模糊数学的应用
模糊数学的原理及其应用

模糊数学的原理及其应用1. 模糊数学的概述•模糊数学是一种数学理论和方法,用于描述和处理模糊和不确定性的问题。
•模糊数学可以更好地解决现实世界中存在的模糊性问题。
2. 模糊数学的基本概念•模糊集合:具有模糊性的集合,其元素的隶属度可以是一个区间或曲线。
•模糊关系:描述元素之间模糊的关联,可以用矩阵、图形或规则表示。
•模糊逻辑:基于模糊集合和模糊关系的逻辑运算,用于推理和决策。
3. 模糊数学的原理•模糊集合理论:模糊集合的定义、运算和性质。
•模糊关系理论:模糊关系的表示、合成和推理。
•模糊逻辑理论:模糊逻辑运算的定义、规则和推理机制。
4. 模糊数学的应用领域•控制理论:在模糊环境下设计控制系统,提高系统的鲁棒性和自适应能力。
•人工智能:利用模糊推理和模糊决策技术,实现模糊推理机和模糊专家系统。
•决策分析:在不确定和模糊环境下进行决策,提供可靠的决策支持。
•模式识别:用模糊集合和模糊关系描述和识别模糊模式。
•数据挖掘:利用模糊数学方法在大数据中发现模糊规律和模糊模式。
•经济学:模糊数学在经济学中的应用,如模糊经济学和模糊决策理论。
•工程优化:在多目标优化和约束优化中应用模糊数学方法。
•生物学:模糊生物学在生物信息学和细胞生物学中的应用。
5. 模糊数学的优势和局限5.1 优势•能够处理和描述模糊和不确定的问题,适用于现实世界的复杂问题。
•可以通过合适的模型和规则进行推理和决策,提供可靠的解决方案。
•可以用简单的数学方法解决复杂的问题,不需要严格的数学证明。
5.2 局限•模糊数学方法在某些问题上可能无法提供明确的结果。
•模糊数学需要根据实际情况选择合适的模型和参数,需要一定的经验和专业知识。
•模糊数学方法的计算复杂性较高,在大规模问题上可能不适用。
6. 总结•模糊数学是一种处理模糊和不确定问题的数学理论和方法。
•模糊数学包括模糊集合理论、模糊关系理论和模糊逻辑理论。
•模糊数学在控制理论、人工智能、决策分析等领域应用广泛。
模糊数学在制造业中的应用研究

模糊数学在制造业中的应用研究随着全球制造业的发展,人们对产品的质量和效率的要求也越来越高。
在这个过程中,模糊数学被广泛应用于制造业中的数据分析和预测,以提高产品质量和生产效率。
模糊数学是集概率论、数学推理、模糊逻辑等多种学科于一体的一门交叉学科。
其研究重点在于描述那些事物或信息一些不确定不明显的问题,更好地处理不确定信息。
在制造业中,模糊数学的应用主要是处理和分析各种各样的物料和信息,为生产实践提供决策支持。
首先,模糊数学可以应用于系统控制方面。
在制造过程中,控制系统往往需要对多个变量进行控制,但这些变量之间的关系是相互影响的,因此难以确定系统运行的准确状态。
这时,模糊数学理论可以将变量的关系建模为模糊关系,并通过模糊控制算法对系统进行控制。
其次,模糊数学可应用于质量控制方面。
在制造业中,产品的质量是企业生死攸关的因素之一。
传统的质量控制方法主要基于统计学理论,但是在质量控制过程中经常会出现一些无法准确描述的因素,如环境因素、运输因素等,这些变化无法用统计学来分析。
在这种情况下,模糊数学理论可以应用于质量控制中,通过模糊决策和模糊分析,提高质量控制的效率和准确性。
此外,模糊数学还可以应用于预测方面。
在制造业中,对未来的预测是非常必要的,尤其是对市场需求和供应链等方面的预测。
但是,这些预测涉及到的因素众多而复杂,难以用常规的分析方法进行预测。
这时,使用模糊数学的预测模型可以更好地处理这些不确定和复杂的因素,为企业提供更为准确的预测分析结果。
最后,模糊数学还可以应用于产品设计方面。
在产品设计过程中,需要考虑多个因素之间的相互关系,并根据这些关系进行决策。
但是这些因素之间的关系可能难以用传统的逻辑关系进行描述,因此使用模糊数学的方法可以对因素之间的相互关系进行全面的描述、量化和综合评判,从而为产品设计提供更为准确的信息。
综上所述,模糊数学在制造业中的应用非常广泛。
在制造过程中,应用模糊数学的理论和方法,可以更好地处理和分析不确定和复杂的信息,为企业提供更为准确的决策支持,从而提高产品质量和生产效率,达到企业可持续发展的目标。
模糊数学原理及应用

模糊数学原理及应用
模糊数学是一门拟现实主义的数学,它提供了一种方法来处理含有不确定性和模糊性的信息,为变量的描述提供了一种更加灵活的方式。
