第二章 溶剂萃取1
合集下载
第二章 液液萃取

• 思考题
2020/3/12
19
(4)溶剂的回收
➢溶剂的损耗在成本控制中占据很重要的地位,有 的甚至占很大比重。必须回收。 ➢要求萃取剂对其他组分的相对挥发度大,且不形 成恒沸物,如果被萃物不挥发或挥发度很低,而萃 取剂为易挥发组分时,则萃取剂的汽化热要小,以 节省能源。(被萃物为液体和固体两种情况?)
夹带损失。例如:水溶解有机溶剂。
2020/3/12
15
(2) 萃取剂选择要点
① 选择性好:萃取剂对某种组分的溶解能力较大, 对另一种较小,表现为选择性系数大。 ② 萃取容量大:单位体积的萃取剂能萃取大量的目 的物,表现为分配系数大。 ③ 萃取剂与原溶剂的互溶度:二者最好互不溶解, 减少了溶剂分离的步骤。 ④ 萃取剂与原溶剂有较大的密度差,易与原料液相 分层不乳化、不产生第三相。萃取剂密度最好大于 原溶剂(?)
kA
yA xA
kB
yB xB
分配系数反映了被萃组分在两个平衡液相中的分配关系,
分配系数的值越大,被萃物越容易进入萃取相,萃取分离
效果越好。k与溶剂的性质和温度有关,在一定的条件下
为常数,应根据实验来测定;k=0,表示待萃取物不被萃
取,k=∞,表示完全被萃取。
2020/3/12
7
2. 选择性系数(分离系数)
2020/3/12
18
• 几种特殊溶剂:醋酸丁酯、丁醇、戊醇、丁酮、甲 基叔丁基醚、这些溶剂在水中或酸性水中溶解度不 大。适用于萃取在酸性水中溶解度大的物质。
• 普通含氧原子的溶剂在酸性溶液中,易与氢离子形 成氢键而易溶于水,而这些含氧的大分子溶剂由于 位阻大,阻碍了氢键的形成,故在水中溶解度小。
2020/3/12
2020/3/12
19
(4)溶剂的回收
➢溶剂的损耗在成本控制中占据很重要的地位,有 的甚至占很大比重。必须回收。 ➢要求萃取剂对其他组分的相对挥发度大,且不形 成恒沸物,如果被萃物不挥发或挥发度很低,而萃 取剂为易挥发组分时,则萃取剂的汽化热要小,以 节省能源。(被萃物为液体和固体两种情况?)
夹带损失。例如:水溶解有机溶剂。
2020/3/12
15
(2) 萃取剂选择要点
① 选择性好:萃取剂对某种组分的溶解能力较大, 对另一种较小,表现为选择性系数大。 ② 萃取容量大:单位体积的萃取剂能萃取大量的目 的物,表现为分配系数大。 ③ 萃取剂与原溶剂的互溶度:二者最好互不溶解, 减少了溶剂分离的步骤。 ④ 萃取剂与原溶剂有较大的密度差,易与原料液相 分层不乳化、不产生第三相。萃取剂密度最好大于 原溶剂(?)
