步骤1. 生成服从均匀分布的随机数我们可以利用随机数发生器生成服从均匀分布的随机数。
均匀分布的概率密度函数为f(x) = 1,x∈[0,1]。
我们可以生成若干个0到1之间的随机数作为初始值。
2. 利用反函数法将均匀分布的随机数转化为正态分布的随机数利用反函数法,我们可以将服从均匀分布的随机数转化为服从正态分布的随机数。
正态分布的累积分布函数为Φ(x) = ∫(-∞,x) (1/√(2π) * exp(-t^2/2)dt,而其反函数可以通过查表或近似计算得到。
利用反函数法,我们可以将生成的均匀分布的随机数通过正态分布的反函数转化为符合正态分布的随机数。
3. 进行模拟实验,不断调整参数,直至生成的随机数符合所需的正态分布在生成的随机数不符合所需的正态分布时,我们可以不断地调整参数、增加模拟实验的次数,直至得到符合所需的正态分布的随机数。
四、总结与回顾通过蒙特卡罗法生成服从正态分布的随机数,我们可以发现这一方法的灵活性和强大性。
Monte-Carlo(蒙特卡洛方法)解析

常用的线性同余生成器
Modulus m 2^31-1
=2147483647
2147483399 2147483563
Multiplier a 16807
在 n 次中出现的频率。假如我们取 fn ( A) 作为 p P(A) 的估计,即 pˆ fn ( A) 。
然后取 ˆ
2l afn ( A)
作为
的估计。根据大数定律,当 n 时,
pˆ
fn ( A) a.s.
p.
从而有ˆ 2l P 。这样可以用随机试验的方法求得 的估计。历史上 afn ( A)
(2) 计算 X F -1(U ) ,则 X 为来自 F(x) 分布的随机数.
例 1 :设 X ~ U (a,b) ,则其分布函数为
0
F
(
x)
x b
a a
1,
xa a xb
xb
F -1( y) a (b a) y , 0 y 1
生成 U (0,1) 随机数 U,则 a (b - a)U 是来自
算法实现
许多程序语言中都自带生成随机数的方法, 如 c 中的 random() 函数, Matlab中的rand()函数等。 但这些生成器生成的随机数效果很不一样, 比如 c 中的函数生成的随机数性质就比较差, 如果用 c , 最好自己再编一个程序。Matlab 中的 rand() 函数, 经过了很多优化。可以产生性质很好的随 机数, 可以直接利用。
U (a,b) 的随机数。
例 2:
设 X ~ exp( ) 服从指数分布,则 X 的分布函数为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机数的产生及蒙特卡 洛随机模拟方法
实验目的
学习随机数的产生及蒙特卡洛随机模拟方法 的基本过程与方法。
实验内容
1、产生随机数的计算机命令。 2、蒙特卡洛随机模拟实例。
实验作业
数学模拟的方法
在一定的假设条件下,运用数学运算模拟系统 的运行,称为数学模拟。现代的数学模拟都是在计 算机上进行的,称为计算机模拟。 计算机模拟可以反复进行,改变系统的结构和 系数都比较容易。 在实际问题中,面对一些带随机因素的复杂系 统,用分析方法建模常常需要作许多简化假设, 与面临的实际问题可能相差甚远,以致解答根本 无法应用。这时,计算机模拟几乎成为唯一的选 择。
一)频率的稳定性模拟
1.事件的频率 在一组不变的条件下,重复作n次试验,记m是n次试验 中事件A发生的次数。 频率 f=m/n 2.频率的稳定性
④ 产生m×n阶均值为mu方差为sigma的正态分布的随 机数矩阵 normrnd(mu,sigma,m,n) 产生一个均值为mu方差为sigma的正态分布的随机数 normrnd(mu,sigma) ⑤ 产生m×n阶期望值为mu (mu=1/λ)的指数分布的随机 数矩阵 exprnd(mu,m,n) 产生一个期望值为mu的指数分布的随机数 exprnd(mu) 注意: 产生一个参数为λ的指数分布的随机数应输入 exprnd(1/λ)
补充:随机数的产生命令
