归一问题
归一问题

第八节归一问题归一问题,已知相关联的两种量,其中一种量改变,另一种量也随之改变,其变化规律是相同的,即一组对应量中一份的数量(单一量)是不变的,这类问题一般称为归一问题。
在解题中,如果求出单一量后,再根据乘法求出几份单一量是多少,这一类我们称它为正归一;如果求出单一量后,再用另一种量除以单一量,求出该总量含有几个单一量,这是逆归一问题。
根据单一量步骤的多少,又可分为一次归一和两次归一(复归一)。
解题方略:归一是一种解题思路。
解答归一问题的关键在于根据已知条件求出单一量,然后再以单一量为基准,进一步计算题目中所求的数。
归一问题基本数量关系:总数量÷总份数=单一量总数量÷单一量= 总份数单一量×总份数=总数量例题解析:例1、某工人5小时生产机器零件20个,8小时可以生产同样的零件多少个?解析:这是一道简单正归一问题,要想求8小时生产零件数,就得先求出一小时生产零件数,每小时生产零件是20÷5=4(个),8小时生产零件4×8=32(个)综合算式: 20÷5×8=32(个)…………8小时生产零件数答:8小时可以生产同样的零件32个。
例2、3辆汽车5趟可以运煤90吨,照这样计算,4辆汽车运7趟可以运多少吨煤?解析:这是一道二次归一问题,一辆汽车5趟可以运90÷3=30(吨)(归一),一辆汽车一趟可以运30÷5=6(吨)(再归一),4辆汽车一趟可以运6×4==24(吨),4辆汽车7趟可以运24×7=168(吨)综合算式:90÷3÷5×4×7=168(吨)…………4辆汽车7趟运煤答:4辆汽车运7趟可以运168吨煤。
练习题1、小丽看漫画书,2天看了40页,照这样计算,小丽一周能看多少页漫画?2、建筑队修铺一条公路,10天800米,照这样的速度,一个月能修路多少千米?3、一辆汽车匀速行驶在公路上,5分钟行驶了2000米,照这样的速度,1小时行驶多少千米?4、一只小松鼠5秒钟能剥4粒松子,照这样下去,它5分钟能剥多少粒松子?5、一打字员要打2000字的稿,3分钟打了300个字,照这样的速度,打完这份稿需多少小时?6、毛衣编织组,5人2天可编织100件毛衣,照这样计算,12人8天可编织多少件?7、某粮店刚运到大米2400袋,4人2小时搬卸了400袋大米,照这样计算,10人卸完剩下的大米还要几小时?8、苏老师带着100元钱去买课外书,45元能买5本语文课外书,70元能买7本数学课外书,这样的话,苏老师所带钱最多能买这两种书多少本?每种各多少本?9、一只蜗牛从一口10米深的井底往上爬,白天爬3米,晚上滑下2米,问蜗牛几天能爬出井口?10、一播种机,播种4亩玉米和6亩大豆共用7小时,播种4亩玉米和4亩大豆共用6小时,现在要播种5亩玉米和7亩大豆,共用多少小时?11、米丽买了一些笔记本和钢笔,已知买5个笔记本和2支钢笔共花了20元;买7个笔记本和2支钢笔共花了24元,现在要买10个笔记本和2支钢笔,要花多少钱?12、一裁缝做4条西裤用5米布,20个裁缝每人要做20条西裤,现在布料450米,是否够用?13、小雨早起去买菜,已知买4斤鸡蛋和3斤西红柿共花11元,买4斤鸡蛋和5斤西红柿共花13元,现在要买5斤鸡蛋和4斤西红柿,要花多少钱?14、某学徒制造一批零件,已知做9个阀门和22个齿轮需花费20个小时,做3个阀门和22个齿轮用14个小时,要制造7个阀门和18个齿轮,需花多少小时?15、三年级三个班一起做手工,折了200只纸鹤,一班和二班共折了90只,一班和三班共折了170只,三个班各折了多少只?16、某船从上游顺流直下,以100米÷分钟的速度行驶到了距上游3000米的港口,该船返回时比来时多用20分,问返程中船的速度。
归一问题

归一问题归一问题是一类典型应用题.这类问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题.解答归一问题的方法,叫做归一法.归一问题可以分为两种:一种是求总量的,叫做正归一问题;另一种是求份数的,叫做反归一问题.归一问题在日常生活和生产中经常遇到.例1某纺织厂有32台织布机,10天可织布4万米,后来改进操作规程,每台织布机每天多织5米,照这样的速度生产,如果该纺织厂又增加同样的织布机4台,20天可织布多少万米?分析:要求20天织布多少米,必须先求出改进操作规程前每天每台织布机织多少米,然后求出改进操作规程后每天每台织布机织多少米,就是“单一量”.这样便容易求出20天织布多少米.解:(1)改革操作规程前,每天每台织布机织布40000÷32÷10=125(米)(2)改进操作规程后,每天每台织布机织布125+5=130(米)(3)(32+4)台织布机,20天可织布130×(32+4)×20=93600(米)=9.36(万米)综合算式(40000÷32÷10+5)×(32+4)×20=(125+5)×36×20=130×36×20=93600(米)=9.36(万米)答:36台织布机,20天可织布9.36万米.