模糊数学的基本原理是通过将变量的值划分为多个等级来实现。
模糊数学在众多领域有着广泛的应用,如智能控制、机器学习、信息处理、模式识别、知识表示、系统建模等。
模糊数学原理的核心是模糊集合理论,它基于不确定性和模糊性的概念,将变量的值划分为多个不同等级,即模糊集合中的元素分层次,从而实现模糊数学原理的应用。
模糊集合的每个元素都有一个权值,表示其变量的程度。
这些元素的权值可以是实数,也可以是逻辑值,这取决于变量的类型。
模糊数学在智能控制领域有着广泛的应用。
智能控制是一种利用计算机程序来控制复杂系统的技术,它可以用来解决有关非线性系统的控制问题。
模糊控制是一种智能控制的方法,它可以将模糊数学的概念用于控制问题的解决,使得控制系统表现得更加准确、灵活和精确。
模糊数学也可以用于机器学习,它可以使机器“学习”和“记忆”,使机器能够像人类一样识别和处理信息。
它可以用来处理不确定性和模糊性的信息,让机器“学习”和“记忆”,有效地提高机器学习的效率。
模糊数学还可以用于信息处理,它可以将不确定性和模糊性的信息转换为有用的信息,有效地改善信息处理的效率。
此外,模糊数学还可以用于模式识别、知识表示、系统建模等领域,以提高系统的效率和准确性。
模糊数学原理及其应用的日益广泛,可以说模糊数学是一门融合不确定性和模糊性的数学,它可以提供更加灵活的方式来处理含有不确定性和模糊性的信息,在众多领域有着广泛的应用。
模糊数学原理及应用

模糊数学原理及应用
模糊数学,也被称为模糊逻辑或模糊理论,是一种基于模糊概念和模糊集合的数学分析方法,用于处理不精确或不确定性的问题。
模糊数学允许将不明确的概念和信息进行量化和处理,以便更好地处理现实生活中存在的模糊性问题。
模糊数学的基本原理是引入模糊集合的概念,其中的元素可以具有模糊或不确定的隶属度。
模糊数学中的隶属函数可以用于刻画元素对于一个模糊集合的隶属程度。
模糊集合的运算可以通过模糊逻辑实现,模糊逻辑是概率逻辑和布尔逻辑的扩展,它允许使用连续的度量范围来推导逻辑结论。
模糊逻辑中的运算包括取补、交集和并集等,它们可以用来处理模糊概念之间的关系。
模糊数学在许多领域都有广泛的应用。
在控制系统中,模糊控制可以用于处理难以量化的问题,如温度、湿度和压力等。
在人工智能领域,模糊推理可以用于处理自然语言的不确定性和模糊性。
在决策分析中,模糊数学可以用于处理多个决策因素之间的不确定性和模糊性。
此外,模糊数学还在模式识别、图像处理、数据挖掘和人机交互等领域得到广泛应用。
通过使用模糊数学的方法,可以更好地处理现实世界中存在的不确定性和模糊性,从而提高问题解决的准确性和效率。
模糊数学例题大全

模糊数学例题大全标题:模糊数学例题大全模糊数学,又称为模糊性数学或者弗晰数学,是一个以模糊集合论为基础的数学分支。
它不仅改变了过去精确数学的观念,而且广泛应用于各个领域,从物理学、生物学到社会科学,甚至。
下面,我们将通过一些具体的例题来展示模糊数学的应用。
例1:模糊逻辑门在经典的逻辑门中,我们使用AND、OR和NOT等操作符来处理布尔值(0或1)。
然而,在现实世界中,很多情况并不是绝对的0或1。
例如,我们可以将“温度高”定义为大于25度,但24度是否算高呢?模糊逻辑门提供了更广泛的定义方式,允许我们使用模糊集合来描述这些边界情况。
例2:模糊聚类分析在统计学中,聚类分析是一种将数据集分类成几个组的方法,其中同一组内的数据点相似度高。
然而,在某些情况下,我们无法用精确的数值来描述数据点的相似度。
这时,模糊聚类分析就派上用场了。
它允许我们使用模糊矩阵来表示数据点之间的相似度,从而更准确地分类数据。
例3:模糊决策树在机器学习中,决策树是一种用于分类和回归的算法。
然而,在某些情况下,我们无法用精确的规则来描述决策过程。
这时,模糊决策树就派上用场了。
它允许我们在决策节点使用模糊规则来代替传统的布尔值规则,从而更好地模拟人类的决策过程。
例4:模糊控制系统在控制系统中,我们通常需要设计一个控制器来控制系统的行为。
然而,在某些情况下,系统的输入和输出并不是绝对的0或1。
这时,模糊控制系统就派上用场了。
它允许我们使用模糊集合来描述系统的输入和输出,从而更准确地控制系统的行为。
例5:模糊图像处理在图像处理中,我们通常需要分类、识别或分割图像中的对象。
