预应力钢绞线坐标

合集下载

预应力钢绞线要求规范

预应力钢绞线要求规范

预应力钢绞线规预应力钢绞线规预应力砼连续梁结构整体性好、大跨度,减少桥面伸缩缝个数,在高速公路和城市快速路工程中得到广泛应用。

本文就几座预应力砼连续梁桥谈一下长束预应力质量控制的几个关键因素。

一、预应力钢绞线安装预应力钢束的孔道位置、钢绞线是否发生缠绞现象是质量控制的关键。

孔道位置不准确,改变了结构受力状态,如果曲线孔道标高变化段不圆顺还会增大预应力孔道摩阻损失,因此孔道位置准确与否直接关系到施工的预应力度能否与设计的预应力度相吻合,对结构安全和工程使用阶段是否会产生裂缝都有很深的影响。

多根钢绞线如果缠绞在一起,拉时各根钢绞线受力不均匀,增大了钢绞线之间的摩阻,造成预应力损失加大。

实际施工中很多施工单位并不重视这些细部工作,固定钢束的井字架位置不准确或不按照规和设计规定的间距布设,必然造成钢束位置与设计不符、有的还会在曲线变化段产生急弯(半径太小)或孔道局部偏差过大。

目前仍有小部分队伍使用人工进行穿束,尤其对多根钢绞线的长束重量很大,人工穿束费时费力,容易造成工人转动钢束穿进,使钢绞线互相缠绞在一起。

市某快速干道(高架桥)工程四标段共有九联连续梁,施工时固定钢束用的井字架间距为1米,梁高1.6米,因此竖弯变化量不大,间距满足要求,但是施工时由于工人工作不认真使井子架坐标不准确,并且采用人工穿束,束长在100米到120米不等。

拉时发现大部分钢束的伸长值与理论伸长值不符(有的比理论值少11%),拉过程中经常听到部钢束缠绞在一起后被拉开的声音,当时立即对设备进行检定,在设备没有问题的情况下设计单位、监理单位和施工单位开始对问题进行分析,其中钢绞线计算伸长值时采用实测弹性模量,μ、κ取值按规推荐值。

设计单位对结构进行重新验算,最后确定在保证拉力的情况下,伸长值误差保证在12%以,无疑降低了结构安全系数。

二、预应力钢绞线拉1、拉控制应力与伸长值拉控制应力能否达到设计规定值直接影响预应力效果,因此拉控制应力是拉中质量控制的重点,拉控制应力必须达到设计规定值,但是不能超过设计规定的最大拉控制应力。

GB/T 5224-1995预应力混凝土用钢绞线

GB/T 5224-1995预应力混凝土用钢绞线

预应力混凝土用钢绞线GB/T 5224-1995国家技术监督局1995-10-10批准1996-03-01实施前言本标准是根据国际标准ISO 6934—1:1991(E)与ISO 6934—4:1991(E),对GB 5224—85进行修定的,技术内容等效采用ISO 6934—4:1991(E).本标准在GB 5224—85的基础上,增加了1×2,1×3两种结构钢绞线,1×7结构钢绞线也按ISO 6934—4:1991(E)分成“标准型"和“模拔型”,提高了强度级别,同时也保留了某些重点用户的专用产品,重新制定了伸长率试验方法,并对电接头做了新的规定.本标准从生效之日起,代替GB 5224—85,但GB 5224-85可延长三年使用。

本标准的附录A、附录B都是标准的附录。

本标准由中华人民共和国冶金工业部提出。

本标准冶金工业部信息标准研究院归口.本标准由天津市预应力钢丝一厂,新华金属制品有限公司负责起草.本标准主要起草人:吴汝霖、段建华、彭继民、王芳、翟巧玲、封文华.本标准1985年7月18日首次发布。