kA
yA xA
kB
yB xB
分配系数反映了被萃组分在两个平衡液相中的分配关系,
分配系数的值越大,被萃物越容易进入萃取相,萃取分离
效果越好。k与溶剂的性质和温度有关,在一定的条件下
为常数,应根据实验来测定;k=0,表示待萃取物不被萃
取,k=∞,表示完全被萃取。
2020/3/12
7
2. 选择性系数(分离系数)
2020/3/12
18
• 几种特殊溶剂:醋酸丁酯、丁醇、戊醇、丁酮、甲 基叔丁基醚、这些溶剂在水中或酸性水中溶解度不 大。适用于萃取在酸性水中溶解度大的物质。
• 普通含氧原子的溶剂在酸性溶液中,易与氢离子形 成氢键而易溶于水,而这些含氧的大分子溶剂由于 位阻大,阻碍了氢键的形成,故在水中溶解度小。
2020/3/12
第二章_萃取分离

③丙酮:半极性,与水互溶,可脱脂、脱水,易 挥发易燃。
④乙醚:非极性,溶解选择性较强。 ⑤氯仿:非极性,溶解选择性较强。 ⑥石油醚:非极性,溶解选择性较强,常用作脱 脂剂。 ⑦甲醇、乙酸乙酯等。
(4)常用浸取辅助剂 凡加入浸取剂中能增加有效成分的溶解度及制品 的稳定性或能除去或减少某些杂质的试剂称为浸取辅 助剂。 浸取辅助剂作用: ①促进有效成分溶解。 ②增加制品稳定性。 ③减少杂质。
轻相(有机相) 萃取剂 重相(水相)
杂质 溶质 原溶剂
浓度 C
有机相
水相
时间 t
(2)反萃取:调节水相条件(如酸度和络合剂、 还原剂等),将目标产物从有机相转入水相的萃取操 产物或便于下一步分离操作的实施。
对一个完整的萃取过程,常在萃取与反萃取之间 增加洗涤操作:使杂质由有机相反萃到水相,而被萃 物仍留在有机相,目的是除去与目标产物同时进入有 机相中的杂质。
(3)扩散阶段 溶剂溶解有效成分后形成浓溶液具有较高渗透压, 形成扩散点,不停地向周围扩散其溶解的成分。 分子扩散:完全由于分子浓度不同而形成的扩散。 对流扩散:由于有流体的运动而加速扩散。 实际浸取过程两种扩散方式均有,而对流扩散对 浸取效率影响更大。
4、中药浸取类型 (1)单体成分提取。指单一成分的提取、分离、
(3)渗漉法。原料上端不断添加溶剂,溶剂渗过 药粉从下端出口流出,由此浸取出有效成分。
渗漉法的提取效果优于浸渍法。非组织结构药材 易软化成团、易堵塞,不宜用此法。
(4)水蒸汽蒸馏法。原料粉用适量水浸泡,加热 蒸馏或通过水蒸汽蒸馏,原料中具挥发性成分随水蒸 气而带出,经冷凝后分层,收集。
适于具挥发性、遇水蒸汽不破坏、难溶或不溶于 水的物质。
萃取 → 洗涤 → 反萃取
第二章-溶剂萃取

• ⑵萃取率(q),即萃取百分率 • 表示萃取平衡时,萃取剂的实际萃取能力,常用萃取率来表示。
•
萃取率q
=
被萃物在有机相中的量 被萃物在料液中的总量100%
• 令 C _平衡时有机相中的浓度
•
C_平衡时水相中的浓度
•
VS_有机相体积
•
VF_料液体积
• 令:VS R, R称为相比,
VF
•
∴
上式=
• 分子中有C=NOH结构,如N509(5,8_二乙基_7羟基_十二烷基_6_ 肟,相当于国外的Lix63;
• N510(2_羟基_5_十二烷基_二苯甲酮肟,相当于国外的Lix64。 • 二者都是萃铜的萃取剂。
、 • d Kelex型萃取剂
• 8_羟基喹咛的衍生物,例如:Kelex100,十二烯基_8_羟基喹咛,它可 从高浓度铜浸出液中萃取回收铜,萃取能力比Lix型强。
我国的萃取工业发展较国外稍迟一些,是在二十世纪六十年代开始的,但发展很 快。目前,我国有自己合成的新型萃取剂,有自己独特的萃取工艺,水平并不低 于国外。在我国,很多稀有金属的生产,某些有色金属的提取分离等都已应用该 法,这种方法所以能发展得如此快,主要是由于该法具有很多优点,如:分离效 率高、操作安全方便、生产成本低、作业易于连续化、自动化、生产量大等等。
析此时有机相中被萃物的量,即为饱和容量。