然而,在某些情况下,图像中的对象边界并不清晰。
这时,模糊图像处理就派上用场了。
它允许我们使用模糊集合来描述图像中的对象边界,从而更准确地分类、识别或分割图像中的对象。
以上只是模糊数学众多应用的一小部分。
这个领域仍在不断发展,为解决各种复杂的现实问题提供了新的工具和方法。
通过学习模糊数学,我们可以更好地理解和处理那些边界模糊、难以用传统数学方法描述的问题。
模糊数学在数学建模中的应用

则称R为U上的等价关系 。
特殊的等价关系
例10: 设U={u1,u2,u3}, 则 U×U={(u1, u1),(u1, u2),(u1, u3),(u2, u1),(u2, u2),(u2, u3) ,(u3, u1),(u3, u2),(u3, u3)}全称关系; I ={(u1, u1),(u2, u2), (u3, u3)}恒等关系。 用方阵表示如下:
模糊集合的表示方法
Zadeh 表示法
(1)
若论域U 为有限集,即U ={u1 , u2 , … , un},
则 A F ( U ) 可表示为
Au1 u1 Au2 u2 Aun un
A
例4:设U ={u1 , u2 , u3 , u4 , u5 },
A 0.87 u1 0.75 u2 0.96 u3 0.78 u4 0.56 u5
(2)如果RT= R;则称R为对称的;
(3) 如果R ◦ R R ,则称 R 为传递的。 自反的,对称的,传递的模糊关系称为模糊等价关系。
模糊等价关系
例17: 设U={u1,u2,u3,u4,u5}, 如下R为模糊等价关系
1 0.80 R 0.80 0.20 0.85
1、模糊聚类分析
(1)、模糊数学的基本思想; (2)、普通关系与布尔矩阵;
(3)、模糊关系与模糊矩阵;
(4)、模糊聚类分析原理。
模糊数学的基本思想
经典 集合:是指具有某种特定属性的对象集体。
例1:“延大09级的学生”; 模糊集合: 例2:“延大09级个子高的学生”。 区别: 是否满足排中率。
经典集合与特征函数
若记 P ( U )和 F ( U )分别为 U 上的所有经典集合和所有模糊集合
模糊数学理论在决策分析中的应用

模糊数学理论在决策分析中的应用一、引言决策是人类生活中不可或缺的一部分,决策分析是在决策过程中为了明确目标、评估方案、选择最佳方案,从而达到最优化的目的。
在决策分析中,涉及到多个因素,不同因素之间的相互作用和影响往往会使决策分析变得复杂,因此需要一种有效的方法来处理这种复杂性,模糊数学理论正是这样一种方法。
本文将重点讨论模糊数学理论在决策分析中的应用。
二、模糊数学理论概述2.1 模糊数学理论的起源和发展模糊数学理论的起源可以追溯到1965年左右,是由日本的松浦俊明教授提出的。
他在研究人类的认知过程中发现,人们往往会将不确定的概念、模糊的语言现象进行模糊化处理,以便更好地理解和应用。
松浦教授认为,模糊数学理论是一种可以用来描述和处理模糊现象的数学理论。
此后,模糊数学理论得到了广泛的应用和发展。
2.2 模糊数学理论的基础概念模糊数学理论的基础概念有模糊集、模糊关系、模糊逻辑运算等。
在模糊数学理论中,不同于传统数学,各元素之间的关系不是唯一的、明确的、确定的,而是模糊、模棱两可的。
因此,模糊数学理论中涉及到模糊集合、隶属函数、模糊关系、模糊逻辑运算等基础概念。
三、模糊数学理论在决策分析中的应用3.1 模糊数学理论在多准则决策中的应用多准则决策是当决策的结果不仅取决于一种因素时,需要基于多种因素进行分析决策。
在多准则决策中,模糊数学理论可以帮助我们解决模糊性问题。
例如,一个物品可以从不同的维度进行评价,如价格、品质、售后服务等,而这些维度之间的权重也可能不同,导致评价结果具有一定的模糊性。
在这种情况下,可以使用层次分析法(AHP)将多种因素纳入决策考虑,并采用模糊关系将各个维度的权重分配给不同的评价维度,最终得到综合评价结果。
3.2 模糊数学理论在风险评估中的应用在企业的投资决策中,风险评估是一个非常重要的步骤。
传统的风险评估方法往往只能考虑到已知的风险因素,而忽略了未知的因素,如天灾、人为破坏等不可预见的因素。
模糊数学和其应用

04
总结与展望
模糊数学的重要性和意义
模糊数学是处理模糊性现象的一种数学 理论和方法,它突破了经典数学的局限 性,能够更好地描述现实世界中的复杂 问题。