例2某工厂一个车间,原计划20人4天做1280个零件,刚要开始生产,又增加了新任务,在工作效率相同的情况下,需要15个人7天才能全部完成,问增加了多少个零件?分析:要求增加了多少个零件,只需先求出每人每天生产多少个零件,然后求出15个人7天生产的零件数,最后用它减去1280个零件就可得出所要求的问题.解:(1)每人每天生产的零件数1280÷20÷4=16(个)(2)15人7天生产的零件数16×15×7=1680(个)(3)增加的零件数1680-1280=400(个)综合算式(1280÷20÷4)×15×7-1280=16×15×7-1280=1680-1280=400(个)答:增加了400个零件.例3某农场收割麦子,计划18人每天6小时15天收割完,后来为了加快速度,实际每天增加了9人,并且工作时间增加了2小时,实际比原计划提前了几天完成这项任务?分析:这题工作总量没有发生变化,只是人数和时间发生了变化.首先先求出工作总量,再求出实际工作的天数,便可以求出提前的天数.解:设一人工作一小时为一“工时”.(1)工作总量为18×6×15=1620(工时)(2)(18+9)人工作的小时数1620÷(18+9)=60(小时)(3)实际工作的天数60÷(6+2)=7.5(天)(4)实际比原计划提前的天数15-7.5=7.5(天)综合算式15-18×6×15÷(18+9)÷(6+2)=15-1620÷27÷8=15-7.5=7.5(天)答:实际比原计划提前了7.5天.例4一项工程预计28天完成,先由20个人去做8天,完成了工程的分析:要想求出需要增加多少名工人,只需先求出完成全部工程所需的减去原有人数,即为增加的工人数.解:设一人工作一天为一“日工”(1)完成全部工程所需的工作总量(2)剩余工程所需的工作量(3)在20天里完成剩余工程需要的工人数480÷(28-8)=24(人)(4)增加的工人数24-20=4(人)综合列式=480÷20-20=24-20=4(人)答:还需要增加4名工人.例5有一只闹钟和一只手表,已知闹钟走1小时,手表要多走30秒,又已知在1小时的标准时间里,闹钟少走30秒,问这只手表的时间准不准?每小时相差多少?分析:初看起来,手表比闹钟快30秒,闹钟比标准时间慢30秒,一快一慢都是30秒,刚好抵消.这是错误的,因为手表多走30秒是手表上的30秒,闹钟比标准时间少走30秒是闹钟上的30秒,手表比闹钟走得快,因此手表走30秒的时间比闹钟走30秒的时间短,两者无法抵消的.解这个问题的关键是先要计算在1小时(3600秒)的标准时间里闹钟走了多少秒,在这段时间里手表走了多少秒?与1小时(3600秒)的标准时间比较就可得出手表的误差.解:(1)标准时间走3600秒时,闹钟走了3600-30=3570(秒)(2)闹钟走3600秒时,手表走了3600+30=3630(秒)(3)闹钟走1秒时,手表走了3630÷3600=121÷120(秒)(4)标准1小时(闹钟走3570秒时),手表走了121÷120×3570=121×3570÷120=3599.75(秒)(5)手表比标准1小时慢3600-3599.75=0.25(秒)综合列式3600-(3600+30)÷3600×(3600-30)=3600-3630÷3600×3570=3600-3599.75=0.25(秒)答:这只手表每小时慢0.25秒.归一问题<练习题>1.修一段路计划16人20天完成,这16人工作了5天后,增加4人,如果这些人的工作效率相同,问提前几天完成修路任务?2.某饭店要安装空调240台,已知10名工程技术人员8小时能安装空调64台,现饭店要求安装公司在12小时内装完,需要增派同样工作效率的技术人员多少名?3.某工程原计划42人12天(每天按8小时工作)完成,工作7天后因支援其他紧急任务调走了12人,那么剩下的工作还要几天才能完成?若要求按原定日期完工,那么每天得工作多少小时?4.小强家住三层,从一层到三层需要走60秒钟,按此速度,从一层到六层需要多少秒钟?5.加工9600套服装,30人10天完成了3600套,又增加了20人,剩下的还需要几天完成?答案仅供参考:1.设一人工作一天为一“日工”.(1)修这段路的工作总量为:16×20=320(日工)(2)修了5天,还剩的工作量为:320-16×5=240(日工)(3)剩下的工作量(16+4)人需做的天数:240÷(16+4)=12(天)(4)提前的天数:20-(12+5)=3(天)综合列式:20-[(16×20-16×5)÷(16+4)+5]=20-[(320-80)÷20+5]=20-(12+5)=3(天)2.