• 第二节 萃取基本原理
• 一、萃取过程的物理化学 • 1、萃取过程本质 • 在萃取过程中,要使物质从水相转入有机相,就必须使它从亲水性转变为疏
水性,使它从易溶于水相转变为易溶于有机相,萃取过程的实质就在于利用 物质的亲水性和疏水性的相互转化。
• 在湿法冶金的溶剂萃取中,金属离子大多是亲水性的极性物质,在水溶液中 大多以水合离子状态存在,要使它们从亲水性变为疏水性,就必然要使萃取 剂与金属的水合离子发生化学作用,萃取剂必须将部分或全部的金属离子周 围的水分子顶替出来,生成不带电荷的易溶于有机溶剂的化合物(多数是络
溶剂萃取分离法

小 结
• 1、同量的萃取剂,分多次萃取的效率 同量的萃取剂, 比一次萃取的效率高。 比一次萃取的效率高。 • 2、增加萃取次数将增大工作量,并将 增加萃取次数将增大工作量, 引起误差。 引起误差。
(三) 主要的萃取体系
概念:溶剂萃取体系是由水相和 概念:溶剂萃取体系是由水相和有机相 水相 组成的。 其中有机相被称为萃取剂; 组成的。①其中有机相被称为萃取剂; 萃取剂 ②萃取后的水相称为萃余液,③被萃入 萃取后的水相称为萃余液, 萃余液 到有机相中的物质称为萃合物。 到有机相中的物质称为萃合物。 萃合物 分类:根据萃合物分子性质的不同, 分类:根据萃合物分子性质的不同,萃 取体系可分为螯合物萃取、 取体系可分为螯合物萃取、离子缔合物 螯合物萃取 萃取和协同萃取等几种类型。 萃取和协同萃取等几种类型。 等几种类型
cA总 有机) (m −m ) /V(有机) ( 0 1 D= = cA总(水) m /V(水) 1 经一次萃取后留在水相中A的质量 V水 ( ) m =m ( ) 1 0 D ( 机 +V 水 V有 ) ( )
解:
பைடு நூலகம்
多次连续萃取的计算(2)
第二次萃取后水相中剩余溶质质量: 第二次萃取后水相中剩余溶质质量: V(有机) V 有机) ( 2 m2 = m ( ) m0 ( = ) 1 D (有机)+V 水) V D (有机)+V 水) V ( ( 经n次萃取后水相中剩余溶质质量: 次萃取后水相中剩余溶质质量: V有 ) ( 机 n m =m ( ) n 0 D ( 机 +V 水 V有 ) ( ) n次萃取后的萃取效率 为: 次萃取后的萃取效率E为 次萃取后的萃取效率 V水 ( ) n E = −( ) 1 D ( 机 +V 水 V有 ) ( )
药物分离技术第二章 药物的液液萃取技术

诱导力随着极性分子的极性增强而增大。
第二节 分子间作用力与溶剂特性
范得华力包括:
色散力:存在于非极性分子之间。由于非极性分子外围电子不停运动和原子核的不断 震动,可能造成某一瞬间存在偶极矩不为0(即正负电荷中心不重合),造成同极相 吸、异极相斥,这种作用力即为色散力。
大小取决于分子的变形性,半径越大,色散力越强。
产物 青霉素G 红霉素 螺旋霉素 土霉素
萃取溶剂 乙酸丁酯 乙酸丁酯 乙酸丁酯
丁醇
产物 林可霉素 加兰他敏 延胡索乙素 新生霉素
萃取溶剂 丁醇
乙酸乙酯 乙醚 丁醇
主要用于抗生素及天然植物中的有效成分的提取。
四、化学萃取
• 化学萃取则利用萃取剂与溶质之间的化学反应生成复合分子, 向萃取相分配而实现溶质转移。
当溶质—溶质之间作用力和溶剂—溶剂之间的作用力越大时,溶解越困难。 分子间作用力的大小与分子的极性关系:
非极性物质<极性物质<氢键物质<离子型物质 当物质溶解时,溶质结构与溶剂结构相似、彼此间的作用力相似,溶解容易进行, 此为“相似相容”原理。
第二节 分子间作用力与溶剂特性 一、分子间作用力
物质内部作用力:化学键、氢键和分子间作用力。
pKb
pH
可见,弱电解质溶质在有机相中的浓度主要取决于pH值。
弱酸性电解质:pH值越低,分配系数越大;弱碱性正好相反。
• 在一定温度和压力下,分配系数是水中氢离子浓度的函数,调节水相的pH, 使溶质以分子状态↑,进入萃取相↑,分配系数↑,萃取率↑。