1 范围本标准规定了预应力混凝土用钢绞线的尺寸、外形、重量、技术要求、试验方法、检验规则、包装、标志和质量证明书等。

本标准适用于由圆形断面钢丝捻成的做预应力混凝土结构、岩土锚固等用途的钢绞线。

2 引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。

本标准出版时,所示版本均为有效。

所有标准都会被修订,使用本标准的各方应探讨、使用下列标准最新版本的可能性.GB 228—87 金属拉伸试验方法GB/T 5223-1995 预应力混凝土用钢丝3 分类、代号3.1 预应力钢绞线按捻制结构分为:分类结构用两根钢丝捻制的钢绞线1×2用三根钢丝捻制的钢绞线1×3用七根钢丝捻制的钢绞线1×73.2 预应力钢绞线按其应力松弛性能分为:应力松弛级别代号Ⅰ级松弛ⅠⅡ级松弛Ⅱ4 尺寸、外形、重量及允许偏差4.1 预应力钢绞线的截面形状如图1、图2、图3所示.图1 1×2结构钢绞线图2 1×3结构钢绞线图3 1×7结构钢绞线Dg—钢绞线直径,mm;d0-中心钢丝直径,mm;d-外层钢丝直径,mm;A—1×3结构钢绞线测量尺寸,mm注:图1、图2、图3预应力钢绞线截面图。

预应力钢绞线施工常见问题及其处理方案

预应力钢绞线施工常见问题及其处理方案

预应力钢绞线施工常见问题及其处理方案作者:齐栋李涌来源:《建筑遗产》2013年第13期摘要:预应力钢绞线施工在我国各类桥梁施工中有着广泛应用,但在施工中有时会遇到钢绞线伸长量不足、滑丝、断丝、锚下开裂等情况,本文结合贵广铁路桂林北至定江左右客车联络线特大桥现浇梁施工提出了对预应力钢绞线施工中常见问题的处理方案,对确保预应力结构安全使用、最大限度发挥结构设计功能和使用寿命提供了经验。

关键词:预应力;钢绞线;常见问题;处理方案1 工程概况贵广铁路桂林北至定江左右客车联络线特大桥采用(62+104+62)m连续梁跨桂海高速公路,采用2-68m系杆拱跨桂黄公路。

本桥连续梁采用挂篮悬臂灌注法施工,系杆拱采用先梁后拱的施工方式,梁部采用支架现浇。

在现浇梁预应力钢绞线施工过程中出现了个别张拉束钢绞线伸长量不足、滑丝、断丝、锚下开裂等情况。

这些问题如不能有效预防和处置将直接关系到预应力筋的整体受力和梁体寿命,因此必须对这些质量问题进行分析,采取有效处理方案来保证工程质量。

2 预应力钢绞线伸长量不足2.1预应力张拉情况2-68m系杆拱梁部纵向预应力束采用9-15.2钢绞线,塑料波纹管成孔,内径70mm,外径83mm。

预应力束布置在顶、底板内,共设通长束51束,采用250吨张拉千斤顶单端张拉。

设计要求预应力张拉采用张拉力与伸长量双控,以张拉力为主,实际伸长量与设计伸长量差值控制在6%以内。

在张拉到底板束编号为N11-3左束时,张拉过程中听到了“嘭、嘭”的声音,结果发现钢绞线伸长量为211mm,仅为设计伸长量423mm的一半。

2.2原因分析造成钢绞线伸长量不足的原因很多,有千斤顶标定不准确或预应力管道定位不准确的原因,有预应力管道漏浆、堵塞的原因,有钢绞线缠绕增大摩阻力力的原因,有时也有可能设计计算使用的钢绞线的弹模值与实际使用的弹模值不相同的的原因,因此应及时分析原因,现从以下因素逐步排查寻找原因。

2.2.1检查张拉设备标定千斤顶及其配套的油表均在有效标定范围内,为保险起见,重新对千斤顶及配套油表进行标定,标定结果显示同原标定结果基本相同,可以排除是千斤顶和油表的问题。