(1)一名技术人员1小时安装空调:64÷10÷8=0.8(台)(2)240台空调12小时装完,需要技术人员为:240÷12÷0.8=25(人)(3)需要增加技术人员:25-10=15(名)综合列式:240÷12÷(64÷10÷8)-10=20÷0.8-10=25-10=15(名)3.设1人工作一天为一“日工”.(1)工程的工作总量为:42×12=504(日工)(2)工作7天后,还剩工作量为:504-42×7=504-294=210(日工)(3)剩下的工作量(42-12)人做,需要的天数:210÷(42-12)=7(天)再求第二问:设一人工作一小时为一“工时”.(1)剩下的工作量用“工时”表示为:210×8=1680(工时)(2)按期完成,每天需要工作:1680÷(42-12)÷(12-7)=11.2(小时)第二问另解:(1)42人每天工作8小时一天可完成的工时是:42×8=336(工时)(2)要按期完成,剩下的30人每天必须完成336个工时所以每天工作时间为:336÷30=11.2(小时)综合算式,第一问:(42×12-42×7)÷(42-12)=7(天)第二问:42×8÷30=11.2(小时)4.(1)小强从一层到三层需走60秒钟,则上每层楼需要的时间为:60÷2=30(秒)(2)从一层到六层需走的时间为:30×(6-1)=150(秒)5.(1)每人每天生产服装:3600÷30÷10=12(套)(2)剩下的需要完成的天数:(9600-3600)÷[(30+20)×12]=10(天)综合列式:(9600-3600)÷[(30+20)×(3600÷30÷10)]=6000÷[50×12] =6000÷600=10(天)。
归一问题的应用题30道

归一问题的应用题30道1. 一个班级有30个学生,他们的数学成绩分别是60,70,80,90,95,85,75,65,70,75,85,90,80,85,90,95,75,80,85,90,95,85,75,65,70,75,85,90,80,85,90,95,求这些成绩的归一化值。
2. 一家公司有30名员工,他们的工资分别是3000,3500,4000,4500,5000,5500,6000,6500,7000,7500,8000,8500,9000,9500,10000,10500,11000,11500,12000,12500,13000,13500,14000,14500,15000,15500,16000,16500,17000,17500,18000,18500,求这些工资的归一化值。
3. 一辆汽车在30秒内的速度分别是20km/h,25km/h,30km/h,35km/h,40km/h,45km/h,50km/h,55km/h,60km/h,65km/h,70km/h,75km/h,80km/h,85km/h,90km/h,95km/h,100km/h,105km/h,110km/h,115km/h,120km/h,125km/h,130km/h,135km/h,140km/h,145km/h,150km/h,155km/h,160km/h,165km/h,170km/h,求这些速度的归一化值。
4. 一个班级有30个学生,他们的身高分别是150cm,155cm,160cm,165cm,170cm,175cm,180cm,185cm,190cm,195cm,200cm,205cm,210cm,215cm,220cm,225cm,230cm,235cm,240cm,245cm,250cm,255cm,260cm,265cm,270cm,275cm,280cm,285cm,290cm,295cm,300cm,求这些身高的归一化值。
归一问题

基础必备:1.庆庆在开心农场养了10头奶牛,5天产奶100千克。
(1)10头奶牛1天产奶多少千克?(2)1头奶牛5天产奶多少千克?(3)平均1头牛1天产奶多少千克?2.有4台吊车,7小时卸煤280吨。
(1)1台吊车7小时卸煤多少吨?(2)4台吊车1小时卸煤多少吨?(3)平均1台吊车1小时卸煤多少吨?3. 3台同样的磨面机1小时可磨面粉2400千克(1)这3台磨面机磨5小时可磨出多少千克面粉?(2)1台磨面机磨1小时可磨出多少千克面粉?(3)1台磨面机磨5小时可磨出多少千克面粉?4.某养猪场1头猪10天吃精饲料60千克(1)照这样计算50头猪10天吃多少千克精饲料?(2)照这样计算1头猪1天吃多少千克精饲料?(3)照这样计算50头猪1天吃多少千克精饲料?思路总结:【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路】先求出单一量,以单一量为标准,求出所要求的数量。