红霉素是碱性电解质,在乙酸戊酯和 pH 9.8 的水相之间分配系数为 44.7 ,而水相 pH5.5 时为14.3 。
乳状液是一个不稳定的热力学体系,易聚集分层,成为稳定的两相。 若要形成稳定的乳剂,需要加入稳定剂使其形成稳定的体系,这种稳
第二节 分子间作用力与溶剂特性
范得华力包括:
色散力:存在于非极性分子之间。由于非极性分子外围电子不停运动和原子核的不断 震动,可能造成某一瞬间存在偶极矩不为0(即正负电荷中心不重合),造成同极相 吸、异极相斥,这种作用力即为色散力。
大小取决于分子的变形性,半径越大,色散力越强。
产物 青霉素G 红霉素 螺旋霉素 土霉素
萃取溶剂 乙酸丁酯 乙酸丁酯 乙酸丁酯
丁醇
产物 林可霉素 加兰他敏 延胡索乙素 新生霉素
萃取溶剂 丁醇
乙酸乙酯 乙醚 丁醇
主要用于抗生素及天然植物中的有效成分的提取。
四、化学萃取
• 化学萃取则利用萃取剂与溶质之间的化学反应生成复合分子, 向萃取相分配而实现溶质转移。
当溶质—溶质之间作用力和溶剂—溶剂之间的作用力越大时,溶解越困难。 分子间作用力的大小与分子的极性关系:
非极性物质<极性物质<氢键物质<离子型物质 当物质溶解时,溶质结构与溶剂结构相似、彼此间的作用力相似,溶解容易进行, 此为“相似相容”原理。
第二节 分子间作用力与溶剂特性 一、分子间作用力
物质内部作用力:化学键、氢键和分子间作用力。
pKb
pH
可见,弱电解质溶质在有机相中的浓度主要取决于pH值。
弱酸性电解质:pH值越低,分配系数越大;弱碱性正好相反。
• 在一定温度和压力下,分配系数是水中氢离子浓度的函数,调节水相的pH, 使溶质以分子状态↑,进入萃取相↑,分配系数↑,萃取率↑。
红霉素是碱性电解质,在乙酸戊酯和 pH 9.8 的水相之间分配系数为 44.7 ,而水相 pH5.5 时为14.3 。
乳状液是一个不稳定的热力学体系,易聚集分层,成为稳定的两相。 若要形成稳定的乳剂,需要加入稳定剂使其形成稳定的体系,这种稳
溶剂萃取化学 ppt课件

粉红
分液漏斗震荡
上层:煤油层蓝色(负 载有机相) 下层:无色(萃余液)
证明:钴被萃取到煤油 层(P204二(2 —乙基己基)磷酸煤油溶 液)
ppt课件 2
萃合物一般是配合物,以下反应可加酸使钴 重回水相,这称为反萃取。
Co 2HA CoA2 (O) 2H
萃合物
2
CoA2 (O) H 2 SO 4 CoSO 4 2HA(O)
HAo KD HAw H A
Ka
w w
[ HA]o KD [ HA]w
HC l
H 2O
反萃
H 3 PO4
ppt课件
7
b有机化工(烷烃、芳烃) 环丁砜—二甘醇 ③在生物制药领域应用相当广泛 a从发酵培养液中萃取产物 b从生物反应液或生物转化液中萃取产物
疏水性的青霉素 G和V酸性很强,其 pKa值为2.5~3.1,相对分子质量 分别为334和350,适宜用有机溶剂从发酵液中萃取,在pH 2.5~3.0 范围内,用乙酸戊酯和乙酸丁酯作为萃取剂的萃取效率高。 由于氨基酸和一些极性较大的抗生素的水溶性很强,在有机相中的分 配系数很小甚至为零,利用一般的物理萃取效率很低,需采用化学萃 取。可用于抗生素的化学萃取剂有长链脂肪酸 (如月桂酸)、烃基磺酸、 三氯乙酸、四丁胺和正十二烷胺等。它们与抗生素形成复合物分子的 疏水性比抗生素分子本身高得多,从而在有机相中有很高的溶解度。
第二章 溶剂萃取化学
ppt课件
1
一 基本概念和参数 1 萃取和反萃取 萃取:水相与一完全或部分不相溶的有机相密切接触后, 水相中的溶质转入有机相,并在两相中重新分配的过程称 为有机萃取或液液萃取。 例:
溶剂萃取的概念及原理

许多非极性有机化合物,如烷烃、油脂、萘、蒽等难溶于水 ,而易溶于有机溶剂,物质的这种性质称为疏水性(亲油性)。