模糊数学的应用领域广泛,包括控制论、信 息论、系统论、人工智能、计算机科学等, 对现代科学技术的发展起到了重要的推动作 用。
模糊数学的出现和发展,不仅丰富 了数学理论体系,也促进了各学科 之间的交叉融合,为解决实际问题 提供了新的思路和方法。
随着计算机技术的发展,模糊 数学的应用越来越广泛,成为 解决复杂问题的重要工具之一 。
模糊数学的基本概念
模糊集合
与传统集合不同,模糊集合的成员关系不再是确 定的,而是存在一定的隶属度。例如,一个人的 身高属于某个身高的模糊集合,其隶属度可以根 据实际情况进行确定。
隶属函数
用于描述模糊集合中元素属于该集合的程度。隶 属函数的确定需要根据实推理规则不再是一 一对应的,而是存在一定的连续性。例如,在医 疗诊断中,病人的症状与疾病之间的关系可能存 在一定的模糊性,通过模糊逻辑可以进行更准确 的推理。
模糊运算
与传统运算不同,模糊运算的结果不再是确定的 数值,而是存在一定的隶属度。例如,两个模糊 数的加法运算结果也是一个模糊数,其隶属度取 决于两个输入的隶属度。
模糊数学在图像处理中的应用
总结词
模糊数学在图像处理中主要用于图像增强和图像恢复。
详细描述
通过模糊数学的方法,可以对图像进行平滑、锐化、边缘检测等操作,提高图像的视觉效果和识别能 力。例如,在医学影像处理中,可以利用模糊数学的方法对CT、MRI等医学影像进行降噪、增强和三 维重建等处理,提高医学诊断的准确性和可靠性。
02
模糊数学的应用领域
模糊控制
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科生论文模糊数学的应用指导老师:作者:中国矿业大学二零一一年六月模糊数学的应用摘要:二十世纪六十年代,产生了模糊数学这门新兴学科。
模糊数学作为一个新兴的数学分支,使过去那些与数学毫不相关或关系不大的学科(如生物学、心理学、语言学、社会科学等)都有可能用定量化和数学化加以描述和处理,从而显示了强大的生命力和渗透力,使数学的应用范围大大扩展。
模糊数学自身的理论研究进展迅速;模糊数学目前在自动控制技术领域仍然得到最广泛的应用,并在计算机仿真技术、多媒体辨识等领域的应用取得突破性进展;模糊聚类分析理论和模糊综合评判原理等更多地被应用于经济管理、环境科学以及医药、生物、农业、文体等领域,并取得很好效果。
关键字:模糊数学;应用;模糊评判;一、模糊数学的简介(一)发展历史模糊数学是运用数学方法研究和处理模糊性现象的一门数学新分支。
它以“模糊集合”论为基础。
它提供了一种处理不肯定性和不精确性问题的新方法,是描述人脑思维处理模糊信息的有力工具。
模糊数学由美国控制论专家L.A.扎德(L.A.Zadeh,1921--)教授所创立。
他于1965年发表了题为《模糊集合论》(《FuzzySets》)的论文,从而宣告模糊数学的诞生。
L.A.扎德教授提出了“模糊集合论”。
在此基础上,现在已形成一个模糊数学体系。
模糊数学产生的直接动力,与系统科学的发展有着密切的关系。
在多变量、非线性、时变的大系统中,复杂性与精确性形成了尖锐的矛盾,它给描述模糊系统提供了有力的工具。
L.A.扎德教授于1975年所发表的长篇连载论著《语言变量的概念及其在近似推理中的应用》,提出了语言变量的概念并探索了它的含义。
模糊语言的概念是模糊集合理论中最重要的发展之一,语言变量的概念是模糊语言理论的重要方面。
语言概率及其计算、模糊逻辑及近似推理则可以当作语言变量的应用来处理。
人类语言表达主客观模糊性的能力特别引人注目,或许从研究模糊语言入手就能把握住主客观的模糊性、找出处理这些模糊性的方法。
有人预言,这一理论和方法将对控制理论、人工智能等作出重要贡献。
模糊数学诞生至今仅有22年历史,然而它发展迅速、应用广泛。
它涉及纯粹数学、应用数学、自然科学、人文科学和管理科学等方面。
在图象识别、人工智能、自动控制、信息处理、经济学、心理学、社会学、生态学、语言学、管理科学、医疗诊断、哲学研究等领域中,都得到广泛应用。
把模糊数学理论应用于决策研究,形成了模糊决策技术。
只要经过仔细深入研究就会发现,在多数情况下,决策目标与约束条件均带有一定的模糊性,对复杂大系统的决策过程尤其是如此。
在这种情况下,运用模糊决策技术,会显得更加自然,也将会获得更加良好的效果。