正归问题(归一问题)例1.王家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可产牛奶多少千克?思路总结:________________________________________________________________例2 一个养鸡场有鸡180只,每20只鸡5天要喂饲料25千克,现库存2700千克饲料,这些饲料可以喂多少天?思路总结:________________________________________________________________例33台同样的磨面机2.5小时可磨面2400千克,8台这样的磨面机磨25600千克面粉需要多少时间?思路总结:________________________________________________________________例44台吊车7小时卸煤1414吨,如果增加同样的5台吊车,8小时共可卸煤多少吨?思路总结:________________________________________________________________例5原来3台搅拌机8小时可以搅拌混凝土24吨,现因工期紧,又增加了两台同类型的搅拌机,24小时可以比原来多搅拌出多少吨混凝土?思路总结:________________________________________________________________例64辆大卡车运沙土,7趟共运走沙土336吨,现在有沙土420吨,要求5趟运完。
小学应用题类型——归一归总问题

归一归总问题知识点拨知识点说明:一、归一问题归一问题是一类典型应用题,这类问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题,解答归一问题的方法叫做归一法。
归一问题可以分为两种:一种是求总量的,求出一个单位量之后,然后利用乘法求出结果,这种问题叫做正归一问题(也称正归一);如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?解决此类问题的关键是先求出单位数量,再求几个单位数量是多少;另一种是求份数的,求出一个单位量后,再用包含除法求出所求的结果,这类问题叫做反归一问题(也称反归一)。
如:修路队6小时修路180千米,照这样,修路240千米需几小时?解决此类问题的关键是先求出单位数量,再求一共包含多少个单位数量?正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,反归一是求包含多少个单一量.解答归一问题的关键是求出单位量的数值,再根据题中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。
有的问题一次归一不能解决,需要两次归一或与倍比相结合才能解决。
归一问题的基本关系式:总工作量=每份的工作量(单一量)⨯份数 (正归一)份数=总工作量÷每份的工作量(单一量) (反归一)每份的工作量(单一量) =总工作量÷份数二、归总问题与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果.所谓“总量”是指总路程、总产量、工作总量、物品的总价等.归一问题【例1】一只小蜗牛6分钟爬行12分米,照这样的速度,30分钟爬行多少分米?解析:本题属于正归一,有两种解题思想﹙方法一﹚归一思想:为了求出蜗牛30分钟爬多少分米,必须先求出1分钟爬多少分米﹙单一数﹚,“照这样的速度”说明小蜗牛每分钟爬行的速度是相等的,然后以这个数目为依据按要求算出结果。
三年级数学归一问题和归总问题

一、引言在三年级数学课程中,归一问题和归总问题是两个常见而重要的概念。
通过这两个概念,学生可以培养归纳和总结的能力,培养逻辑思维和解决问题的能力。
本文将对三年级数学中的归一问题和归总问题进行介绍和解析,以帮助学生更好地理解和掌握这些概念。
二、归一问题1.1 什么是归一问题归一问题是指将一个整体分解成若干个部分,然后按照一定的规律重新组合成原来的整体。
在这个过程中,学生需要观察、分析和归纳,培养逻辑思维和解决问题的能力。
1.2 归一问题的例子举例来说,假如一个盒子里有12颗糖果,老师让学生分成三组,每组有几颗糖果,这就是一个典型的归一问题。
学生需要计算出每组有几颗糖果,然后将它们重新组合成原来的12颗糖果。