溶剂萃取的概念及原理
4、萃取过程
萃取过程可以看作是被萃物M在水相和有机相中 两个溶解过程之间的竞争。萃取过程为:
S-S + 2(M-Aq) —→ Aq-Aq + 2(M-S)
★ 有机物(包括一些在水中不离解的非极性的共价化合 物)的萃取原理适用于“相似相溶原理”。 ★ 从水溶液中将某些离子萃取到有机相,必须设法将离子 的亲水性转化为疏水性。
溶剂萃取的概念及原理
Ni2+
CH3 C N OH
+2
Ni(H2O)62+
CH3 C N OH
H
O
O
CH3 C N
N C CH3
Ni
CH3 C N
N C CH3
O
H
中和电荷
NiDx2/CHCl3
引入疏水基
萃取剂----“运载工具”
溶剂萃取的概念及原理
亲水性水合阳离子→中性疏水螯合物→萃入有机相
8-羟基喹啉
溶剂萃取的概念及原理
1、溶剂萃取的概念
(4)萃取溶剂分类:
按是否参与萃取反应分成两类: 活性溶剂—参与萃取反应,如上述乙醚; 惰性溶剂—不参与萃取反应,如上述CHCl3。
(5)萃取溶剂剂选择:
1、与原溶剂互不相溶; 2、能够溶解反应产物并与原溶剂在溶解度有较大差异。 3、粘度要小、密度与水的差别要适当。 4、毒性低、不易燃、挥发性小、易于回收的溶剂。
总结
• 1、溶剂萃取的概念
• 定义、特点、萃取剂、萃取溶剂、萃取溶剂选择
• 2、溶剂萃取的本质 • 3、物质的亲水性和疏水性 • 4、萃取过程
溶剂萃取的概念及原理
4、萃取过程
萃取过程可以看作是被萃物M在水相和有机相中 两个溶解过程之间的竞争。萃取过程为:
S-S + 2(M-Aq) —→ Aq-Aq + 2(M-S)
★ 有机物(包括一些在水中不离解的非极性的共价化合 物)的萃取原理适用于“相似相溶原理”。 ★ 从水溶液中将某些离子萃取到有机相,必须设法将离子 的亲水性转化为疏水性。
溶剂萃取的概念及原理
Ni2+
CH3 C N OH
+2
Ni(H2O)62+
CH3 C N OH
H
O
O
CH3 C N
N C CH3
Ni
CH3 C N
N C CH3
O
H
中和电荷
NiDx2/CHCl3
引入疏水基
萃取剂----“运载工具”
溶剂萃取的概念及原理
亲水性水合阳离子→中性疏水螯合物→萃入有机相
8-羟基喹啉
溶剂萃取的概念及原理
1、溶剂萃取的概念
(4)萃取溶剂分类:
按是否参与萃取反应分成两类: 活性溶剂—参与萃取反应,如上述乙醚; 惰性溶剂—不参与萃取反应,如上述CHCl3。
(5)萃取溶剂剂选择:
1、与原溶剂互不相溶; 2、能够溶解反应产物并与原溶剂在溶解度有较大差异。 3、粘度要小、密度与水的差别要适当。 4、毒性低、不易燃、挥发性小、易于回收的溶剂。
总结
• 1、溶剂萃取的概念
• 定义、特点、萃取剂、萃取溶剂、萃取溶剂选择
• 2、溶剂萃取的本质 • 3、物质的亲水性和疏水性 • 4、萃取过程
第2章溶剂萃取

P’= He + Hd + Hn
常用溶剂的罗氏极性参数
溶剂
正庚烷 正己烷 环戊烷 四氢呋喃
乙酸乙酯 氯仿 甲乙酮 丙酮 乙腈 甲醇 水
P’
ɛ(介电常数)
0.2
1.92
0.1
1.88
-0.2
1.97
4.0
7.6
4.4
6.0
4.1
4.8
4.7
18.5
5.1
5.8
37.8
5.1
32.7
10.2
80
Xe =He/P’ Xd = Hd/P’ Xn= Hn/P’
醋酸
苯酚、氯仿、水
结论
同一个组中的溶剂,具有非常接近的3个选择性 参数,在分离过程中具有类似的选择性,若通过选 择溶剂改善分离,就要选择不同组的溶剂。
溶剂选择一般方法
(1)单一溶剂: 选择与溶质极性尽可能相等的单 一溶剂,使溶质在溶剂中的溶解度达到最大;
在保持溶剂极性不变的前提下,更换溶剂种类, 调整溶剂选择性,使分离选择性达到最佳。
• 极性是一种抽象概念,用以表示分子中电荷不对 称(assymmetry)的程度。