(二)应用前景模糊数学是研究现实中许多界限不分明问题的一种数学工具,其基本概念之一是模糊集合。
利用模糊数学和模糊逻辑,能很好地处理各种模糊问题。
模式识别是计算机应用的重要领域之一。
人脑能在很低的准确性下有效地处理复杂问题。
如计算机使用模糊数学,便能大大提高模式识别能力,可模交换律:T(a ,b)=T(b ,a)结合律:T(T(a ,b),c)=T(a ,T(b ,c))单调性:a ≤c ,b ≤d 时,T(a ,b) ≤T(c ,d) 边界条件:T(a ,1)=a ,T(0,a)=0定义5 称二元函数S :[0,1]*[0,1] [0,1]为反三角范数,简称S-范数,满足以下条件:若a ,b ,c ,d ∈[0,1],有: 交换律:S(a ,b)=S(b ,a)结合律:S(S(a ,b),c)=S(a ,S(b ,c)) 单调性:a ≤c ,b ≤d 时,S(a ,b)≤S(c ,d) 边界条件:S(a ,1)=1,S(0,a)=a (二)模糊数学的基本定理 1. 模糊截积定义6 已知U 上模糊子集)U u )(u (A u ],1,0[U :A ∈∀→→,对]1,0[∈λ,A λ也是U 上模糊集,其隶属函数为:)U u (),u (A )u )(A (∈∀∧λ=λ;称为A λ为λ与A 的模糊截积。
2. 分解定理1 已知模糊子集)U (F A ∈,则λ∈λλ⋃=A A ]1,0[。
推论1:对,U u ∈∀}A u ],1,0[{)u (A λ∈∈λλ∨=。
3. 分解定理2 已知模糊子集)U (F A ∈,则∙λ∈λλ⋃=A A ]1,0[。
图5-1表5-1年降雨量列入年序号1x 2x 3x 4x 5x 6x 7x 8x 9x 10x 11x1 276 324 159 413 292 258 311 303 175 243 320 2 251 287 349 344 310 454 285 451 402 307 470 3 192 433 290 563 479 502 221 220 320 411 232 4 246 232 243 281 267 310 273 315 285 327 352 5 291 311 502 388 330 410 352 267 603 290 292 6 466 158 224 178 164 203 502 320 240 278 350 7 258 327 432 401 361 381 301 413 402 199 421 8 453 365 357 452 384 420 482 228 360 316 252 9 158 271 410 308 283 410 201 179 430 342 185 10 324 406 235 520 442 520 358 343 251 282 371 应该撤销那些雨量站,涉及雨量站的分布,地形,地貌,人员,设备等众多因素。
我们仅考虑尽可能地减少降雨信息问题。
一个自然的想法是就10年来各雨量站所获得的降雨信息之间的相似性,对全部雨量站进行分类,撤去“同类”(所获降雨信息十分相似)的雨量站中“多余”的站。
问题求解 假设为使问题简化,特作如下假设 (1)每个观测站具有同等规模及仪器设备; (2)每个观测站的经费开支均等; 具有相同的被裁可能性。
分析:对上述撤销观测站的问题用基于模糊等价矩阵的模糊聚类方法进行分析,原始数据如上。
求解步骤1. 利用相关系数法,构造模糊相似关系矩阵1111)r (⨯αβ,其中ij r =21n 1k n1k 2j jk 2i ik n1k j jk i ik])x x ()x x ([|)x x (||)x x(|∑∑∑=-=-⋅---其中i x =∑=101k ik x 101,i =1,2,…,11, j x =∑=n1k jk x n 1,j =1,2, (11)用C#语言编程计算出模糊相似关系矩阵1111)r (⨯αβ,得到模糊相似矩阵R 。