1.3 归一问题的解决方法学生可以通过绘图、列式、分组或其他方法来解决归一问题。
在解决问题的过程中,学生需要注意观察规律,运用数学知识进行分析和计算,最终得出正确答案。
三、归总问题2.1 什么是归总问题归总问题是指将一些零散的信息或现象按照一定的规律进行总结和分类,以便更好地理解和掌握这些信息或现象。
通过归总,学生可以培养整理和总结的能力,培养系统性思维和分析问题的能力。
2.2 归总问题的例子举例来说,假如老师让学生总结小学三年级所有学过的数字,包括自然数、负数、小数、分数等,这就是一个典型的归总问题。
学生需要按照不同的规律进行分类和总结,以便更好地理解和记忆这些数字。
2.3 归总问题的解决方法学生可以通过绘图、表格、分类、总结或其他方法来解决归总问题。
在解决问题的过程中,学生需要注意分类规律,进行信息整合和比对,最终得出清晰和系统的总结结果。
四、归一问题和归总问题的通信3.1 归一问题和归总问题的共同点归一问题和归总问题都需要学生观察、分析、归纳和总结,培养学生的逻辑思维和解决问题的能力。
在解决这些问题的过程中,学生需要动脑筋、灵活思维,注重细节和整体,积极探索和实践,从而培养全面发展的学习能力。
归一问题

归一问题【数量关系】总量÷份数=1份数量正归一:1份数量×所占份数=所求几份的数量反归一:总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
典型例题:例1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?例2、3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?例3、张师傅计划加工552个零件。
前5天加工零件345个,照这样计算,这批零件还要几天加工完?(这是一道反归一应用题。
)例4、台磨粉机4小时可以加工小麦2184千克。
照这样计算,5台磨粉机6小时可加工小麦多少千克?(这是一道两次正归一应用题。
)例5、一个机械厂4台机床4.5小时可以生产零件720个。
照这样计算,再增加4台同样的机床生产1600个零件,需要多少小时?(这是两次反归一应用题。
)例6、一个修路队计划修路126米,原计划安排7个工人6天修完。
后来又增加了54米的任务,并要求在5天完工。
如果每个工人每天工作量一定,需要增加多少工人才如期完工?例7、用两台水泵抽水。
先用小水泵抽6小时,后用大水泵抽8小时,共抽水624立方米。
已知小水泵5小时的抽水量等于大水泵2小时的抽水量。
求大小水泵每小时各抽水多少立方米?例8、东方小学买了一批粉笔,原计划20个班可用40天,实际用了10天后,有10个班外出,剩下的粉笔,够在校的班级用多少天?变式提升1、加工一批39600件的大衣,30个人10天完成了13200件,其余的要求在15天内完成,要增加____人.2、一批产品,28人25天可以收割完,生产5天后,此项任务要提前10天完成,应增加_____人.3、某生产小组12个人,9天完成,零件1620个.现在有一批任务,零件数为2520个,问14个人要_____天完成.4、5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?5、某工厂一个车间,原计划20人4天做1280个零件,刚要开始生产,又增加了新任务,在工作效率相同的情况下,需要15个人7天才能全部完成,问增加了多少个零件?6、某农场收割麦子,计划18人每天6小时15天收割完,后来为了加快速度,实际每天增加了9人,并且工作时间增加了2小时,实际比原计划提前了几天完成这项任务?7、一个长方体的水槽可容水480吨.水槽装有一个进水管和一个排水管.单开进水管8小时可以把空池注满;单开排水管6小时可把满池水排空.两管齐开需多少小时把满池水排空?。
归一问题

归一问题是一类典型应用题,这类问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题,解答归一问题的方法叫做归一法。
归一问题可以分为两种:一种是求总量的,求出一个单位量之后,然后利用乘法求出结果,这种问题叫做正归一问题(也称正归一);如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?解决此类问题的关键是先求出单位数量,再求几个单位数量是多少;另一种是求份数的,求出一个单位量后,再用包含除法求出所求的结果,这类问题叫做反归一问题(也称反归一)。