17·8预应力钢绞线技术参数

17·8预应力钢绞线技术参数

17·8预应力钢绞线技术参数1. 导言预应力钢绞线是一种普遍应用于工程建设中的材料,其技术参数对于工程项目的安全性和耐久性至关重要。

本文将围绕17·8预应力钢绞线的技术参数展开讨论。

2. 17·8预应力钢绞线概述17·8预应力钢绞线是一种具有高强度和良好延展性的材料,广泛用于桥梁、建筑和水利工程等领域,用于增强混凝土构件的承载能力。

其主要材质为优质的高强度低松劲度的钢丝,经过预应力成型,其技术参数对于工程项目的质量和安全具有重要的影响。

3. 技术参数在17·8预应力钢绞线的应用中,其技术参数是至关重要的一环。

主要包括以下几个方面:- 强度参数:包括抗拉强度、屈服强度等。

这些参数直接影响着预应力钢绞线在工程中的承载能力和抗拉能力。

- 延展性参数:包括伸长率等。

良好的延展性能可以保证预应力钢绞线在受力过程中不易断裂,具有较高的安全性。

- 相对弹性模量:这是一个重要的弹性参数,可以反映预应力钢绞线在受力变形过程中的性能表现。

- 粘结性能参数:预应力钢绞线与混凝土的粘结性能对于工程结构的耐久性和安全性至关重要,需要进行严格的检测和评估。

4. 技术参数的重要性技术参数的重要性不言而喻。

它们直接影响着预应力钢绞线在工程中的实际表现,对于工程项目的安全性和耐久性具有决定性的作用。

合格的技术参数可以保证预应力钢绞线在工程中发挥最佳的作用,提高工程的质量和安全指数。

5. 技术参数的检测与评估为了保证17·8预应力钢绞线的技术参数符合要求,需要进行严格的检测与评估。

这包括对其强度、延展性、弹性模量以及与混凝土的粘结性能等进行全面的测试和分析,确保其达到国家标准和工程要求。

6. 结语17·8预应力钢绞线的技术参数对于工程项目的质量和安全具有重要的意义。

通过严格的检测与评估,确保其符合要求,可以有效提高工程结构的安全性和耐久性,对于工程建设具有重要的意义。

【精选】预应力钢束的布置

【精选】预应力钢束的布置

预应力钢束的布置 1)跨中截面及锚固端截面的钢束位置①.对于跨中截面,在保证布置预留管道构造要求的前提下,尽可能使钢束群重心的偏心距大些。

本算例采用内径70mm ,外径77mm 的预留铁皮波纹管,根据《公预规》9.1.1条规定,管道至梁底和梁侧净距不应小于3cm 及管道直径1/2。

根据《公预规》9.4.9条规定,水平净距不应小于4cm 及管道直径的0.6倍,在竖直方向可叠置。

根据以上规定,跨中截面的细部构造如图2-12所示。

由此可直接得出钢束群重心至梁底距离为:cm0.182)0.92(12.55.12=++=p a②.对于锚固端截面,钢束布置通常考虑下述两个方面:一是预应力钢束合力重心尽可能靠近截面形心,是截面均匀受压;二是考虑锚头布置的可能性,以满足张拉操作方便的要求。

为使施工方便,全部3束预应力钢筋均锚于梁端,如图2-12所示。

钢束群重心至梁底距离为:cm5931409550=++=p a图2-12 钢束布置图(尺寸单位:cm )a ) 预制梁端部;b ) 钢束在端部的锚固位置;c ) 跨中截面钢束位置2)其它截面钢束位置及倾角计算 ①钢束弯起形状、弯起角及其弯曲半径采用直线段中接圆弧线段的方式弯曲;为使预应力钢筋的预加力垂直作用于锚垫板,N1、N2和N3弯起角05.7=θ;各钢束的弯起半径为:mm R N 800001=;mm R N 250002=;mm R N 250003=。

由图2-12 a )可得锚固点到支座中心的水平距离xi a 为:cm 2535)tan7-(50-72a x321====x x a a②钢束各控制点位置的确定以N3号钢束为例,其起弯布置如图2-13所示。