MATLAB可以直接产生满足各种分布的随机数 具体命令如下: ① 产生m×n阶[0,1]上均匀分布的随机数矩阵 rand(m,n) 产生一个[0,1]上均匀分布的随机数 rand ② 产生m×n阶[a,b]上均匀分布的随机数矩阵 unifrnd (a,b,m, n) 产生一个[a,b]上均匀分布的随机数 unifrnd(a,b) ③ 产生一个1:n的随机排列(元素均出现且不重复) p=randperm(n) 注意: randperm(6)与unifrnd (1,6,1, 6)的区别
一、随机数的产生
一)产生模拟随机数的计算机命令
在Matlab软件中,可以直接产生满足各种分布的随 机数,命令如下: 1.产生m*n阶(a,b)均匀分布U(a,b)的随机数矩阵: unifrnd (a,b,m, n) 产生一个[a,b]均匀分布的随机数: unifrnd (a,b) 当只知道一个随机变量取值在(a,b)内,但 不知道(也没理由假设)它在何处取值的概率大, 在何处取值的概率小,就只好用U(a,b)来模拟它。
二、蒙特卡罗随机模拟
蒙特卡洛(Monte Carlo)方法是一种 应用随机数来进行计算机模拟的方法.此方法 对研究的系统进行随机观察抽样,通过对样本 值的统计分析,求得所研究系统的某些参数.
用蒙特卡洛方法进行计算机模拟的步骤:
[1] 设计一个逻辑框图,即模拟模型.这个框 图要正确反映系统各部分运行时的逻辑关系。 [2] 模拟随机现象.可通过具有各种概率分布 的模拟随机数来模拟随机现象.
⑥ 产生m×n阶参数为A1,A2,A3的指定分布'name'的随机数 矩阵 random('name',A1,A2,A3,m,n) 产生一个参数为为A1,A2,A3的指定分布'name'的随机数 random('name',A1,A2,A3) 举例: 产生2×4阶的均值为0方差为1的正态分布的随机数矩阵 random('Normal',0,1,2,4) 'name'的取值可以是(详情参见help random): 'norm' or 'Normal' / 'unif' or 'Uniform' 'poiss' or 'Poisson' / 'beta' or 'Beta' 'exp' or 'Exponential' / 'gam' or 'Gamma' 'geo' or 'Geometric' / 'unid' or 'Discrete Uniform' ……
-----
5.产生 m n 阶参数为 的泊松分布的随机数矩阵: poissrnd ( ,m, n)
•设离散型随机变量X的所有可能取值为0,1,2,…,且取 各个值的概率为
k e P ( X k ) , k 0 , 1 , 2 , ,
k !
其中 >0为常数,则称X服从参数为 的泊松分布。 •泊松分布的期望值为
•泊松分布在排队系统、产品检验、天文、物理等 领域有广泛应用。
6 产生1个参数为n,p的二项分布的随机数 binornd(n,p),产生mn个参数为n,p的二项分布的 随机数binornd(n,p,m,n) 。
掷一枚均匀硬币,正面朝上的次数 X 服 从参数为1,p的二项分布,X~B(1,p)
总结:常见分布的随机数产生语句
2.产生mm*nn阶离散均匀分布的随机数矩阵: R = unidrnd(N) R = unidrnd(N,mm,nn)
3.产生rnd ( , ,m, n)
产生一个均值为 ,标准差的正态分布的随机数: normrnd ( , )
•当研究对象视为大量相互独立的随机变量之和, 且其中每一种变量对总和的影响都很小时,可以 认为该对象服从正态分布。
4.产生 m n 阶期望值为 的指数分布的随机数矩阵: exprnd (,m, n )
•若连续型随机变量X的概率密度函数为
1 ex/ f (x) 0 x0 x0
其中 >0 为常数,则称X服从参数为 的指数分布。 •指数分布的期望值为
•排队服务系统中顾客到达间隔、质量与可靠性 中电子元件的寿命通常服从指数分布。
例 顾客到达某商店的间隔时间服从参数为 10(分钟)的指数分布(指数分布的均值为10)
指两个顾客到达商店的平均间隔时间是 10分钟.即平均10分钟到达1个顾客. 顾客到达 的间隔时间可用exprnd(10)模拟。