如:修路队6小时修路180千米,照这样,修路240千米需几小时?解决此类问题的关键是先求出单位数量,再求一共包含多少个单位数量?正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,反归一是求包含多少个单一量.解答归一问题的关键是求出单位量的数值,再根据题中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。
有的问题一次归一不能解决,需要两次归一或与倍比相结合才能解决。
归一问题的基本关系式:总工作量每份的工作量(单一量)份数 (正归一)份数总工作量每份的工作量(单一量) (反归一)每份的工作量(单一量) 总工作量份数例1 :一只小蜗牛6分钟爬行12分米,照这样速度1小时爬行多少米?分析与解答:为了求出蜗牛1小时爬多少米,必须先求出1分钟爬多少分米,即蜗牛的速度,然后以这个数目为依据按要求算出结果。
解:①小蜗牛每分钟爬行多少分米? 12÷6=2(分米)② 1小时爬几米?1小时=60分。
2×60=120(分米)=12(米)答:小蜗牛1小时爬行12米。
小结:还可以这样想:先求出题目中的两个同类量(如时间与时间)的倍数(即60分是6分的几倍),然后用1倍数(6分钟爬行12分米)乘以倍数,使问题得解。
解:1小时=60分钟12×(60÷6)=12×10=120(分米)=12(米)或 12÷(6÷60)=12÷0.1=120(分米)=12(米)答:小蜗牛1小时爬行12米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四年级数学导学案(10 )
教学目标:
本讲主要学习归一及归总问题.通过本节课的学习,学生应了解归一及归总问题的类型,以及解决归一及归总问题的一般方法,掌握归一及归总问题的基本关系式,并会将这种方法应用到一些实际问题中.
教学重点:
解决归一及归总问题的一般方法
教学难点:
归一及归总问题的基本关系式
知识网络和知识点:
一、归一问题
归一问题是一类典型应用题,这类问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题,解答归一问题的方法叫做归一法。
归一问题可以分为两种:
一种是求总量的,求出一个单位量之后,然后利用乘法求出结果,这种问题叫做正归一问题(也称正归一);如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?解决此类问题的关键是先求出单位数量,再求几个单位数量是多少;
另一种是求份数的,求出一个单位量后,再用包含除法求出所求的结果,这类问题叫做反归一问题(也称反归一)。
如:修路队6小时修路180千米,照这样,修路240千米需几小时?解决此类问题的关键是先求出单位数量,再求一共包含多少个单位数量?
正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,反归一是求包含多少个单一量.
解答归一问题的关键是求出单位量的数值,再根据题中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。
有的问题一次归一不能解决,需要两次归一或与倍比相结合才能解决。
归一问题的基本关系式:
总工作量=每份的工作量(单一量)×份数 (正归一)
份数=总工作量÷每份的工作量(单一量) (反归一)
每份的工作量(单一量)=总工作量÷份数
【例1】某人步行,3小时行15千米,7小时行多少千米?
【巩固练习】
1、一艘轮船4小时航行108千米,照这样的速度,继续航行270千米,共需多少
小时?
2、小红骑车3分钟行600米,照这样的速度她从家到学校行了10分钟,小红家到
学校有多少米?
3、一个打字员15分钟打了1800个字,照这样的速度,1小时能打多少个字?
【例2】2台机器20分钟造纸80吨,照这样计算,1台机器1小时造纸多少吨?
【巩固练习】
1、三台同样的磨面机2.5时可以磨面粉2400千克,8台这样的磨面机磨25600千克面粉需要多少时间?
2、王家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可产牛奶多少千克?
3、名工人5小时加工零件90个,要在10小时完成540个零件的加工,需要工人多少名?
4、10辆小车和3辆卡车一次运货32吨,15辆小车和3辆卡车一次运货42吨.每辆卡车和每辆小车每次各运货多少吨?
【例题3】一个工人在森林中锯木头,他用8分钟把一根树干锯成了3段,那么把树干锯成8段需要多长时间?
【例题4】用一个杯子盛满水向一个空罐里倒水.如果倒进2杯水,连罐共重6千克;如果倒进5杯水,连罐共重9千克.这个空罐重多少千克?