图2-13 曲线预应力钢筋布置图(尺寸单位:mm )由0cot θ⋅=c L d 确定导线点距锚固点的水平距离mm 28485.7cot )125500(=⨯-= d L由)2/tan(02θ⋅=R L b 确定弯起点至导线点的水平距离 mm 163975.3tan 2500002=⨯=b L所以弯起点至锚固点的水平距离为mm 4486163928482=+=+=b d w L L L则弯起点至跨中截面的水平距离为mm L x w k 10204448614690)2502/29380(=-=--=根据圆弧切线的性质,图中弯止点沿切线方向至导线点的距离与弯起点至导线点的水平距离相等,所以弯止点至导线点的水平距离为mm 16255.7cos 1639cos 0021=⨯=⋅=θb b L L故弯止点至跨中截面的水平距离为mm 13468)1639162510204()(21=++=++b b k L L x同理可以计算N1、N2的控制点位置,将各钢束的控制参数汇总与表2-12。

钢绞线应力应变关系

钢绞线应力应变关系

5.预应力钢材应力—应变曲线和应力松弛(1) 应力—应变曲线碳素钢丝或钢绞线均属硬钢,其应力—应变曲线见下图。

当钢丝拉伸到超过比例极限σ p ( 习惯上采用残余应变为0.01% 时的应力) 后,σ-ε 关系呈非线性变化,没有明显的屈服点。

当钢丝拉伸超过σ 0.2 ( 残余应变为0.2%) 后,应变ε 增加较快;当拉伸至最大应力σ b 时,应变ε 继续发展,在σ-ε 曲线上呈现为一水平段,然后断裂。

(2) 应力松弛应力松弛是指钢材受到一定的张拉力之后,在长度保持不变的条件下,钢材的应力随时间的增长而降低的现象,其降低值称为应力松弛损失。

产生应力松弛的原因主要是由于金属内部位错运动使一部分弹性变形转达化为塑性变形引起的。

预应力钢材的松弛试验,应按国际预应力混凝土协会 (FIP) 等单位编制的《预应力钢材等温松弛试验实施规程》进行。

试件的初应力取0.6 σ b 、 0.7 σ b 和 0.8 σb ,环境温度为20 ± 1 ℃ ,在松弛试验机上分别读出不同时间的松弛损失率,试验应持续 1000h或持续一个较短的期间推算至1000h 的松弛率。

下图示出预应力钢丝和热处理钢筋的应力松弛试验算据,其松弛率与时间、钢种、温度的关系如下:①应力松弛初期发展较快,第一小时相当于1000h的15%~35%,以后逐渐减慢。

钢丝应力松弛损失率R t = A lgt+ B ,与时间t有较好的对数线性关系。

一年松弛损失率相当于1000h的12.5倍,50年松弛损失率为1000h的1.725倍;②钢丝和钢绞线的应力松弛率比热处理钢筋和精轧螺纹钢筋大;③初应力大,松弛损失也大。

当σi>0.7σb 时,松弛损失率明显增大,呈非线性变化;④随着温度的升高,松弛损失率急剧增加。

根据国外试验资料,40°C时1000h松弛损失率约为20°的1.5倍。

预应力钢材的应力松弛试验数据①一次张拉程序0→ σ i ;②超张拉程序;③超张拉程序0→1.03σi减少松弛损失的措施为:a. 采取超张拉程序比一次张拉程序0→ σ i,可关少松弛损失10%;也可采用0→1.03 σ i 超张拉程序,松弛损失率虽然增大了,但剩余预应力仍比0→ σ i 程序大。

预应力混凝土用钢绞线

预应力混凝土用钢绞线

预应力混凝土用钢绞线1 范围本标准规定了预应力混凝土用钢绞线的分类、尺寸呢、外形、质量及允许偏差、技术要求、试验方法、检验规则、包装、标志和质量证明书等。

本标准适用于由冷拉光园钢丝及刻痕钢丝捻制的用于预应力混凝土结构的钢绞线(以下简称钢绞线)。

2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。

凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否使用这些文件的最新版本。

凡是不注日期的引用文件,其最新版本适用于本标准。

GB/T 228 金属材料室温拉伸试验方法GB/T 5223 预应力混凝土用钢丝GB/T 10120—1996 金属应力松弛试验方法GB/T 175005 钢及钢产品交货一般技术要求YB/T 146 预应力钢丝及钢绞线用热轧盘条YB/T 170 制丝用非合金钢盘条3 术语和定义下列术语和定义适用于本标准3.1标准型钢绞线standard strand由冷拉光园钢丝捻制成的钢绞线。