• 表征的参数常有偶极矩、介电常数、油水分配系 数、溶解度参数和罗氏极性参数。
影响分子极性的因素
分子的极性与分子结构及分子大小有关;
——分子结构指分子中所含官能团的种类、数目及 排列方式等综合因素。
——分子大小指分子碳链长度、骨架大小,与分子 量相关。
测定分配系数最常用溶剂系统:正辛醇和水系统, 并用Ko/w或lgP表示分配系数。
KO /W
coctanol c wa te r
lg Ko/ w lg P
典型香味化合物的油水分配系数
常用溶剂的罗氏极性参数
溶剂
正庚烷 正己烷 环戊烷 四氢呋喃
乙酸乙酯 氯仿 甲乙酮 丙酮 乙腈 甲醇 水
P’
ɛ(介电常数)
0.2
1.92
0.1
1.88
-0.2
1.97
4.0
7.6
4.4
6.0
4.1
4.8
4.7
18.5
5.1
5.8
37.8
5.1
32.7
10.2
80
Xe =He/P’ Xd = Hd/P’ Xn= Hn/P’
醋酸
苯酚、氯仿、水
结论
同一个组中的溶剂,具有非常接近的3个选择性 参数,在分离过程中具有类似的选择性,若通过选 择溶剂改善分离,就要选择不同组的溶剂。
溶剂选择一般方法
(1)单一溶剂: 选择与溶质极性尽可能相等的单 一溶剂,使溶质在溶剂中的溶解度达到最大;
在保持溶剂极性不变的前提下,更换溶剂种类, 调整溶剂选择性,使分离选择性达到最佳。
• 极性是一种抽象概念,用以表示分子中电荷不对 称(assymmetry)的程度。
• 表征的参数常有偶极矩、介电常数、油水分配系 数、溶解度参数和罗氏极性参数。
影响分子极性的因素
分子的极性与分子结构及分子大小有关;
——分子结构指分子中所含官能团的种类、数目及 排列方式等综合因素。
——分子大小指分子碳链长度、骨架大小,与分子 量相关。
测定分配系数最常用溶剂系统:正辛醇和水系统, 并用Ko/w或lgP表示分配系数。
KO /W
coctanol c wa te r
lg Ko/ w lg P
典型香味化合物的油水分配系数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E q 100 % 1 E
4、分离系数(β A/B)
- 分离系数( β A / B )又称为分离因数,它是 表示两组分分离难易程度的一个参数,定 义为在同一萃取体系内,在同样条件下两 组分的分配比的比值,对A 、B 两组分而言, 其分离系数可表示为:
A/ B
DA [ A] / A [ A] [ B] DB [ B] / B [ B] [ A]
§2.1.3.2 稀释剂与相调节剂
稀释剂
有机相中除了萃取剂之外,在许多情况下还必须有 稀释剂,而且在大部分情况下,稀释剂在有机相中 占有更大的比例。 常用稀释剂的组成分为脂肪烷烃与芳香烃两大类, 有些工业稀释剂常由不同比例的这两类化合物组成。 有时还含有一定比例的环烷烃。 稀释剂的作用是溶解萃取剂构成连续有机相,改善 有机相的物理性能,因此早期认为他们在萃取过程 中是“惰性”的,然而随着研究过程的深入,人们 越来越认识到稀释剂对萃取过程的重要影响。
3. 含氮萃取剂
(1)胺类萃取剂
• 它可视为氨的烷基取代衍生物,氨分子中一个 氢为烷基取代的衍生物,称为 伯胺 ( RNH 2 ), 两个氢为烷基取代的衍生物为 仲胺 ( R 2 NH )、 三个氢为烷基取代的衍生物为叔胺 ( R 3 N ), 季铵盐R4NC1视为氯化铵分子中的四个氢为烷 基取代的衍生物。 它们通过氮原子与金属离子配位。
• 相调节剂
– 相调节剂又称之为极性改善剂。加入极性改善 剂是克服三相的主要办法。常用的极性改善剂 有高碳醇与中性磷性萃取剂如 TBP 。异癸醇及 壬基酚是国外普遍采用的相调节剂,而国内却 多采用仲辛醇,尽管仲辛醇中含有具有腐烂苹 果臭味的辛酮-2,但由于它价廉易得故仍获得 较广泛的应用。 – 它的作用是增加有机相的极性,从而增加萃取 剂与萃合物在有机相中的溶解度。