【例题5】阿呆去商店买了2个笔袋,3支圆珠笔,用去25元;小新去商店买了1个笔袋,2支圆珠笔,用去14元;那么买1个笔袋,1支圆珠笔,分别需要多少元?
【巩固练习】
1、一个工人在森林中锯木头,他用40分钟把一根树干锯成了5段,如果保持工作速度不变,要把每段木头再锯成两段,还需要多少分钟?
2、学校买来一些足球和篮球.已知买3个足球和5个篮球共花了281元;买3个足球和7个篮球共花了355元.现在要买5个足球、4个篮球共花多少元?
3、2个篮球的价钱可以买6个排球,6个足球的价钱可以买3个篮球。
买排球、足球、网球各一个的价钱可以买1个篮球。
那么,买1个篮球的价格可以买多少个网球?
二、归总问题
与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果.所谓“总量”是指总路程、总产量、工作总量、物品的总价等。
例题精讲
【例1】8个人10天修路840米,照这样算,20人修4200米,要_____天.
【例2】一辆汽车从甲地开往乙地,每小时行60千米,5小时到达.若要4小时到达,则每小时需要多行多少千米?
【课堂巩固练习】
1、5个人2小时植树20棵,6个人3小时植树多少棵?
2、学校买4套课桌椅,共用去480元,如果买同样的课桌椅7套,共需多少钱?如果有3000元,可以买进这样的课桌椅多少套?
3、修一条公路,原计划60人工作,80天完成.现在工作20天后,又增加了30人,这样剩下的工作再用多少天可以完成?
【例3】甲、乙、丙三人在外出时买了8个面包,平均分给三个人吃.甲没有带钱,乙付了5个面包的钱,丙付了3个面包的钱.后来,甲带来了他应付的四元八角钱,请问,应还给乙、丙各多少钱?
【例4】某车间需要加工3960个零件,3个工人10小时加工了1320个,其余的要求在15小时内完成,需要增加多少个工人?
【课堂巩固练习】
1、家具厂生产一批桌椅,原计划每天生产30套,12天完成.实际只用原来时间的一半就完成了任务,那么实际每天比计划多生产多少套?
2、某工厂一个车间,原计划20人4天做1280个零件,刚要开始生产,又增加了新任务,在工作效率相同的情况下,需要15个人7天才能全部完成,问增加了多少个零件?
3、甲、乙两个打字员4小时共打字3600个.现在二人同时工作,在相同时间内,甲打字2450个,乙打字2050个.求甲、乙二人每小时各打字多少个?
课后巩固练习(1-6题为归一问题、6-10题为归总问题)
1、绿化队4天种树200棵,还要种400棵,照这样的工作效率,完成任务共需多少天?
2、44辆大卡车运沙土,7趟共运走沙土336吨。
现在有沙土420吨,要求5趟运完。
问:需要增加同样的卡车多少辆?
3、7辆“黄河牌”卡车6趟运走336吨沙土.现有沙土560吨,要求5趟运完,求需要增加同样的卡车多少辆?
4、3名工人5小时加工零件90个,要在10小时完成540个零件的加工,需要工人多少名?
5、10辆小车和3辆卡车一次运货32吨,15辆小车和3辆卡车一次运货42吨.每辆卡车和每辆小车每次各运货多少吨?
6、有A、B、C三种货物,甲购A物3件、B物5件、C物1件付款20元;乙购A物4件、B物7件、C物1件付款25元;丙购A、B、C三种货物各1件,应付多少元?
7、学校买4套课桌椅,共用去480元,如果买同样的课桌椅7套,共需多少钱?如果有3000元,可以买进这样的课桌椅多少套?
8、王师傅2小时加工了62个零件,照这样计算,他每天工作8小时可以加工多少个零
件?如果要加工372个零件,需要几小时?
9、学校买来一批粉笔,原计划18个班可用60天,实际用45天后,有3个班外出了,剩下的粉笔够用多少天?
10、某工厂一个车间,原计划20人4天做1280个零件,刚要开始生产,又增加了新任务,在工作效率相同的情况下,需要15个人7天才能全部完成,问增加了多少个零件?
信息反馈:
老师寄语:
家长意见:
家长签字:
学管师签字:。