R=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡ 1.000 0.688 0.485 0.994 0.719 0.511 0.584 0.607 0.568 0.572 0.712 0.688 1.000 0.487 0.678 0.587 0.596 0.686 0.639 0.642 0.617 0.573 0.485 0.487 1.000 0.467 0.489 0.667 0.512 0.499 0.962 0.475 0.431 0.994 0.678 0.467 1.000 0.676 0.455 0.526 0.542 0.551 0.510 0.671 0.719 0.587 0.489 0.676 1.000 0.726 0.843 0.861 0.571 0.855 0.995 0.511 0.596 0.667 0.455 0.726 1.000 0.922 0.908 0.697 0.899 0.702 0.584 0.686 0.512 0.526 0.843 0.922 1.000 0.992 0.585 0.989 0.828 0.607 0.639 0.499 0.542 0.861 0.908 0.992 1.000 0.562 0.996 0.844 0.568 0.642 0.962 0.551 0.571 0.697 0.585 0.562 1.000 0.542 0.528 0.572 0.617 0.475 0.510 0.855 0.899 0.989 0.996 0.542 1.000 0.839 0.712 0.573 0.431 0.671 0.995 0.702 0.828 0.844 0.528 0.839 1.000 对这个模糊相似矩阵用平方法作传递闭包运算,求442R :R R −→− 即t (R )=4R =*R 。
注:R 是对称矩阵,故只写出它的下三角矩阵。
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=1688.0697.0688.0719.0719.0719.0719.0697.0719.0719.01697.0688.0688.0688.0688.0688.0688.0688.0688.01676.0697.0697.0697.0697.0962.0697.0697.01719.0719.0719.0719.0697.0719.0719.01861.0861.0861.0697.0861.0994.01922.0922.0697.0995.0861.01992.0697.0996.0861.01697.0996.0861.01697.0697.01861.0000.1R * 取λ=0.996,则996.0R =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡1001000000000001000000000001000000000001000000000001000000000001001000000001010000000001000000001101000000000001 故第二行(列),第四行(列)完全一致,故42x ,x 同属一类,所以此时可以将观测站分为9类{42x ,x ,5x },{1x },{3x },{6x },{7x },{8x },{9x },{10x },{11x }这表明,若只裁减一个观测站,可以裁42x ,x 中的一个。
若要裁掉更多的观测站,则要降低置信水平λ,对不同的λ作同样分析,得到 λ=0.995时,可分为8类,即{42x ,x ,5x ,6x },{1x },{3x },{7x },{8x },{9x },{10x },{11x };λ=0.994时,可分为7类{42x ,x ,5x ,6x },{1x ,7x },{3x } ,{8x },{9x },{10x },{11x };λ=0.962时,可分为6类{42x ,x ,5x ,6x },{1x ,7x },{3x ,9x } ,{8x }, {10x },{11x }; λ=0.719时,可分为5类{42x ,x ,5x ,6x },{1x ,7x },{3x ,9x },{8x ,11x },{10x };图5-2聚类谱系图再具体分析图5-1,我们可以看到6x 虽然和42x ,x ,5x 分为一类,但6x 和42x ,x ,5x 观测点相距较远,撤去6x 是不太合适的,保留6x 而撤去42x ,x ,5x 就更不合适了。