定律成立的前提条件是:
1. 两溶剂基本不互相混溶 2. 温度一定 3. 溶质在两相中的分子式相同或分子量相等
λ°=am(2)/am(1) =[M] 2· r2/[M]1· r1 =λ·r2 / r1 *仅对极稀溶液而言,λ才等于Nernst热力 学分配平衡常数λ0。
§ 2.1.4.2 络合物的分级平衡
• βA/B越大(或越小),说明两种物质越容易分离, 当β=1时,两种物质无分离效果。 • 一般 A 表示易萃组分, B 表示难萃组分,所以 β A / B 越大,说明A、B越易分离,也就是说萃取的选择性 越好。 • 有时可简单用β表示分离系数。 • 分离系数β不是常数,随萃取条件的变化而变化。
§3.4 萃取等温线、饱和容量与饱和度
TM MX n n M X 水相中:
n
TM M MX MX 2 MXn M X
n
n i M 1 i ( x) M Yo i 0
TM n M X n [ X ] D [M 3 ] [M n ] D TM M1 M 2 M 3 M n
一种最简单的情况: 水相中尽管有M……MXn但只有MXn 能为有机 相萃取;而有机相中的 MXn 不发生离解或谛合 作用。
有机相中:
• 有机相-有机溶剂 – 萃取剂
– 稀释剂
• 是一种能与被萃物作用生成一种不溶于水相而易溶于有 机相的化合物,从而使被萃物从水相转入有机相的有机 试剂。 • 萃合物:萃取剂与被萃取物发生化学反应生成的不易溶 于水相而易溶于有机相的化合物(通常是一种络合物) 称为萃合物。
• 指萃取剂溶于其中构成连续有机相的溶剂。例如磺化煤 油。稀释剂虽与被萃物不直接化合,但往往能影响萃取 剂的性能。(改善有机相的物理性质如:密度、粘度、 表面张力 ) – 极性改善剂(相调节剂) – 为了避免萃取或反萃取时产生稳定的乳化或生成第 三相,有时还要往有机相加入一些高碳醇或其他有 机化合物,增加萃取剂、萃取剂的盐类或萃合物的 溶解度。这些有机化合物统称为极性改善剂(相调 节剂)。
• 萃取等温线(萃取平衡线) – 在一定温度下,在萃取过程中,被萃取物 质在两相的分配达到平衡时,以该物质在 有机相的浓度和它在水相的浓度关系作图, 把这种表明有机相与水相中的金属浓度变 化的曲线称作萃取等温线。 – 根据萃取等温线,可以计算出不同浓度时 的分配比、判断萃取体系的效率、溶剂的 最大负荷能力(饱和萃取容量)以及确定 萃取级数、推测萃合物的组成等。
绝大部分的萃取过程是络合物的形成过 程,研究萃取过程必须了解溶液中络合物 形成的理论。 根据络合物的分级平衡理论,多合配位 体络合物在溶液中是逐级形成的,每一 步的络合反应都存在平衡。
MXn的各级络合物可用下列各反应式表示:
βn称为络合物MXn的生成稳定常数,简称稳定 常数。
福劳内乌斯函数:
C6H5苯 C6H5OH(酚) 1.2-C6H4(OH)2
6.072 9.06 45.1
表2-2 醇的同系物在水中的溶解度
分子式 化合物 甲 醇 乙 醇 正丙醇 正丁醇 正戍醇 正已醇 正庚醇 正辛醇 CH3OH C2H5OH C3H7OH C4H9OH C5H11OH C6H13OH C7H15OH C8H17OH 溶解度(g/100克水 20℃) 完全互溶 完全互溶 完全互溶 8.3 2.0 0.5 0.12 0.03
2.溶剂的互溶性规律
– 凡两种溶剂混合生成氢键的数目或强度 大于混合前氢键的数目和强度,则有利 于互相混溶,反之则不利于互溶。
溶剂的互溶性规律
1. AB型和N型溶剂几乎完全不互溶。 2. A 型和 B 型溶剂混合前无氢键,混合后形成氢键, 故有利于完全互溶,如氯仿与丙酮。 3. AB型和A型,AB型和B型、AB型与AB型在混合前 后都有氢键形成,互溶度大小视混合前后氢键的强 弱及多少而定。 4. A型和 A型,B型和B型, N型和 N型, N型和A型、 N 型和 B 型,混合前后均无氢键形成,互溶度大小 取决于混合前后范德华力的大小,即由分子的极化 率和偶极矩决定。 5. AB(3)型溶剂行为与B型或N型溶剂类似。