3.2刻痕钢绞线indented strand由刻痕钢丝捻制成的钢绞线。

3.3模拔型钢绞线compact strand捻制后再经冷拔成的钢绞线。

3.4公称直径nominal diameter钢绞线外接圆直径的名义尺寸。

3.5稳定化处理stabilizing treatment为减少应用时的应力松弛,钢绞线在一定张力下进行的短时热处理。

4 分类和标记4.1 分类与代号钢绞线按结构分为5类,其代号为:用两根钢丝捻制的钢绞线1×2用三根钢丝捻制的钢绞线1×3用三根刻痕钢丝捻制的钢绞线1×3 I用七根钢丝捻制的标准型钢绞线1×7用七根钢丝捻制又经过模拔的钢绞线(1×7)C4.2 标记4.2.1 标记内容按本标准交货的产品标记应包括下列内容:预应力钢绞线,结构代号,公称直径,强度级别,标准号。

后张法钢绞线理论伸长值计算公式说明及计算示例

后张法钢绞线理论伸长值计算公式说明及计算示例

后张法钢绞线理论伸长值计算公式说明及计算示例后张法预应力钢绞线在张拉过程中,主要受到以下两方面的因素影响:一是管道弯曲影响引起的摩擦力,二是管道偏差影响引起的摩擦力,导致钢绞线张拉时,锚下控制应力沿着管壁向梁跨中逐渐减小,因而每一段的钢绞线的伸长值也是不相同的。

《公路桥梁施工技术规范》(JTJ 041-2000)中关于预应筋伸长值的计算按照以下公式:ΔL=(1)Pp=(2)式中:ΔL—各分段预应力筋的理论伸长值(mm);Pp—各分段预应力筋的平均张拉力,注意不等于各分段的起点力与终点力的平均值(N);L—预应力筋的分段长度(mm);Ap—预应力筋的截面面积(mm2);Ep—预应力筋的弹性模量(Mpa);P—预应力筋张拉端的张拉力,将钢绞线分段计算后,为每分段的起点张拉力,即为前段的终点张拉力(N);θ—从张拉端至计算截面曲线孔道部分切线的夹角之和,分段后为每分段中各曲线段的切线夹角和(rad);x—从张拉端至计算截面的孔道长度,整个分段计算时x等于L(m);k—孔道每束局部偏差对摩擦的影响系数(1/m),管道弯曲及直线部分全长均应考虑该影响;μ—预应力筋与孔道壁之间的磨擦系数,只在管道弯曲部分考虑该系数的影响。

从公式(1)可以看出,钢绞线的弹性模量Ep是决定计算值的重要因素,它的取值是否正确,对计算预应力筋伸长值的影响较大。

Ep的理论值为Ep=(1.9~1.95)×105Mpa,而将钢绞线进行检测试验,弹性模量则常出现Ep’=(1.96~2.04)×105Mpa的结果,这是由于实际的钢绞线的直径都偏粗,而进行试验时并未用真实的钢绞线面积进行计算,采用的是偏小的理论值代入公式进行计算,根据公式Ep=可知,若Ap 偏小,则得到了偏大的Ep ’值,虽然Ep ’并非真实值,但将其与钢绞线理论面积相乘所计算出的ΔL 却是符合实际的,所以要按实测值Ep ’进行计算。

公式(2)中的k 和μ是后张法钢绞线伸长量计算中的两个重要的参数,这两个值的的大小取决于多方面的因素:管道的成型方式、力筋的类型、表面特征是光滑的还是有波纹的、表面是否有锈斑,波纹管的布设是否正确,偏差大小,弯道位置及角度等等,各个因素在施工中的变动很大,还有很多是不可能预先确定的,因此,摩擦系数的大小很大程度上取决于施工的精确程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档