C V E DR C V
3、萃取率(q) -指被萃取物进入到有机相中的量占萃取前 料液中被萃取物总量的百分比。
C V C q 100 % 100 % C V C V C C(V/ V)
D 100 % D 1/ R
因为E=D· R 将D=E/R代入上式,有:
n TM Yo i ( X )i 1 1 ( X ) 2 ( X ) 2 n ( X ) n M i0
=
1 i ( X )i
i 1
n
Yo又称为络合度 ,所以 TM=(M)Yo
§3.3 萃取过程的参数
1、分配比(D)-distribution ratio – 在萃取达到平衡后,被萃取物在有机相的总 浓度和水相中的总浓度之比值称为分配比。
尽管水不是有机溶剂,但它是一种最普遍 应用的溶剂,而且是AB(1)型溶剂中,生 成氢键缔合最强的溶剂。
AB(2)型溶 剂
邻位硝基苯酚
AB(3)型溶 剂
溶剂互溶规则 1. 相似性原理
– 结构相似的溶剂容易互相混溶,结构差别 较大的溶剂不易互溶。
表2-1 苯和酚在水中的溶解度 化合物 溶解度 克/100克水(20℃)
(4)羟基喹啉类萃取剂
• 最有代表性的是kelex100,其结构式为
N
• 它也是一种螯合萃取剂
4. 含硫萃取剂
• 含硫萃取剂的分子中,除含碳、氢外,还 含有硫,冶金萃取剂中,目前主要得到应 用的有硫醚类和亚砜类萃取剂。 • 硫醚(R2S)可以看作是硫化氢的二烷基衍 生物,而亚砜(R2S=O)则是硫醚被氧化的产 物。 • 硫醚的萃取作用主要是通过硫原子,而亚 砜类的萃取是通过氧原子配位实现的。
§2.1.3 萃取剂、稀释剂与相调节剂
§2.1.3.1 萃取剂
– 根据萃取剂分子功能基的特征原子进行分类 • 含氧萃取剂 • 含磷萃取剂 • 含氮萃取剂 • 含硫萃取剂 – 按照萃取剂的酸碱性能进行分类 • 碱性萃取剂 • 中性萃取剂 • 酸性萃取剂
• 此类萃取剂分子中只含有碳、氢、氧三种 元素的原子。 • 包括醚 R-O-R 醇 R-OH O 酮 R-C -R 酸 RCOOH O 酯 R-C-O-R’ • 它们通过氧原子与被萃物结合形成萃合物。
n
n
当水相中有两种以上物种被萃取,或有机 相有二次反应发生,则情况会更复杂。
D和λ的区别
1. D和λ概念有区别,不能将两者混同 2. D受λ支配,即受分配定律支配 3. D是变数、易测定 4. λ是常数,但难于测定
2、萃取比(E) -指有机相中某一组分的质量流量(kg/min) 与水相中该组分的质量流量之比。
• 水相:
– 水相料液
– 指作为萃取原料的含有待分离物质的水溶液。
– 络合剂
• 指溶于水相且与金属离子生成各级络合物(包括 螯合物)的配位体。
– 盐析剂
• 指溶于水相既不被萃取又不与金属离子络合但能 增加萃取率的无机盐。
§ 2.1.1.2 萃取过程
§2.1.2 溶剂分类和溶解度规律
• 溶剂与溶剂之间的两种作用力:
§2.1.4 萃取平衡
§ 2.1.4.1 分配定律
Nernst分配定律: 当某一溶质在基本上不相混溶的两个溶剂 中分配时,如在给定的温度下在两相达到平衡 以后,且溶质在两相中分子量相等,则其在两相 中的浓度的比值为一常数.
λ=[M]2/[M]1=常数
式中[M]1、[M]2分别为达到平衡后,溶质在1、 2两相中的浓度,λ称为能斯特分配平衡常数, 简称分配常数(partition coefficient)。
1. 含氧萃取剂
2. 含磷萃取剂
此类萃取剂分子中除含有碳、氢、氧三种 元素外,还含有磷原子、它们又分为两类: 1. 2. 中性磷(膦)型萃取剂 酸性磷(膦)型萃取剂